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Abstract.

Intrinsic hybrids can be manufactured in a modified resin transfer molding (RTM) pro-
cess for fibre reinforced polymers. Our work concentrates on mesoscopic modeling for
temperature-dependent visco-elastic effects accompanied by curing within the RTM pro-
cess. During hybridization and later thermal loading the periodic mesostructure defined
by resin and fibres is taken into account as a representative volume element (RVE) sub-
jected to thermo-mechanical loading. Homogenization leads to results on the less resolved
macroscale. In the examples we illustrate the characteristic behavior of the mesoscopic
model, such as shrinking due to curing and temperature dependence and simulate the
RTM process as well as thermal loading of the cured composite with the finite-element-
method.

1 INTRODUCTION

Nowadays, polymeric materials find their applications in carbon- and glass fibre-rein-
forced epoxy laminates. The production process of polymeric materials is mainly charac-
terised by thermal loading and curing. Here, in the initial uncured state the mixture of
resin and curing agent exhibits a viscous liquid behavior allowing no more than hydro-
static pressure. With evolving curing polymer chains form and cross-link to each other
such that the viscosity of the liquid resin, its molecular weight and the stiffness increase,
see e.g. [1]. The process is highly temperature dependent and influences strongly the
mechanical, thermal and chemical properties of the final composite.

In [2] a phenomenological thermo-viscoelastic curing model for finite strain deformations
is proposed. The formulation is based on process dependent viscosities.
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Furthermore, [3], [4] and [5] formulate ad hoc assumptions for the bulk heat-dilatation
coefficient dependent on curing, whereas the bulk shrinking-dilatation coefficient is not
dependent on the degree of curing.

A micro-macro strategy suitable for modeling the mechanical response of heterogeneous
materials at large deformations and non-linear history dependent material behaviour is
presented in [6]. [7] investigates an algorithm for the computation of homogenized stresses
by volume averaging and the overall tangent moduli of microstructures undergoing small
strains is derived. In [§8], the influence of the RVE size on the residual stresses created
during the curing process of a continuous fibre-reinforced polymer matrix tow is investi-
gated to calculate the response of woven fibre textile composites. Additionally, mechanical
loading for varying RVE size is investigated, not including the effect of curing stresses, or
in other words not including the process history.

Our work enhances these investigations, concentrating on the macroscopic anisotropic
thermal expansion coefficient including the history of a modfied RTM process. Within
a thermodynamic framework we use an additive ternary decomposition of the logarith-
mic Hencky strain tensor into mechanical, thermal and chemical parts, as in [4]. Based
on the concept of stoichiometric mass fractions [9] for resin, curing agent and solidified
material the bulk compression modulus as well as the bulk heat- and shrinking dilata-
tion coefficients are derived. An RVE simulating the RTM process is used to determine
the macroscopic strains by homogenization. Mesoscopic as well as macroscopic resid-
ual strains can be observed for the fully cured material. Based on this foundings, the
macroscopic anisotropic thermal extension is determined.

Notations

Square brackets [e] are used throughout the paper to denote 'function of’ in order to
distinguish from mathematical groupings with parenthesis (e).

2 A GENERAL FRAMEWORK FOR FIBRE REINFORCED POLYMER
CURING

Within the framework of large strain theory By C R? in Figure 1.b denotes the periodic
mesostructure of a fibre reinforced composite in the reference configuration. It is related
to the homogenized macrocontinuum in the reference configuration B, C R?, as shown in
Figure 1.a. V, in Figure 1.c denotes the RVE associated with the structure By. The volume
Vo consists of the resin part By,.g, and the fibre part By s, respectively, each regarded
as solid constituents. Thus, we consider the decompositions of the RVE and its surface
Vo = Boresin U Bofirre- We denote by Py C By;, a spatial point for which either ¢ = resin
or ¢ = fibre holds. Its material counterpart at time ¢ in the current configuration of the
mesostructure B;, i = resin, fibre in the space-time-domain Byx | — oo, T is denoted
by p;, © = resin, fibre, where T is the total time of interest.
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Figure 1: Macrocontinuum with a mesostructure: a) Homogenous macrocontinuum By and strain E at
point P, b) periodic mesostructure By and RVE V, ¢) RVE with strain E at point P.

Additionally, the deformation gradient F;, i = resin, fibre is introduced at each
material point p;. It maps line segments dX; of the reference configuration By; to line
segments dx; of the current configuration B;. Additionally, we introduce its Jacobian
J; = det F;, mapping a volume element dV; of the reference configuration By; to a volume
element dv; of the current configuration B;:

1. dx; =F,;-dX;, 2. dv; = J;dV;, i =resin, fibre. (1)
A key point in constructing a framework of finite plasticity is the definition of the total

Hencky strain tensor E; in a logarithmic form, see e.g. [10, 11].We assume this strain
measure to be a function of the right Cauchy-Green tensor

1
1. C, =F.. F,, 2.E;, = 5 InC;, 1i=resin, fibre. (2)

The volumetric and deviatoric parts of the Hencky strain tensor are defined as

1L Ef = jlgtrEz‘ 1, 2. E¥ = E;,—EY, i=resin, fibre. (3)

3 MESOSCOPIC MODELING

The models for the composite constituents are described in the following subsections
3.1 and 3.2. The resin is modeled as visco-elastic and the fibre is considered as a thermo-
linear-elastic solid. For notational benefits, the index ¢ = resin, fibre is omitted.

3.1 Modeling of resin: visco-elasticity coupled to curing

Based on the concept of stoichiometric mass fractions as discussed extensively in [9]
for resin, curing agent and solidified material the bulk compression modulus k, the bulk
heat-dilatation coefficient o and the shrinking dilatation coefficient 8 are derived. For
subsequent analysis, we assume that « is dependent on the pressure p, the temperature
0[t] and the degree of cure z[t]. Additionally we assume that the bulk curing-dilatation
coefficient [ is dependent on the pressure p and the temperature 0[t].
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3.1.1 Mass fractions and the degree of cure

We assume a homogeneous mixture with three constituents resin, curing agent and
solidified material at each instant of time ¢. As a consequence there are neither concen-
tration gradients nor diffusion effects. With the time-dependent variables dm,.[t], dm.,|t]
and dmyy[t] for the masses of resin, curing agent and solidified material, respectively, the
conservation of mass during the curing reaction requires

dm..[t] + dmey[t] + dmgy[t] = dmg = const, (4)

where the constant dmy is the total mass of the mixture [9]. Dividing Eq.(4) by dmg and
introducing the mass fractions of resin, curing agent and solid

dm,[t dmq |t dmie|t
ol = D, g = el g = et )
we obtain the balance relation
CT‘ [t] + Cca [t] + Csol [t] =1 (6>

As explained in [9] the number of variables can be reduced by taking into account the
stoichiometry of the mixture. To this end the degree of cure 0 < z[t] < 1is introduced, see
also [1], such that the mass fractions of the three components of the mixture are written
in the form

LG = n(l—2[t)
2. Calt] = (L=n)(1 = =[t]) (7)
3. Gallt] = =[]

The initial state with z[0] = 0 corresponds to the uncured, viscous mixture with ¢,.[0] = n,
Ceal0] = n — 1, (40]0] = 0 as initial conditions. Consequently, n and 1 — n are the mass
fractions of the resin and the curing agent at the beginning of curing, respectively. The
final fully cured state at time ¢ — oo with z[oo] = 1 corresponds to the solidified material
at the end of the reaction, i.e. (,[00] = ([00] = 0 and (eor[o0] = 1.

In the subsequent exposition, occasionally an index ¢ = r,ca, sol referring to resin,
curing agent and solidified material will be used. Then, Eq.(6) and the connectivity for
all three constituents renders the following balances at each body point X € By and for
all times t > —oo:

3
L. ZQ =1, 2. Ci >0, ©=rca,sol. (8)
i=1

Furthermore, from Eq.(7) we obtain the functional relation

¢ = Glzl, i =r,ca,sol, 9)
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which means, that the mass phase fractions (; are independent of temperature and defor-
mation.

We also assume, that the mixture for the resin is homogeneous, i.e. all phases are
equally distributed. Then, the (bulk) densities py and p of the mixture with respect to
the reference and the current configurations By and B are respectively defined as

dm dm

Here, according to Eq.(1) dv and dV are the volume differentials of the mass differential
dm at the reference and the current configurations, respectively.
Within the volume dv, let the i** constituent have its volume dv; and its mass dm;,

i = r,ca,sol. Then, the mass phase fraction ¢; and the density of the i'* constituent are
defined by

(10)

dm’

1. ¢ 2. pi=——. (11)

The equations (10) and (11) imply the assumption, that the quantities p and p; at a
body point P € B, are defined by a limit process with volumes contracting to this point.
Using Eq.(10), the relation dv = 37 dv; as well as Eq.(11.2) and Eq.(11.1) renders the
following mixture rule for the inverse of the bulk density p

1 dv > :.5_1 dv; 5 dm; 5 C
p dm dm Z pidm ; i (12)

=1

For the subsequent analysis, we assume that the density of each constituent is solely
dependent on the pressure p and the temperature, that is

p; = p;lp, 0] (13)

Note, that the functional relations (9) and (13) combined with the mixture rule Eq.(12)
imply the functional relation

plt] = plplt], O1t], =[t]], (14)

i.e. the density change is induced by pressure p, temperature ¢ and/or by curing z.

3.1.2 Volume changes due to density changes

We assume that the total volume change J in Eq.(1.2) is multiplicatively decomposed
into an effective part (induced by pressure p), a thermal part (induced by temperature 6)
and a chemical part (induced by curing z as a result of shrinkage due to polymerization),
that is

d
=80yt g, (15)

J= " =
av  p
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Using the relation (12) and exploiting the functional relation (13), the time derivative of
J for the third part in Eq. (15) is expressed as follows:

i d (o d (56 NGO N~ GOp s N0
J dt( ) Podt (; 0 ;POp? ap D lzz;popZ2 20 9+;pi P 2. (16)

P

Next we define the isothermal compressibility &, the (uni-directional) bulk heat-dilatation
coefficient v and the (uni-directional) bulk curing-dilatation coefficient g:

1. klp, 8,2 = i:m[p,@]g, where 2. wi[p, 0] = %‘Z@i
lzl —lpoapi

3. alp,0,z] = ;ai[p,ﬁ]@, where 4. oy[p, 0] = 3,7 30 (17)
: I¢; Po

5. Blp,0 = ;@-[p,e]g, where 6. Si[p,0] = 3

For the mass fractions of the three constituents in Eq.(7), the bulk heat-dilatation coeffi-
cient in Eq.(17.3) is

ap,0.z] = o p,0] n(l—2)+ awlp, 0] (1 —n)(1—2)+ aslp, b] 2, (18)

where «a,[p, 0], alp, 0] and agy[p, 0] are defined according to Eq.(17.4). In general, for
increasing temperature § the densities p; decrease, i.e. 0dp;/00 is negative, such that
a;[p,0],i =r, ca, sol are positive. The bulk curing-dilatation coefficient 5 in Eq.(17.5) is

6[ 79] = _nﬁr[pa 6] - (1 - n)ﬂca[ 79] +5sol[p7 9]7 (19>

where B.[p,0], Belp, 0] and Bso(p, 0] are defined according to Eq.(17.6). In general we
have pgo > pr and pso; > pea, such that B[p, 0] is negative.

3.1.3 Strains and stresses

The thermal and the curing strains

t t de
1. Eth :/ Eth:/ &[S]EdS]_
2 E = i O;[s]%dsls i 2
. cur _ L ds )

are governed by a and § which are in accordance with Eqn.(17.3,17.5). In [4], the effective
strain tensor is obtained with E from Eq.(2.2):

E’ =E - Ey, — E.. (21)
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Additionally, we define the Hill-stress tensor T = T, + T4e, with volumetric and devia-
toric parts

¢ 1 d
L T = / LB 1 ds
oo ds (22)

t
2 Ty — / 2G[s,ﬂdilsEdev[s]ds.

=—00

The compressibility x in Eq.(22.1) is obtained in the same fashion as « in Eq.(18), and
G Eq.(22.2) is the shear modulus, in detail described in [4].

3.2 Modeling of fibre: thermo-linear-elasticity

The fibre is considered as a thermo-linear-elastic solid. Consequently it can be modeled
as a special case with the equations of subsection 3.1. For example, taking into account
Eq.(21) with (4 = 1 and E.,,. = 0 in Eq.(20.2), Eq.(21) reduces to E? = E — E,.

4 MESO TO MACRO TRANSITION

The mesostructure variables are related to the homogenized macrocontinuum B, C R?
by use of the Volume Averaging Theorem, as formulated in [12]. Based on the decom-
position Vy = By,esin U Bofipre in Section 2 we define the overall macro-strain E(t) of the
mesostructure By in relation to the strains from Eq.(2.2) as well as the general homoge-
nization operator e by

1 1

1. E=— | EdV, 2. e=_—
Vol Jyv,

odV. 23
Wl s, (23)

5 NUMERICAL SIMULATION

In this section an RVE is simulated in two loading sequences. The first sequence sim-
ulates the RTM process. This leads to residual strains on the mesoscale. Macroscopic
strains are determined by homogenization. In the second sequence, based on the pro-
cess history of the fully cured composite from sequence one, the macroscopic anisotropic
thermal expansion coefficient is determined.

5.1 Thermal-mechanical-chemical coupling in an RVE during hybridization

In this example some features on the coupling of temperature, curing and visco-elasticity
of the model proposed in Section 3 are illustrated for a mesoscopic problem and its
homogenized macroscopic answer occuring in the RTM process. To model the three
dimensional RVE shown in Figure 2 and representing the composite material on the
mesoscale, stiff fibres (bright) are embedded in a soft resin matrix (dark), thus defining
Bofipre and Boyesin. The cube-shaped RVE has a fibre-volume-fraction of 19.6 %. The
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Figure 2: Statically determined RVE Vy: Geometry, FE-discretization and thermal loading 6.

fibres are assumed thermo-elastic, while the matrix material is modeled visco-elastic, see
Section 3. Fictive material parameters are chosen. The boundary conditions for the RVE
are statically determined to allow thermal expansion, or shrinkage, respectively. Since
temperature gradients occuring in the RVE are neglected, the RTM process is assumed
to be a pure homogenous thermal loading 6 of the RVE denoted as HEAT, CURE and
COOL in Figure 2. In the first phase the temperature is increased with constant rate from
the initial value # = 25 °C' up to # = 120 °C. During the second phase, the temperature is
kept fixed. In the third phase the temperature is decreased at constant rate to the initial
value of 6 = 25 °C.

a) b)
120 g g — 1 0.15 ? ' g \
110 ,,,,E,‘T,',_,e[ijE,,, 0.9
: : LN
100 R 0.8 T P : 5
0.1 ,,,(’ ’,i“’E”ifi—*i:ﬁ*iffﬂ\;ﬂ,\
90 0.7 d 1
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2. 80 06 & _ !
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£ : 55 22
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Figure 3: RVE during the RTM process: a) Thermal loading and homogenized degree of cure vs. time,
b) components of homogenized strain tensor E and homogenized strains E;, and E.,,- vs. time.
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HEAT, 200 s CURE, 1800 s COOL, 2000 s

E22

Figure 4: RVE during the RTM process: Contourplots showing strains E1; and Foo during the three
phases of the loading program in Figure 3.a

As mesoscopic strains show symmetries for the z- and z-direction, it is sufficient showing
the contourplots in Figure 4 only for the unsymmetric z- and y-directions. The strain
contourplots offer residual strains as a remaining strain state for the fully cured composite
at the end of phase COOL. This is due to the change of the thermal-expansion coefficient
as a result of curing, see Eqn.(18,20.1).

In Figure 3.a-b we summarize some relevant macroscopic quantities resulting from the
mechanical-thermal-chemical coupling. The influence of curing and temperature on the
homogenized total strains E Eq. (23.1) can be observed. The strains offer a macroscopic
orthotropic deformation behavior with a symmetry in x- and z-direction and residual
strains at the end of phase COOL. Applying Eq. (23.2), homogenization leads to results
for the degree of cure z as well as for the uniaxial thermal and shrinking strains E;, and
E.,, shown in Figure 3.a-b. The reason for an initial value for the homogenized degree of
cure Zp > 0 is that, in contrast to the resin, the fibres initial condition on the mesoscale
is 2o = 1. We want to remark, that during the COOL phase linear strain behavior can be
observed in Figure 3.b because curing is almost completed at 1600 s. In contrast, in the
preceding phases curing governs nonlinear strains.

5.2 Macroscopic thermal expansion coefficient of the fully cured composite

The aim of this example is the determination of the macroscopic thermal expansion
coefficient. Thus, the fully cured composite offers a strain state related to residual strains,
as shown in Section 5.2. The subsequent loading program shown in Figure 5.a is divided
into two phases HOLD and HEAT?2 following the three phases in Section 5.2. During the
fourth phase the temperature is kept fixed. In the fifth phase the temperature is increased
by Af =1 °C. The motivation for the HOLD phase is found in relaxation of strains of
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Figure 5: Thermal loading of an RVE: a) Thermal loading and homogenized degree of cure vs. time,
b) tensor of homogenized strain increment per phase AE and homogenized strains Eg, and E.,,. vs.
time.

the visco-elastic material on the mesoscale. To observe this small effect, the mesoscopic
strain state at every material point of the mesoscale beyond the COOL phase is divided
from the mesoscopic strain state beyond the HOLD phase, resulting in the incremental
strains on the mesoscale. Homogenization then leads to

AEgoLp = Egorp — Ecoor.- (24)

Enowp and Ecoor, are quantities obtained by use of Eq.(23.1) at times ¢t = 4000 s and
t = 2000 s, respectively. As the strain increments AE show asymptotic behavior beyond
3500 s, the HEAT?2 phase is started at t = 4000 s. Due to very slow heating and small
temperatur variation of A = 1 °C' we exclude viscoelastic effects. Thus, the homogenized
strain increment AE is directly related to the anisotropic macroscopic thermal expansion
coefficients

AEpgar2 = Expare — Enorp = a. (25)
The coefficients of & can directly be obtained from Figure 5.b as
a’ =[8.09-107%,1.16 - 107°*,8.02-107%,1.84-107%, —1.38 - 107", 1.86 - 107]. (26)

As expected, they show orthotropic behavior for the x- and z- components and, except
numerical inexactness, shear components xy, xz, zy = 0. Thus, the strains due to the
HEAT?2 phase are very small. Contourplots for the HEAT2 phase displaying strain incre-
ments on the mesoscale are illustrated in Figure 6. We want to remark, that the displayed
strains AE are therefore residual strain free, in contrast to those of Figure 4.
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HEAT?2, 6000 s

AEH AEIQ

AElg AEJZ3

Figure 6: Thermal loading of the RVE: Contourplots showing strain increments AFq1 , AFs , AFE
and AFE»s due to thermal loading HEAT2 following on the HOLD phase according to Figure 5.a

6 CONCLUSIONS

In this paper, we have developed a mesoscopic model for temperature-dependent visco-
elastic effects accompanied by curing of fibre reinforced composites, which are important
phenomena in production processes. The logarithmic Hencky strain tensor constitutes
the basis for the large strain formulation and is additively decomposed into a mechani-
cal, a thermal and a chemical part for the resin as for the fibre. Based on the concept
of stoichiometric mass fractions for resin, curing agent and solidified material the bulk
heat- and shrinking dilatation coefficients as well as a linear dependence with respect to
the degree of curing for the compressibility are derived. The meso to macro transition
is treated by use of the Volume Averaging Theorem. In the examples we illustrate the
anisotropic shrinking and thermal expansion due to curing as well as temperature de-
pendence. The hybridization process as a modified RTM process is simulated with the
finite-element-method for an RVE. Residual process dependent strain states are observed
on the mesoscopic as well as on the macroscopic scale for the fully cured composite, which
effect later use. Based on the process history, the macroscopic thermal expansion coef-
ficient is determined by further thermal loading of the fully cured RVE. The coefficient
mainly shows thermo-elastic orthotropic deformation behavior.

Concerning further extensions, taking a Navier-Stokes equation for the liquid phase
of the forming process into account is an area of future research work in the field of
fluid-structure interaction with phase transitions.
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