153 research outputs found

    Unique Structural Modifications Are Present in the Lipopolysaccharide from Colistin-Resistant Strains of \u3ci\u3eAcinetobacter baumannii\u3c/i\u3e

    Get PDF
    Acinetobacter baumannii is a nosocomial opportunistic pathogen that can cause severe infections, including hospital-acquired pneumonia, wound infections, and sepsis. Multidrug-resistant (MDR) strains are prevalent, further complicating patient treatment. Due to the increase in MDR strains, the cationic antimicrobial peptide colistin has been used to treat A. baumannii infections. Colistin-resistant strains of A. baumannii with alterations to the lipid A component of lipopolysaccharide (LPS) have been reported; specifically, the lipid A structure was shown to be hepta-acylated with a phosphoethanolamine (pEtN) modification present on one of the terminal phosphate residues. Using a tandem mass spectrometry platform, we provide definitive evidence that the lipid A isolated from colistin-resistant A. baumannii MAC204 LPS contains a novel structure corresponding to a diphosphoryl hepta-acylated lipid A structure with both pEtN and galactosamine (GalN) modifications. To correlate our structural studies with clinically relevant samples, we characterized colistin-susceptible and -resistant isolates obtained from patients. These results demonstrated that the clinical colistin-resistant isolate had the same pEtN and GalN modifications as those seen in the laboratory-adapted A. baumannii strain MAC204. In summary, this work has shown complete structure characterization including the accurate assignment of acylation, phosphorylation, and glycosylation of lipid A from A. baumannii, which are important for resistance to colistin

    Signaling via interleukin-4, receptor alpha chain is required for successful vaccination against schistosomiasis in BALB/c mice

    Get PDF
    Radiation-attenuated (RA) schistosome larvae are potent stimulators of innate immune responses at the skin site of exposure (pinna) that are likely to be important factors in the development of Th1-mediated protective immunity. In addition to causing an influx of neutrophils, macrophages, and dendritic cells (DCs) into the dermis, RA larvae induced a cascade of chemokine and cytokine secretion following in vitro culture of pinna biopsy samples. While macrophage inflammatory protein 1 and interleukin-1 (IL-1) were produced transiently within the first few days, the Th1-promoting cytokines IL-12 and IL-18 were secreted at high levels until at least day 14. Assay of C3H/HeJ mice confirmed that IL-12 secretion was not due to lipopolysaccharide contaminants binding Toll-like receptor 4. Significantly, IL-12 p40 secretion was sustained in pinnae from vaccinated mice but not in those from nonprotected infected mice. In contrast, IL-10 was produced from both vaccinated and infected mice. This cytokine regulates IL-12-associated dermal inflammation, since in vaccinated IL-10/ mice, pinna thickness was greatly increased concurrent with elevated levels of IL-12 p40. A significant number of IL-12 p40 cells were detected as emigrants from in vitro-cultured pinnae, and most were within a population of rare large granular cells that were Ia, consistent with their being antigen-presenting cells. Labeling of IL-12 cells for CD11c, CD205, CD8, CD11b, and F4/80 indicated that the majority were myeloid DCs, although a proportion were CD11c F4/80, suggesting that macrophages were an additional source of IL-12 in the skin

    Identification of a Cytotoxic Form of Dimeric Interleukin-2 in Murine Tissues

    Get PDF
    Interleukin-2 (IL-2) is a multi-faceted cytokine, known for promoting proliferation, survival, and cell death depending on the cell type and state. For example, IL-2 facilitates cell death only in activated T cells when antigen and IL-2 are abundant. The availability of IL-2 clearly impacts this process. Our laboratory recently demonstrated that IL-2 is retained in blood vessels by heparan sulfate, and that biologically active IL-2 is released from vessel tissue by heparanase. We now demonstrate that heparanase digestion also releases a dimeric form of IL-2 that is highly cytotoxic to cells expressing the IL-2 receptor. These cells include “traditional” IL-2 receptor-bearing cells such as lymphocytes, as well as those less well known for IL-2 receptor expression, such as epithelial and smooth muscle cells. The morphologic changes and rapid cell death induced by dimeric IL-2 imply that cell death is mediated by disruption of membrane permeability and subsequent necrosis. These findings suggest that IL-2 has a direct and unexpectedly broad influence on cellular homeostatic mechanisms in both immune and non-immune systems

    Induction of interferon-stimulated genes on the IL-4 response axis by Epstein-Barr virus infected human b cells; relevance to cellular transformation.

    Get PDF
    Epstein-Barr virus (EBV) is an oncogenic virus that is associated with the pathogenesis of several human lymphoid malignancies, including Hodgkin's lymphoma. Infection of normal resting B cells with EBV results in activation to lymphoblasts that are phenotypically similar to those generated by physiological stimulation with CD40L plus IL-4. One important difference is that infection leads to the establishment of permanently growing lymphoblastoid cell lines, whereas CD40L/IL-4 blasts have finite proliferation lifespans. To identify early events which might later determine why EBV infected blasts go on to establish transformed cell lines, we performed global transcriptome analyses on resting B cells and on EBV and CD40L/IL-4 blasts after 7 days culture. As anticipated there was considerable overlap in the transcriptomes of the two types of lymphoblasts when compared to the original resting B cells, reflecting common changes associated with lymphocyte activation and proliferation. Of interest to us was a subset of 255 genes that were differentially expressed between EBV and CD40L/IL-4 blasts. Genes which were more highly expressed in EBV blasts were substantially and significantly enriched for a set of interferon-stimulated genes which on further in silico analyses were found to be repressed by IL-4 in other cell contexts and to be up-regulated in micro-dissected malignant cells from Hodgkin's lymphoma biopsies when compared to their normal germinal center cell counterparts. We hypothesized that EBV and IL-4 were targeting and discordantly regulating a common set of genes. This was supported experimentally in our B cell model where IL-4 stimulation partially reversed transcriptional changes which follow EBV infection and it impaired the efficiency of EBV-induced B cell transformation. Taken together, these data suggest that the discordant regulation of interferon and IL-4 pathway genes by EBV that occurs early following infection of B cells has relevance to the development or maintenance of an EBV-associated malignancy

    A shared role for RBF1 and dCAP-D3 in the regulation of transcription with consequences for innate immunity

    Get PDF
    Previously, we discovered a conserved interaction between RB proteins and the Condensin II protein CAP-D3 that is important for ensuring uniform chromatin condensation during mitotic prophase. The Drosophila melanogaster homologs RBF1 and dCAP-D3 co-localize on non-dividing polytene chromatin, suggesting the existence of a shared, non-mitotic role for these two proteins. Here, we show that the absence of RBF1 and dCAP-D3 alters the expression of many of the same genes in larvae and adult flies. Strikingly, most of the genes affected by the loss of RBF1 and dCAP-D3 are not classic cell cycle genes but are developmentally regulated genes with tissue-specific functions and these genes tend to be located in gene clusters. Our data reveal that RBF1 and dCAP-D3 are needed in fat body cells to activate transcription of clusters of antimicrobial peptide (AMP) genes. AMPs are important for innate immunity, and loss of either dCAP-D3 or RBF1 regulation results in a decrease in the ability to clear bacteria. Interestingly, in the adult fat body, RBF1 and dCAP-D3 bind to regions flanking an AMP gene cluster both prior to and following bacterial infection. These results describe a novel, non-mitotic role for the RBF1 and dCAP-D3 proteins in activation of the Drosophila immune system and suggest dCAP-D3 has an important role at specific subsets of RBF1-dependent genes
    corecore