245 research outputs found

    A training curriculum for retrieving, structuring, and aggregating information derived from the biomedical literature and large-scale data repositories

    Get PDF
    Background: Biomedical research over the past two decades has become data and information rich. This trend has been in large part driven by the development of systems-scale molecular profiling capabilities and by the increasingly large volume of publications contributed by the biomedical research community. It has therefore become important for early career researchers to learn to leverage this wealth of information in their own research. Methods: Here we describe in detail a training curriculum focusing on the development of foundational skills necessary to retrieve, structure, and aggregate information available from vast stores of publicly available information. It is provided along with supporting material and an illustrative use case. The stepwise workflow encompasses; 1) Selecting a candidate gene; 2) Retrieving background information about the gene; 3) Profiling its literature; 4) Identifying in the literature instances where its transcript abundance changes in blood of patients; 5) Retrieving transcriptional profiling data from public blood transcriptome and reference datasets; and 6) Drafting a manuscript, submitting it for peer-review, and publication. Results: This resource may be leveraged by instructors who wish to organize hands-on workshops. It can also be used by independent trainees as a self-study toolkit. The workflow presented as proof-of- concept was designed to establish a resource for assessing a candidate gene’s potential utility as a blood transcriptional biomarker. Trainees will learn to retrieve literature and public transcriptional profiling data associated with a specific gene of interest. They will also learn to extract, structure, and aggregate this information to support downstream interpretation efforts as well as the preparation of a manuscript. Conclusions: This resource should support early career researchers in their efforts to acquire skills that will permit them to leverage the vast amounts of publicly available large-scale profiling data

    Baseline immune states (BIS) associated with vaccine responsiveness and factors that shape the BIS.

    Get PDF
    Vaccines are among the greatest inventions in medicine, leading to the elimination or control of numerous diseases, including smallpox, polio, measles, rubella, and, most recently, COVID-19. Yet, the effectiveness of vaccines varies among individuals. In fact, while some recipients mount a robust response to vaccination that protects them from the disease, others fail to respond. Multiple clinical and epidemiological factors contribute to this heterogeneity in responsiveness. Systems immunology studies fueled by advances in single-cell biology have been instrumental in uncovering pre-vaccination immune cell types and genomic features (i.e., the baseline immune state, BIS) that have been associated with vaccine responsiveness. Here, we review clinical factors that shape the BIS, and the characteristics of the BIS associated with responsiveness to frequently studied vaccines (i.e., influenza, COVID-19, bacterial pneumonia, malaria). Finally, we discuss potential strategies to enhance vaccine responsiveness in high-risk groups, focusing specifically on older adults

    Blood gene transcript signature profiling in pregnancies resulting in preterm birth: a systematic review

    Get PDF
    To pursue a systematic review and summarise the current evidence for the potential of transcriptome molecular profiling in investigating the preterm phenotype.; We systematically reviewed the literature, using readily available electronic databases (i.e. PubMed/Medline, Embase, Scopus and Web of Science) from inception until March 2020 to identify investigations of maternal blood-derived RNA profiling in preterm birth (PTB). Studies were included if circulating coding or non-coding RNA was analysed in maternal blood during pregnancy and/or at delivery. Interventional trials were not included. The primary outcome was the availability of whole genome expression patterns evaluated in pregnancies resulting in preterm deliveries.; A total of 35 articles were included in the final analysis. Most of the studies were conducted in high-income countries and published in the last decade. Apart from spontaneous PTB, a variety of phenotypes leading to preterm delivery were reported. Differences in sampling methods, target gene selection and laboratory protocols severely limited any quantitative comparisons. Most of the studies revealed that gene expression profiling during pregnancy has high potential for identifying women at risk of spontaneous and/or non-spontaneous PTB as early as in the first trimester.; Assessing maternal blood-derived transcriptional signatures for PTB risk in pregnant women holds promise as a screening approach. However, longitudinally followed, prospective pregnancy cohorts are lacking. These are relevant for identifying causes leading to PTB and whether prediction of spontaneous PTB or co-morbidities associated with PTB is achievable. More emphasis on widely employed standardised protocols is required to ensure comparability of results

    Genomic transcriptional profiling identifies a candidate blood biomarker signature for the diagnosis of septicemic melioidosis

    Get PDF
    A diagnostic signature for sepsis caused by Burkholderia pseudomallei infection was identified from transcriptional profiling of the blood of septicemia patients

    Ribosomal protein mRNAs are translationally-regulated during human dendritic cells activation by LPS

    Get PDF
    International audienceBACKGROUND: Dendritic cells (DCs) are the sentinels of the mammalian immune system, characterized by a complex maturation process driven by pathogen detection. Although multiple studies have described the analysis of activated DCs by transcriptional profiling, recent findings indicate that mRNAs are also regulated at the translational level. A systematic analysis of the mRNAs being translationally regulated at various stages of DC activation was performed using translational profiling, which combines sucrose gradient fractionation of polysomal-bound mRNAs with DNA microarray analysis. RESULTS: Total and polysomal-bound mRNA populations purified from immature, 4 h and 16 h LPS-stimulated human monocyte-derived DCs were analyzed on Affymetrix microarrays U133 2.0. A group of 375 transcripts was identified as translationally regulated during DC-activation. In addition to several biochemical pathways related to immunity, the most statistically relevant biological function identified among the translationally regulated mRNAs was protein biosynthesis itself. We singled-out a cluster of 11 large ribosome proteins mRNAs, which are disengaged from polysomes at late time of maturation, suggesting the existence of a negative feedback loop regulating translation in DCs and linking ribosomal proteins to immuno-modulatory function. CONCLUSION: Our observations highlight the importance of translation regulation during the immune response, and may favor the identification of novel protein networks relevant for immunity. Our study also provides information on the potential absence of correlation between gene expression and protein production for specific mRNA molecules present in DCs

    An interactive web application for the dissemination of human systems immunology data

    Get PDF
    International audienceBackground: Systems immunology approaches have proven invaluable in translational research settings. The current rate at which large-scale datasets are generated presents unique challenges and opportunities. Mining aggregates of these datasets could accelerate the pace of discovery, but new solutions are needed to integrate the heterogeneous data types with the contextual information that is necessary for interpretation. In addition, enabling tools and technologies facilitating investigators' interaction with large-scale datasets must be developed in order to promote insight and foster knowledge discovery. Methods: State of the art application programming was employed to develop an interactive web application for browsing and visualizing large and complex datasets. A collection of human immune transcriptome datasets were loaded alongside contextual information about the samples. Results: We provide a resource enabling interactive query and navigation of transcriptome datasets relevant to human immunology research. Detailed information about studies and samples are displayed dynamically; if desired the associated data can be downloaded. Custom interactive visualizations of the data can be shared via email or social media. This application can be used to browse context-rich systems-scale data within and across systems immunology studies. This resource is publicly available online at [Gene Expression Browser Landing Page (https://gxb.benaroyaresearch.org/dm3/landing.gsp)]. The source code is also available openly [Gene Expression Browser Source Code (https://github.com/BenaroyaResearch/gxbrowser)]. Conclusions: We have developed a data browsing and visualization application capable of navigating increasingly large and complex datasets generated in the context of immunological studies. This intuitive tool ensures that, whether taken individually or as a whole, such datasets generated at great effort and expense remain interpretable and a ready source of insight for years to come

    At-home blood collection and stabilization in high temperature climates using home RNA

    Get PDF
    Expanding whole blood sample collection for transcriptome analysis beyond traditional phlebotomy clinics will open new frontiers for remote immune research and telemedicine. Determining the stability of RNA in blood samples exposed to high ambient temperatures (\u3e30°C) is necessary for deploying home-sampling in settings with elevated temperatures (e.g., studying physiological response to natural disasters that occur in warm locations or in the summer). Recently, we have develope
    • …
    corecore