1,552 research outputs found

    Monte Carlo Study of the Inflation-Deflation Transition in a Fluid Membrane

    Full text link
    We study the conformation and scaling properties of a self-avoiding fluid membrane, subject to an osmotic pressure pp, by means of Monte Carlo simulations. Using finite size scaling methods in combination with a histogram reweighting techniques we find that the surface undergoes an abrupt conformational transition at a critical pressure p∗p^\ast, from low pressure deflated configurations with a branched polymer characteristics to a high pressure inflated phase, in agreement with previous findings \cite{gompper,baum}. The transition pressure p∗p^{\ast} scales with the system size as p∗∝N−αp^\ast \propto N^{-\alpha}, with α=0.69±0.01\alpha = 0.69 \pm 0.01. Below p∗p^\ast the enclosed volume scales as V∝NV \propto N, in accordance with the self-avoiding branched polymer structure, and for p↘p∗p\searrow p^{\ast} our data are consistent with the finite size scaling form V∝NÎČ+V \propto N^{\beta_{+}}, where ÎČ+=1.43±0.04\beta_{+} = 1.43 \pm 0.04. Also the finite size scaling behavior of the radii of gyration and the compressibility moduli are obtained. Some of the observed exponents and the mechanism behind the conformational collapse are interpreted in terms of a Flory theory.Comment: 20 pages + postscript-file, Latex + Postscript, IFA Report No. 94/1

    Mesoscopic modeling of the rtm process for homogenization

    Get PDF
    Intrinsic hybrids can be manufactured in a modified resin transfer molding (RTM) process for fibre reinforced polymers. Our work concentrates on mesoscopic modeling for temperature-dependent visco-elastic effects accompanied by curing within the RTM process. During hybridization and later thermal loading the periodic mesostructure defined by resin and fibres is taken into account as a representative volume element (RVE) subjected to thermo-mechanical loading. Homogenization leads to results on the less resolved macroscale. In the examples we illustrate the characteristic behavior of the mesoscopic model, such as shrinking due to curing and temperature dependence and simulate the RTM process as well as thermal loading of the cured composite with the finite-element-method

    Resuscitation Endpoints in Traumatic Shock: A Focused Review with Emphasis on Point-of-Care Approaches

    Get PDF
    Trauma resuscitation is a blend of art and science, with the traumatologist at the helm of a large, multidisciplinary team, making split-second decisions and overseeing various parallel processes. Despite tremendous progress over the past few decades, the “art” component continues to play a large part in the overall trauma resuscitation process, with the “science” part slowly but steadily increasing its footprint as a determinant of processes and decisions. Thus, it becomes critical for all clinicians to be able to recognize the evidence-based factors which can be most valuable in guiding trauma resuscitations. This chapter serves as an overview of the current clinical findings, resuscitative endpoints, imaging techniques, and physiologic indices that are most helpful in order to promptly recognize and treat traumatic shock as well as projecting forward to look at novel techniques and biomarkers. Though a single universal marker that accurately and consistently identifies traumatic shock has yet to be discovered, certain factors discussed, such as lactate and base deficit, have been proven to be much more reliable than others

    FPGA basierte, konfigurierbare OFDM Sender-Plattform fĂŒr die Positionsbestimmung mittels TDoA

    Get PDF
    FĂŒr die Evaluierung von Algorithmen zur Positionsbestimmung nach dem Time Difference of Arrival – Verfahren wird eine frei konfigurierbare OFDM Sender-Plattform benötigt. Da die Berechnung in Echtzeit erfolgen soll, ist eine Implementierung in rekonfigurierbarer Hardware (FPGA) erforderlich. Das Manuskript gibt sowohl einen Überblick ĂŒber die HintergrĂŒnde und die Architektur des Sendesystems, als auch einen tieferen Einblick in verschiedene Lösungsdetails

    Presenilin-1 processing of ErbB4 in fetal type II cells is necessary for control of fetal lung maturation

    Get PDF
    AbstractMaturation of pulmonary fetal type II cells to initiate adequate surfactant production is crucial for postnatal respiratory function. Little is known about specific mechanisms of signal transduction controlling type II cell maturation. The ErbB4 receptor and its ligand neuregulin (NRG) are critical for lung development. ErbB4 is cleaved at the cell membrane by the Îł-secretase enzyme complex whose active component is either presenilin-1 (PSEN-1) or presenilin-2. ErbB4 cleavage releases the 80kDa intracellular domain (4ICD), which associates with chaperone proteins such as YAP (Yes-associated protein) and translocates to the nucleus to regulate gene expression. We hypothesized that PSEN-1 and YAP have a development-specific expression in fetal type II cells and are important for ErbB4 signaling in surfactant production. In primary fetal mouse E16, E17, and E18 type II cells, PSEN-1 and YAP expression increased at E17 and E18 over E16. Subcellular fractionation showed a strong cytosolic and a weaker membrane location of both PSEN-1 and YAP. This was enhanced by NRG stimulation. Co-immunoprecipitations showed ErbB4 associated separately with PSEN-1 and with YAP. Their association, phosphorylation, and co-localization were induced by NRG. Confocal immunofluorescence and nuclear fractionation confirmed these associations in a time-dependent manner after NRG stimulation. Primary ErbB4-deleted E17 type II cells were transfected with a mutant ErbB4 lacking the Îł-secretase binding site. When compared to transfection with wild-type ErbB4, the stimulatory effect of NRG on surfactant protein mRNA expression was lost. We conclude that PSEN-1 and YAP have crucial roles in ErbB4 signal transduction during type II cell maturation

    Genomic biomarkers of prenatal intrauterine inflammation in umbilical cord tissue predict later life neurological outcomes

    Get PDF
    Preterm birth is a major risk factor for neurodevelopmental delays and disorders. This study aimed to identify genomic biomarkers of intrauterine inflammation in umbilical cord tissue in preterm neonates that predict cognitive impairment at 10 years of age

    Cerebral palsy and placental infection: a case-cohort study

    Get PDF
    BACKGROUND: The association between cerebral palsy in very preterm infants and clinical, histopathologic and microbiological indicators of chorioamnionitis, including the identification of specific micro-organisms in the placenta, was evaluated in a case-cohort study. METHODS: Children with a diagnosis of cerebral palsy at five years of age were identified from amongst participants in a long-term follow-up program of preterm infants. The comparison group was a subcohort of infants randomly selected from all infants enrolled in the program. The placentas were examined histopathologically for chorioamnionitis and funisitis, and the chorioamnionic interface was aseptically swabbed and comprehensively cultured for aerobic and anaerobic bacteria, yeast and genital mycoplasmas. Associations between obstetric and demographic variables, indicators of chorioamnionitis and cerebral palsy status were examined by univariate analysis. RESULTS: Eighty-two infants with cerebral palsy were compared with the subcohort of 207 infants. Threatened preterm labor was nearly twice as common among the cases as in the subcohort (p < 0.01). Recorded clinical choroamnionitis was similar in the two groups and there was no difference in histopathologic evidence of infection between the two groups. E. coli was cultured from the placenta in 6/30 (20%) of cases as compared with 4/85 (5%) of subcohort (p = 0.01). Group B Streptococcus was more frequent among the cases, but the difference was not statistically significant. CONCLUSIONS: The association between E. coli in the chorioamnion and cerebral palsy in preterm infants identified in this study requires confirmation in larger multicenter studies which include microbiological study of placentas

    Placental CpG methylation of infants born extremely preterm predicts cognitive impairment later in life

    Get PDF
    Abstract: Background The placenta is the central regulator of maternal and fetal interactions. Perturbations of placental structure and function have been associated with adverse neurodevelopmental outcomes later in life. Placental CpG methylation represents an epigenetic modification with the potential to impact placental function, fetal development and child health later in life. Study design Genome-wide placental CpG methylation levels were compared between spontaneous versus indicated deliveries from extremely preterm births (EPTBs) (n = 84). The association between the identified differentially methylated CpG sites and neurocognitive outcome at ten years of age was then evaluated. Results Spontaneous EPTB was associated with differential CpG methylation levels in 250 CpG sites (217 unique genes) with the majority displaying hypermethylation. The identified genes are known to play a role in neurodevelopment and are enriched for basic helix-loop-helix transcription factor binding sites. The placental CpG methylation levels for 17 of these sites predicted cognitive function at ten years of age. Conclusion A hypermethylation signature is present in DNA from placentas in infants with spontaneous EPTB. CpG methylation levels of critical neurodevelopment genes in the placenta predicted..

    The Dynamic Exponent of the Two-Dimensional Ising Model and Monte Carlo Computation of the Sub-Dominant Eigenvalue of the Stochastic Matrix

    Get PDF
    We introduce a novel variance-reducing Monte Carlo algorithm for accurate determination of autocorrelation times. We apply this method to two-dimensional Ising systems with sizes up to 15×1515 \times 15, using single-spin flip dynamics, random site selection and transition probabilities according to the heat-bath method. From a finite-size scaling analysis of these autocorrelation times, the dynamical critical exponent zz is determined as z=2.1665z=2.1665 (12)
    • 

    corecore