257 research outputs found

    Gene variants influencing measures of inflammation or predisposing to autoimmune and inflammatory diseases are not associated with the risk of type 2 diabetes.

    No full text
    AIMS/HYPOTHESIS: There are strong associations between measures of inflammation and type 2 diabetes, but the causal directions of these associations are not known. We tested the hypothesis that common gene variants known to alter circulating levels of inflammatory proteins, or known to alter autoimmune-related disease risk, influence type 2 diabetes risk. METHODS: We selected 46 variants: (1) eight variants known to alter circulating levels of inflammatory proteins, including those in the IL18, IL1RN, IL6R, MIF, PAI1 (also known as SERPINE1) and CRP genes; and (2) 38 variants known to predispose to autoimmune diseases, including type 1 diabetes. We tested the associations of these variants with type 2 diabetes using a meta-analysis of 4,107 cases and 5,187 controls from the Wellcome Trust Case Control Consortium, the Diabetes Genetics Initiative, and the Finland-United States Investigation of NIDDM studies. We followed up associated variants (p < 0.01) in a further set of 3,125 cases and 3,596 controls from the UK. RESULTS: We found no evidence that inflammatory or autoimmune disease variants are associated with type 2 diabetes (at p <or= 0.01). The OR observed between the variant altering IL-18 levels, rs2250417, and type 2 diabetes (OR 1.00 [95% CI 0.99-1.03]), is much lower than that expected given (1) the effect of the variant on IL-18 levels (0.28 SDs per allele); and (2) estimates, based on other studies, of the correlation between IL-18 levels and type 2 diabetes risk (approximate OR 1.15 [95% CI 1.09-1.21] per 0.28 SD increase in IL-18 levels). CONCLUSIONS/INTERPRETATION: Our study provided no evidence that variants known to alter measures of inflammation, autoimmune or inflammatory disease risk, including type 1 diabetes, alter type 2 diabetes risk

    Identification of novel type 2 diabetes candidate genes involved in the crosstalk between the mitochondrial and the insulin signaling systems

    Get PDF
    Type 2 Diabetes (T2D) is a highly prevalent chronic metabolic disease with strong co-morbidity with obesity and cardiovascular diseases. There is growing evidence supporting the notion that a crosstalk between mitochondria and the insulin signaling cascade could be involved in the etiology of T2D and insulin resistance. In this study we investigated the molecular basis of this crosstalk by using systems biology approaches. We combined, filtered, and interrogated different types of functional interaction data, such as direct protein-protein interactions, co-expression analyses, and metabolic and signaling dependencies. As a result, we constructed the mitochondria-insulin (MITIN) network, which highlights 286 genes as candidate functional linkers between these two systems. The results of internal gene expression analysis of three independent experimental models of mitochondria and insulin signaling perturbations further support the connecting roles of these genes. In addition, we further assessed whether these genes are involved in the etiology of T2D using the genome-wide association study meta-analysis from the DIAGRAM consortium, involving 8,130 T2D cases and 38,987 controls. We found modest enrichment of genes associated with T2D amongst our linker genes (p = 0.0549), including three already validated T2D SNPs and 15 additional SNPs, which, when combined, were collectively associated to increased fasting glucose levels according to MAGIC genome wide meta-analysis (p = 8.12×10(-5)). This study highlights the potential of combining systems biology, experimental, and genome-wide association data mining for identifying novel genes and related variants that increase vulnerability to complex diseases

    Genome-wide association study for type 2 diabetes in Indians identifies a new susceptibility locus at 2q21

    Get PDF
    Meta-AnalysisThis is the final version of the article. Available from the American Diabetes Association via the DOI in this record.Indians undergoing socioeconomic and lifestyle transitions will be maximally affected by epidemic of type 2 diabetes (T2D). We conducted a two-stage genome-wide association study of T2D in 12,535 Indians, a less explored but high-risk group. We identified a new type 2 diabetes-associated locus at 2q21, with the lead signal being rs6723108 (odds ratio 1.31; P = 3.32 × 10⁻âč). Imputation analysis refined the signal to rs998451 (odds ratio 1.56; P = 6.3 × 10⁻ÂčÂČ) within TMEM163 that encodes a probable vesicular transporter in nerve terminals. TMEM163 variants also showed association with decreased fasting plasma insulin and homeostatic model assessment of insulin resistance, indicating a plausible effect through impaired insulin secretion. The 2q21 region also harbors RAB3GAP1 and ACMSD; those are involved in neurologic disorders. Forty-nine of 56 previously reported signals showed consistency in direction with similar effect sizes in Indians and previous studies, and 25 of them were also associated (P < 0.05). Known loci and the newly identified 2q21 locus altogether explained 7.65% variance in the risk of T2D in Indians. Our study suggests that common susceptibility variants for T2D are largely the same across populations, but also reveals a population-specific locus and provides further insights into genetic architecture and etiology of T2D.The major funding for this work comes from Council for Scientific and Industrial Research, Government of India, in the form of the grant “Diabetes mellitus—New drug discovery R&D, molecular mechanisms, and genetic and epidemiological factors” (NWP0032-19). R.T. received a postdoctoral fellowship from the Fogarty International Center and the Eunice Kennedy Shriver National Institute of Child Health and Human Development at the National Institutes of Health (D43-HD-065249)

    Genetic Variants Associated With Glycine Metabolism and Their Role in Insulin Sensitivity and Type 2 Diabetes

    Get PDF
    Circulating metabolites associated with insulin sensitivity may represent useful biomarkers, but their causal role in insulin sensitivity and diabetes is less certain. We previously identified novel metabolites correlated with insulin sensitivity measured by the hyperinsulinemic-euglycemic clamp. The top-ranking metabolites were in the glutathione and glycine biosynthesis pathways. We aimed to identify common genetic variants associated with metabolites in these pathways and test their role in insulin sensitivity and type 2 diabetes. With 1,004 nondiabetic individuals from the RISC study, we performed a genome-wide association study (GWAS) of 14 insulin sensitivity-related metabolites and one metabolite ratio. We replicated our results in the Botnia study (n = 342). We assessed the association of these variants with diabetes-related traits in GWAS meta-analyses (GENESIS [including RISC, EUGENE2, and Stanford], MAGIC, and DIAGRAM). We identified four associations with three metabolites-glycine (rs715 at CPS1), serine (rs478093 at PHGDH), and betaine (rs499368 at SLC6A12; rs17823642 at BHMT)-and one association signal with glycine-to-serine ratio (rs1107366 at ALDH1L1). There was no robust evidence for association between these variants and insulin resistance or diabetes. Genetic variants associated with genes in the glycine biosynthesis pathways do not provide consistent evidence for a role of glycine in diabetes-related traits

    Trans-ethnic study design approaches for fine-mapping.

    Get PDF
    Studies that traverse ancestrally diverse populations may increase power to detect novel loci and improve fine-mapping resolution of causal variants by leveraging linkage disequilibrium differences between ethnic groups. The inclusion of African ancestry samples may yield further improvements because of low linkage disequilibrium and high genetic heterogeneity. We investigate the fine-mapping resolution of trans-ethnic fixed-effects meta-analysis for five type II diabetes loci, under various settings of ancestral composition (European, East Asian, African), allelic heterogeneity, and causal variant minor allele frequency. In particular, three settings of ancestral composition were compared: (1) single ancestry (European), (2) moderate ancestral diversity (European and East Asian), and (3) high ancestral diversity (European, East Asian, and African). Our simulations suggest that the European/Asian and European ancestry-only meta-analyses consistently attain similar fine-mapping resolution. The inclusion of African ancestry samples in the meta-analysis leads to a marked improvement in fine-mapping resolution
    • 

    corecore