research

The Dynamic Exponent of the Two-Dimensional Ising Model and Monte Carlo Computation of the Sub-Dominant Eigenvalue of the Stochastic Matrix

Abstract

We introduce a novel variance-reducing Monte Carlo algorithm for accurate determination of autocorrelation times. We apply this method to two-dimensional Ising systems with sizes up to 15×1515 \times 15, using single-spin flip dynamics, random site selection and transition probabilities according to the heat-bath method. From a finite-size scaling analysis of these autocorrelation times, the dynamical critical exponent zz is determined as z=2.1665z=2.1665 (12)

    Similar works