1,602 research outputs found
On understanding the microstructure of SiC/SiC Ceramic Matrix Composites (CMCs) after a material removal process
The unique material nature (e.g. hard, brittle, heterogeneous and orthotropic) of SiC-based Ceramic Matrix Composites (CMCs) highly affects the outcomes of machining process by inducing high thermo-mechanical loads during material removal. This can result in severe material damage which in turn causes a reduction of the in-service life of critical structural ceramic components (such as in aero-engines or nuclear reactors). In this study, the phenomenon by which the material removal mechanism during drilling influences the CMC surface integrity are discussed by characterising the fracture and deformation phenomena on the CMC's constituents - i.e. SiC and Si materials. Moreover, the strain induced to the surface, together with the changes in chemical composition are characterised via micro Raman spectroscopy and related to the principles of residual stresses upon cutting. This results in a novel understanding of the material removal process that governs cutting of SiC-based CMCs while emphasising how the different microstructure, morphology and nature of ceramics behave under the same cutting conditions. This study has therefore led to a comprehension of how the microstructure of complex hierarchical ceramic materials such as SiC/SiC CMCs is affected by a mechanical cutting process and opens avenues to understand the structure damage under other machining operations (e.g. milling, grinding)
Arrival time and magnitude of airborne fission products from the Fukushima, Japan, reactor incident as measured in Seattle, WA, USA
We report results of air monitoring started due to the recent natural
catastrophe on 11 March 2011 in Japan and the severe ensuing damage to the
Fukushima Dai-ichi nuclear reactor complex. On 17-18 March 2011, we registered
the first arrival of the airborne fission products 131-I, 132-I, 132-Te,
134-Cs, and 137-Cs in Seattle, WA, USA, by identifying their characteristic
gamma rays using a germanium detector. We measured the evolution of the
activities over a period of 23 days at the end of which the activities had
mostly fallen below our detection limit. The highest detected activity amounted
to 4.4 +/- 1.3 mBq/m^3 of 131-I on 19-20 March.Comment: 7 pages, 5 figures, published in Journal of Environmental
Radioactivit
Supersymmetry for Fermion Masses
It is proposed that supersymmetry (SUSY) maybe used to understand fermion
mass hierarchies. A family symmetry Z_{3L} is introduced, which is the cyclic
symmetry among the three generation SU(2) doublets. SUSY breaks at a high
energy scale ~ 10^{11} GeV. The electroweak energy scale ~ 100 GeV is
unnaturally small. No additional global symmetry, like the R-parity, is
imposed. The Yukawa couplings and R-parity violating couplings all take their
natural values which are about (10^0-10^{-2}). Under the family symmetry, only
the third generation charged fermions get their masses. This family symmetry is
broken in the soft SUSY breaking terms which result in a hierarchical pattern
of the fermion masses. It turns out that for the charged leptons, the tau mass
is from the Higgs vacuum expectation value (VEV) and the sneutrino VEVs, the
muon mass is due to the sneutrino VEVs, and the electron gains its mass due to
both Z_{3L} and SUSY breaking. The large neutrino mixing are produced with
neutralinos playing the partial role of right-handed neutrinos. |V_{e3}| which
is for nu_e-nu_{tau} mixing is expected to be about 0.1. For the quarks, the
third generation masses are from the Higgs VEVs, the second generation masses
are from quantum corrections, and the down quark mass due to the sneutrino
VEVs. It explains m_c/m_s, m_s/m_e, m_d > m_u and so on. Other aspects of the
model are discussed.Comment: 25 pages, 3 figures, revtex4; neutrino oscillation and many
discussions added, smallness of the electron mass due to supersymmetry
pointed out; v3: numerical errors correcte
Charged and Pseudoscalar Higgs production at a Muon Collider
We consider single charged Higgs () and pseudoscalar Higgs ()
production in association with a gauge boson at colliders. We find
that the tree-level t-channel and s-channel contributions to are enhanced for large values of , allowing
sizeable cross-sections whose analogies at colliders would be very
small. These processes provide attractive new ways of producing such particles
at colliders and are superior to the conventional methods in
regions of parameter space.Comment: 11 pages Latex, 5 figures, formulae added in sections 2.2 and 2.3,
extra discussion in section 2.3, references adde
Local Commutativity and Causality in Interacting PP-wave String Field Theory
In this paper, we extend our previous study of causality and local
commutativity of string fields in the pp-wave lightcone string field theory to
include interaction. Contrary to the flat space case result of Lowe,
Polchinski, Susskind, Thorlacius and Uglum, we found that the pp-wave
interaction does not affect the local commutativity condition. Our results show
that the pp-wave lightcone string field theory is not continuously connected
with the flat space one. We also discuss the relation between the condition of
local commutativity and causality. While the two notions are closely related in
a point particle theory, their relation is less clear in string theory. We
suggest that string local commutativity may be relevant for an operational
defintion of causality using strings as probes.Comment: Latex, JHEP3.cls, 18 pages, no figures. v2: add comments about the
UV-IR mixing effect displayed in our result. version to appear in JHE
Detecting new microRNAs in human osteoarthritic chondrocytes identifies miR-3085 as a human, chondrocyte-selective, microRNA
Objective: To use deep sequencing to identify novel microRNAs in human osteoarthritic cartilage which have a functional role in chondrocyte phenotype or function. Design: A small RNA library was prepared from human osteoarthritic primary chondrocytes using in-house adaptors and analysed by Illumina sequencing. Novel candidate microRNAs were validated by northern blot and qRT-PCR. Expression was measured in cartilage models. Targets of novel candidates were identified by microarray and computational analysis, validated using 3’-UTR-luciferase reporter plasmids. Protein levels were assessed by western blot and functional analysis by cell adhesion. Results: We identified 990 known microRNAs and 1621 potential novel microRNAs in human osteoarthritic chondrocytes, 60 of the latter were expressed in all samples assayed. MicroRNA-140-3p was the most highly expressed microRNA in osteoarthritic cartilage. Sixteen novel candidate microRNAs were analysed further, of which 6 remained after northern blot analysis. Three novel microRNAs were regulated across models of chondrogenesis, chondrocyte differentiation or cartilage injury. One sequence (novel #11), annotated in rodents as microRNA-3085-3p, was preferentially expressed in cartilage, dependent on chondrocyte differentiation and, in man, is located in an intron of the cartilage-expressed gene CRTAC-1. This microRNA was shown to target the ITGA5 gene directly (which encodes integrin alpha5) and inhibited adhesion to fibronectin (dependent on alpha5beta1 integrin). Conclusion: Deep sequencing has uncovered many potential microRNA candidates expressed in human cartilage. At least three of these show potential functional interest in cartilage homeostasis and osteoarthritis. Particularly, novel #11 (microRNA-3085-3p) which has been identified for the first time in man
CP Phases in Correlated Production and Decay of Neutralinos in the Minimal Supersymmetric Standard Model
We investigate the associated production of neutralinos
accompanied by the neutralino
leptonic decay , taking into
account initial beam polarization and production-decay spin correlations in the
minimal supersymmetric standard model with general CP phases but without
generational mixing in the slepton sector. The stringent constraints from the
electron EDM on the CP phases are also included in the discussion. Initial beam
polarizations lead to three CP--even distributions and one CP--odd
distribution, which can be studied independently of the details of the
neutralino decays. We find that the production cross section and the branching
fractions of the leptonic neutralino decays are very sensitive to the CP
phases. In addition, the production--decay spin correlations lead to several
CP--even observables such as lepton invariant mass distribution, and lepton
angular distribution, and one interesting T--odd (CP--odd) triple product of
the initial electron momentum and two final lepton momenta, the size of which
might be large enough to be measured at the high--luminosity future
electron--positron collider or can play a complementary role in constraining
the CP phases with the EDM constraints.Comment: Revtex, 37 pages, 12 eps figure
Neutral top-pion and lepton flavor violating processes
In the context of topcolor-assisted techicolor(TC2) models, we study the
contributions of the neutral top-pion to the lepton flavor
violating(LFV) processes and .
We find that the present experimental bound on gives severe
constraints on the free parameters of models. Taking into account these
constraints, we consider the processes generated by
top-pion exchange at the tree-level and the one loop level, and obtain
, , in most of
the parameter space.Comment: latex files,16 pages, 6 figures. Submitted to Phys. Rev.
Electroweak Corrections to the Charged Higgs Boson Decay into Chargino and Neutralino
The electroweak corrections to the partial widths of the decays including one-loop
diagrams of the third generation quarks and squarks, are investigated within
the Supersymmetric Standard Model. The relative corrections can reach the
values about 10%, therefore they should be taken into account for the precise
experimental measurement at future colliders.Comment: 21 pages, 6 eps figures, 1 Latex fil
Stability of the Scalar Potential and Symmetry Breaking in the Economical 3-3-1 Model
A detailed study of the criteria for stability of the scalar potential and
the proper electroweak symmetry breaking pattern in the economical 3-3-1 model,
is presented. For the analysis we use, and improve, a method previously
developed to study the scalar potential in the two-Higgs-doublet extension of
the standard model. A new theorem related to the stability of the potential is
stated. As a consequence of this study, the consistency of the economical 3-3-1
model emerges.Comment: to be published in EPJ C, 13 page
- …