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Identification of a Cytotoxic Form of Dimeric Interleukin-
2 in Murine Tissues
Lucile E. Wrenshall1*, Suzanne E. Clabaugh1, David R. Cool2, Prakash Arumugam1, William C. Grunwald2,

Deandra R. Smith3, Gino C. Liu1¤, John D. Miller1
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Abstract

Interleukin-2 (IL-2) is a multi-faceted cytokine, known for promoting proliferation, survival, and cell death depending on the
cell type and state. For example, IL-2 facilitates cell death only in activated T cells when antigen and IL-2 are abundant. The
availability of IL-2 clearly impacts this process. Our laboratory recently demonstrated that IL-2 is retained in blood vessels by
heparan sulfate, and that biologically active IL-2 is released from vessel tissue by heparanase. We now demonstrate that
heparanase digestion also releases a dimeric form of IL-2 that is highly cytotoxic to cells expressing the IL-2 receptor. These
cells include ‘‘traditional’’ IL-2 receptor-bearing cells such as lymphocytes, as well as those less well known for IL-2 receptor
expression, such as epithelial and smooth muscle cells. The morphologic changes and rapid cell death induced by dimeric
IL-2 imply that cell death is mediated by disruption of membrane permeability and subsequent necrosis. These findings
suggest that IL-2 has a direct and unexpectedly broad influence on cellular homeostatic mechanisms in both immune and
non-immune systems.
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Introduction

Interleukin-2 (IL-2) is a fascinating cytokine, with widely varying

functions including promotion of apoptosis, proliferation and

survival of lymphocytes [1]. Not surprisingly, these varied

responses depend on the type of lymphocyte, and on the activation

state of the cell. Apoptosis, for example, occurs in activated T cells

that are exposed to IL-2 and then re-activated [2]. This activation-

induced cell death (recently renamed restimulation-induced cell

death) is thought to be a feedback mechanism designed to limit the

expansion and facilitate the down-regulation of antigen-specific

immune responses [3]. The importance of restimulation-induced

cell death is demonstrated by IL-2 knock out mice, which develop

a lethal lympho-proliferative phenotype and autoimmunity [4].

While IL-2 is typically considered a monomeric protein, studies

by Eitan, et al described a dimeric form of IL-2 that was cytotoxic

to oligodendrocytes [5]. This dimeric IL-2, extracted from fish

optic neurons, was thought to be the result of the cross-linking of

two IL-2 monomers by optic nerve-derived transglutaminase. This

hypothesis was based on data demonstrating that recombinant

human IL-2 also formed a cytotoxic dimer after exposure to the

same transglutaminase [6]. Dimeric IL-2 was shown to induce

apoptosis of oligodendrocytes after several hours, likely through a

p53-related mechanism [7].

Our laboratory recently reported that IL-2 is retained in the

blood vessel wall by heparan sulfate [8,9] Specifically, we showed

that heparanase digestion of murine aortic tissue resulted in the

release of biologically active, monomeric (15 kD) IL-2 [8].

Interestingly, heparanase digestion also resulted in the release of

a 30 kD (dimeric) form of IL-2. The dimeric form of IL-2 was

isolated from murine aortas and found to be cytotoxic to several

different cell types expressing the IL-2 receptor. In contrast to the

studies by Eitan, et al, the onset of cell death was rapid and dimer-

treated cells appeared to be dying by oncosis, which is

characterized by a loss of membrane integrity and cellular swelling

[10]. These results demonstrate that dimeric IL-2 is present

endogenously in mammalian tissues and suggests that so

positioned, dimeric IL-2 may function to restrict excess prolifer-

ation under pro-inflammatory conditions in vivo.

Materials and Methods

Materials and cell lines
Murine aortas were obtained from Balb/c mice. Small sections

of human iliac artery were obtained from deceased donor organs.

Heparinase I and chemical reagents, unless otherwise indicated,

were obtained from Sigma-Aldrich (St. Louis, MO). Alpha-Cyano-

4-Hydroxy-Cinnamic Acid (CHCA) MALDI Matrix was from

Thermo Scientific (Waltham, MA). Recombinant mouse IL-2 was

from Cell Sciences (Canton, MA). The fluorescent dye used to

label IL-2 (800CW) was obtained from LI-COR Biosciences

(Lincoln, NE). CellTox Green cytotoxicity and CellTiterGlo
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proliferation assays were from Promega (Madison, WI). LDH

cytotoxicity assay was from Roche (Indianapolis, IN). The

following antibodies were used: rabbit anti-mouse/human IL-2

receptor (IL-2R) bpolyclonal antibody (Novus Biologicals, Lit-

tleton, CO), mouse anti-rat IL-2Rb monoclonal antibody (clone

L316, AbD Serotec, Raleigh, NC), rat anti-mouse blocking

monoclonal antibody (clone S4B6, BD Biosciences, San Jose,

CA), and a chicken polyclonal antibody recognizing human and

murine IL-2 (Sigma). CTLL-2 (mouse cytotoxic T lymphocyte),

NRK (normal rat kidney epithelium), HK-2 (human kidney

epithelium), B16-F10 (mouse melanoma) cells, and EL4.IL-2

(murine lymphoma) cell lines were obtained from American Tissue

Type Collection (Manassas, VA). Smooth Muscle Cell Medium

was from ScienCell (Carlsbad, CA).

Ethics statement
Mice were housed and treated in strict accordance with

protocols approved by the Wright State University Laboratory

Animal Care and Use Committee (AUP # 891). Authorization for

use of donated human tissue for research was obtained from the

donor (primary authorization) or next of kin. Tissues were

provided by Life Connection of Ohio (www.lifeconnectionofohio.

org). Human subjects are defined as living individuals and

therefore use of these tissues is exempt from Institutional Review

Board review at Wright State University. Human vascular smooth

muscle cells were grown in accordance with protocols approved by

the Institutional Biosafety Committee (IBC# 230).

Dye-labeled IL-2
Murine IL-2 (R & D Systems) was covalently conjugated to an

activated infrared dye (800CW, LI-COR) per the manufacturer’s

instructions. Briefly, activated dye was added to the IL-2 at a

molar ratio of 1:1. Following a 2 hour incubation at 24uC,

unconjugated dye was removed from the preparation using a de-

salting column. The concentration of the dye-conjugated IL-2 was

then determined by Bradford assay (Sigma). To confirm conjuga-

tion of the IL-2 to the 800CW dye, 0.5 mg of dye-IL-2 was

separated by SDS-PAGE, transferred to nitrocellulose, and

analyzed on an Odyssey infrared scanner (LI-COR Biosciences).

Cytotoxicity assays
Human vascular smooth muscle cells (VSMC) were incubated

with dimeric IL-2 at the times and concentrations indicated in the

figure legends. Cell death was assessed by either LDH release or

by fluorescence of a DNA-binding dye (CellTox Green). For

assessment of LDH release, cell culture media (80 mL/well) was

harvested and centrifuged at 4,000 rpm for 10 minutes to remove

debris. LDH activity in the supernatants was quantified using a

commercially available kit (Roche). CellTox Green, designed to

assess cell death kinetically, was added just prior to or simulta-

neously with dimeric IL-2 or vehicle control. Absorbance or

fluorescence was read at the appropriate wavelength using a

Synergy H1 microplate reader (Biotek, Winooski, VT). In select

experiments, cells were pre-incubated for 15 minutes with blocking

anti-IL-2Rb (rabbit anti-human polyclonal, Novus) or anti-IL-2

antibodies (S4B6, BD Biosciences).

CTLL-2 assay
CTLL-2 cells were cultured in RPMI-1640 media with 10%

FBS. For bioassay, cells were plated in 96 well plates at

56104 cells/ml, and cultured with increasing concentrations of

IL-2 for 24 h at 37uC. Proliferation was assessed by ATP content

per manufacturer’s instructions (CellTiterGlo).

Isolation of dimeric IL-2 from tissues or media
Murine aortas were cleaned of adventitia and adipose, cut into

,1 mm3 pieces, and homogenized in ice-cold in urea extraction

buffer (8 M urea, 100 mM Tris-HCl, pH 7.5). The extracts were

sonicated on ice and then clarified by centrifugation. The resultant

supernatants were separated by reducing SDS-PAGE (3–15%

gradient; Bio-Rad) and then subjected to negative zinc staining

(Bio-Rad). Using a companion Western blot of the extract probed

with a chicken polyclonal anti-IL-2 antibody (Sigma) as a guide,

the 30 kD bands were excised and electro-eluted (Bio-Rad). Eluted

samples were pooled, dialysed over a period of 48 hours with four

buffer exchanges, concentrated by dialysis against aquacide II

(Calbiochem) or ammonium sulfate precipitation, then re-

suspended in storage buffer (TBS without Ca or Mg) and stored

at 4C. The amount of dimeric IL-2 isolated was quantified by

Western blot analysis with a chicken polyclonal anti-IL-2 antibody

(Sigma) incorporating scanning densitometry and a standard curve

of known concentrations of monomeric IL-2.

EL4.IL-2 cells were stimulated for 48 h with 1 mg/ml PHA and

10 ng/ml PMA. The supernatant was collected, passed through

an Amicon filter (0.2 mM), then subjected to reducing SDS-PAGE

and electro-elution as described above. Isolation of 30 kD IL-2

was verified by Western blot analysis and quantified by scanning

densitometry.

Vascular smooth muscle cell cultures
Human vascular smooth muscle cells (VSMC) were isolated

from pieces of aorta using a modification of a previously reported

technique [11]. Briefly, approximately 1 cm pieces of aorta were

washed with PBS and all adipose was removed. The artery was

sliced to open the lumen, and small (1 mm62 mm) pieces were cut

and placed lumen side down into a 75 cm tissue culture flask (6–8

pieces per flask). The tissue (without media) was incubated at 37uC
for 3–4 h to allow the tissue to dry and adhere to the flask. Ten mls

of SMC media (ScienCell) were carefully added to the flask so as

not to dislodge the pieces of aorta. The tissue was maintained at

37uC and SMCs were harvested in 3–4 weeks. VSMC were then

passaged every 7 days and used after 4 passages [8].

Western blot analysis
Western blot analysis of supernatants was performed as follows.

EL4.IL2 supernatants were generated as described above. An

equal volume of 2X Laemmli running buffer (Bio-Rad, Hercules,

CA) containing 5% v/v b-mercaptoethanol (Bio-Rad) was added

to the media which was then separated by sodium dodecyl sulfate

polyacrylamide gel electrophoresis (SDS-PAGE) on 10% gels (Bio-

Rad), transferred to 0.2 mm nitrocellulose (Bio-Rad), blocked with

Tris-buffered saline (TBS) with 0.25% Tween-20 (TTBS) then

probed overnight with an anti-IL-2 antibody. After washing with

TTBS, bound antibody was detected with a horseradish perox-

idase conjugated anti-rabbit secondary antibody (Abcam) in

TTBS. The blots were developed using enzyme chemilumines-

cence (Pierce Biotechnology, Rockford, IL) and blue X-ray film

(Phenix, Hayward, CA).

Western blot analysis of aortic tissues was performed by first

mincing the tissue into pieces, rinsing the pieces in PBS, and then

homogenizing the minced tissue in ice-cold 4 M urea buffer

(100 ml buffer/mg tissue) containing 0.05% Triton X-100 v/v and

1 mM PMSF. The homogenate was sonicated on ice followed by

centrifugation to remove insoluble material. The resulting

supernatant (extract) was collected, and the protein concentration

measured by DC protein assay (Bio-Rad). A 25 mg aliquot was

then mixed with an equal volume of 2X Laemmli running buffer

containing 5% v/v b-mercaptoethanol. The samples were then
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analyzed by Western blot as described. Blots analyzing tissues from

mice injected with dye-labeled IL-2 were visualized using an

Odyssey infrared imager (LI-COR Biosciences).

Heparinase digestion of tissues
Heparinase I digestion of tissues (spleen, aorta) from Balb/c

mice injected with dye-labeled IL-2 was performed by incubating

approximately 6, 262 mm, pieces of aorta or spleen in digestion

buffer (0.03 M Tris-HCl, 3.3 mM calcium acetate, 6 mM sodium

acetate, pH 7.0] containing 1 mM PMSF) to which 2 U

heparinase I was added and incubated at 37uC for approximately

18 h. The vessel tissue was pelleted by centrifugation and the

resultant supernatant collected and total protein present deter-

mined by DC protein assay (Bio-Rad). A 50 mg aliquot was mixed

with an equal volume of 2X Laemmli running buffer (Bio-Rad)

containing 5% v/v b-mercaptoethanol, separated by SDS-PAGE,

transferred to nitrocellulose, then visualized on an Odyssey

infrared imager (LI-COR Biosciences) or probed with anti-IL-2

antibodies.

MALDI Analysis
To facilitate MALDI analysis of the 30 kD dimer isolated from

EL4-conditioned media, samples of the dimer (25–40 mg) purified

by elution from preparative SDS-PAGE (see above) were

deglycosylated by treatment with N-glycanase (PNGase-F), O-

glycanase, and sialidase as per the manufacture’s instructions

(GlycoPro Enzymatic Deglycosylation Kit, Prozyme, Hayward,

CA). The deglycosylated samples were then subjected to iso-

electric focusing on ampholine strips with a pH gradient of 5–8

(Bio-Rad). Multiple focusing strips were run concomitantly

followed again by SDS-PAGE permitting some gels to be stained

with Coomassie R-250 while others were processed for Western

blot analysis with an anti-IL-2 antibody (see above). Using this

methodology, focused spots with IL-2 immunoreactivity were

Figure 1. A 30 kD form of IL-2 is present in murine aortas and released by heparinase digestion. (A) Balb/c mice were given 1 mg
infrared-IL-2 daily by intraperitoneal injection for 8 doses, and sacrificed 3 days following the last dose. Tissues were processed as described for
Western blot analysis, and analyzed on an Odyssey infrared scanner. Results shown are representative of 10 experiments. ‘‘IL-2’’ denotes dye-labeled
IL-2 prior to injection. (B) Balb/c mice were given a single dose of 1.5 mg infrared-IL-2, and sacrificed 2.5 days later. Five 1 mm long pieces of murine
aortas were incubated at 37uC with 2 U heparinase I or heparinase buffer for 18 h, and the released material was separated by SDS-PAGE and
analyzed on an Odyssey infrared scanner. Results shown are representative of 2 experiments. IL-2 was labeled with infrared dye as described in
Materials and Methods. (C) Murine spleens, aortas, or kidneys were homogenized, processed for Western blot analysis, and probed with anti-IL-2
antibodies. Results shown are representative of 5 experiments. (D) Murine aortas were digested with heparinase I or buffer alone as above, processed
for Western blot analysis, and probed with anti-IL-2 antibodies. Note that dimeric IL-2 appears as a doublet. Results shown are representative of 5
experiments. (E) EL-4 cell supernatants were processed for Western blot analysis and probed with anti-IL-2 antibodies. Results shown are
representative of 10 experiments.
doi:10.1371/journal.pone.0102191.g001

Cytotoxicity of Dimeric IL-2
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identified on the Coomassie-stained gels and excised. The gel

pieces were dehydrated by immersion in NaHCO3:acetonitrile

(1:1) containing 10 mM DTT, and 55 mM iodoacetamide. The

reduced-alkylated samples were re-hydrated with NaHCO3 buffer

and digested overnight at 37uC with 300 ng of sequencing grade

porcine trypsin (Promega). The next day, the supernatants were

removed and saved and the gel slices extracted 3X with 50%

acetonitrile containing 0.3% TFA v/v. The supernatants were

combined, lyophilized to a volume of ,10 mL, and concentrated

using C18 ZipTips (Millipore, Billerica, MA), that were eluted

with 95% acetonitrile containing 0.3% TFA v/v. The eluates were

then mixed with CHCA matrix (Thermo) and spotted onto a

brushed-steel MALDI target plate. Samples were analyzed using a

Bruker Autoflex III MALDI-TOF/TOF MS incorporating Bruker

LIFT and collision-induced dissociation (CID) fragmentation to

generate the protein/peptide sequence for peaks of interest. All

data was analyzed by searching the MASCOT server at the

Wright State University Proteome Analysis Laboratory.

Statistics
Software used for statistical analyses was the R library

‘‘multicomp’’. Specific analyses performed are noted in the figure

legends.

Results

Dimeric form of IL-2 is present in blood vessels
Recent work from our laboratory demonstrated that IL-2 is

present in blood vessels and is retained there by association with

heparan sulfate (HS) [8,9]. This observation was confirmed, in

part, by the systemic administration of infrared-dye labeled IL-2 to

Balb/c mice and subsequent recovery of this IL-2 from aortic

tissues. The infrared monomeric IL-2, with a MW of approxi-

mately 15 kD, was present in aortic tissue homogenates and was

released by incubation of aortic tissues with bacterial heparinase I.

Interestingly, a 30 kD labeled band was also present in the

homogenates and was released by heparinase digestion

(Figures 1A, B). Western blot analysis of murine aortic tissues

also revealed bands, recognized by anti-IL-2 antibodies, at 15 and

30 kD. These bands were present in both homogenates and in

supernatants from heparinase-treated tissue (Figures 1C, D).

Sampling of select tissues, including spleen and kidney, revealed

the presence of monomeric and dimeric IL-2 in homogenates

(Figure 1C and not shown).

We then asked whether a simplified, in vitro system such as IL-2

producing cells in culture would generate dimeric IL-2. To this

end, EL4.IL-2 cells, a subline producing large amounts of IL-2,

were stimulated and supernatants assessed for dimeric IL-2. Both

monomeric and dimeric IL-2 were present in supernatants of

activated EL-4 cells (Figure 1E). In addition, transglutaminase,

noted by Eitan, et al to be important for generating dimeric IL-2,

was present in EL4 supernatants by Western blot analysis (not

shown). In turn, the c-glutamyl-e-lysine epitope, characteristic of

transglutaminase-mediated cross-linking, was present in dimeric

IL-2 isolated from EL4 supernatants (not shown).

These results suggested that a dimeric form of IL-2 was present

in murine tissues. A review of the literature revealed that a dimeric

form of IL-2 had previously been identified in the conditioned

media of injured fish optic neurons [5,6,7] and that this dimeric

form of IL-2 induced apoptosis in oligodendrocytes. Given this

information, we sought to confirm that this 30 kD band was a

dimeric form of IL-2.

Figure 2. Isolation process does not impact function of IL-2. Recombinant murine IL-2 was isolated in a fashion identical to that used for
dimeric IL-2 (eluted IL-2). The proliferative response of CTLL-2 cells to ‘‘eluted IL-2’’ vs IL-2 (taken directly from the vial) was then compared by
measuring total ATP content. Results shown are the means 6 SD of triplicate wells, and are representative of 3 experiments.
doi:10.1371/journal.pone.0102191.g002
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Isolation of dimeric IL-2
Our first step in confirming the presence of a dimeric form of

IL-2 was to develop a method for its isolation. Murine aortic

tissues or conditioned media from stimulated EL4.IL-2 cells was

used as a source of dimeric IL-2. Murine aortic tissues were

homogenized in urea, clarified by centrifugation, and the resulting

supernatants separated by SDS-PAGE. Supernatants from media

of the IL-2 producing lymphoma cells were concentrated and then

similarly separated. Companion gels were run for Western blot

analysis and zinc-staining. Bands of 15 kD and 30 kD, recognized

by a chicken anti-IL-2 polyclonal antibody (Sigma), were excised

from the companion zinc-stained gel and electro-eluted. Eluted

samples were dialyzed, and the presence of dimeric IL-2 verified

by Western blot. Samples of each eluted preparation separated by

SDS-PAGE and stained with Coomassie R250 showed the

presence of one band per sample.

To ensure that the isolation process was not influencing activity,

commercial IL-2 was subjected to the same isolation process as

described above. As seen in Figure 2, commercial IL-2 and

‘‘eluted’’ commercial IL-2 yielded identical proliferative responses

when assayed using an IL-2 dependent cell line, suggesting that the

isolation process had no effect on biological activity.

MALDI analysis of the 30 kD band from EL4 conditioned
media confirms the isolation of dimeric IL-2

Our efforts at MALDI analysis of the 30 kD dimer focused on

supernatants of murine lymphoma (EL4) cells since these

supernatants were less complex than tissue extracts and could be

generated in copious amounts. Following fragmentation of the

30 kD dimer (isolated per Methods), MS/MS analysis identified

four peaks consisting of 15 to 24 amino acids that were identified

as belonging to murine IL-2 (p#0.05) (Table 1). These peaks

yielded a combined score of 356 to confirm the identity as murine

IL-2 (Table 1; Figure 3A and B). Sequence coverage of 33.1% was

confined to the C-terminal portion of the protein with overlap of 2

of the peptides at a site between 82 and 101 amino acids

(Figure 3B).

Dimeric IL-2 is cytotoxic to multiple cell types
We next sought to determine whether the function of dimeric

IL-2 was similar to or different than the monomeric form. Given

the work by Eitan, et al, we focused on the potential cytotoxicity of

dimeric IL-2. Since we identified dimeric IL-2 in arterial tissues,

and previously demonstrated that VSMC express IL-2Rb [8] we

asked whether dimeric IL-2 was cytotoxic to VSMC. To this end,

dimeric IL-2 was isolated from murine aortas or EL-4 culture

media as described above. Increasing concentrations of dimeric

IL-2 were added to cultures of VSMC isolated from human aortas.

Cytotoxicity was assessed by release of lactate dehydrogenase

(LDH). As seen in Figure 4A, dimeric IL-2 induced rapid cell

death of VSMC in a dose-dependent fashion. Given this response,

we asked if dimeric IL-2 was cytotoxic to other cell types. Dimeric

IL-2 was cytotoxic to several cell types expressing the IL-2R,

including human and rat kidney epithelial cells [12,13], human

and murine melanoma cells [14,15], murine lymphocytes, murine

lymphoma cells, human leukemia cells, and human colon

carcinoma cells [16] (Figure 4B–D and not shown). Of note,

neither eluted monomeric IL-2 up to 1000 ng/ml, nor the eluate

from an empty gel slice, were cytotoxic (see Figure 4 legend).

Given these results, we asked whether recombinant, murine IL-

2 could be used to generate a cytotoxic dimer. Using transgluta-

minase, commercially available monomeric IL-2 was provided as a

substrate to generate cross-linked 30 kD dimers, which were then

isolated as previously described. Dimeric IL-2 originating from

bacterial sources, and therefore not glycosylated, was not

cytotoxic. Similarly, dimeric IL-2 originating from insect sources

(less complex than mammalian glycosylation [17]) also lacked

cytotoxicity. Together, these results suggest that glycosylation

contributes to the cytotoxicity of dimeric IL-2.

The results of the LDH release assay demonstrated that dimeric

IL-2 kills cells rapidly. To obtain a more precise measure of this

effect, especially at early time points, we evaluated cell death using

a fluorescent reagent that binds DNA and is designed to assess cell

death kinetically. As seen in Figures 5A and B, the onset of cell

death was very rapid; half of the maximal fluorescence induced by

dimer-mediated cytotoxicity was reached approximately 10

minutes after exposing VSMCs to dimeric IL-2.

The rapidity of dimer-induced cell death suggested that the

mechanism might involve oncosis rather than apoptosis, since

apoptosis typically occurs over hours rather than minutes. Phase

contrast microscopy of kidney epithelial cells exposed to dimeric

IL-2 for 30 minutes revealed membrane blebbing consistent with

an oncotic form of cell death (Figure 5C).

Inhibition of dimer-mediated cytotoxicity
To begin to address the mechanism of dimer-induced cell death,

we first asked whether anti-IL-2 antibodies could inhibit dimer-

mediated cytotoxicity. For these studies we chose S4B6, a well-

described anti-IL-2 antibody known to neutralize IL-2-mediated

proliferation [18]. As seen in Figure 6A, incubation of the dimer

Figure 3. MALDI MS/MS spectra of 4 peaks derived from the tryptic digest of the 30 kD band isolated from EL-4 conditioned media.
MS/MS analysis of 30 kD dimer isolated from EL4-conditioned media identified four peaks consisting of 15 to 24 amino acids that yielded a combined
score of 356 confirming they came from murine IL-2 (p 0.05).
doi:10.1371/journal.pone.0102191.g003

Table 1. MALDI-TOF/TOF analysis of the 30 kD band produced by EL-4 T lymphoma cells and recognized by an anti-IL-2 antibody.

Observed Expected Theoretical Score Peptide

1557.6212 1556.6139 1556.7504 115 K.DLQCLEDELGPLR.H

1782.7065 1781.6993 1781.8584 123 K.SFQLEDAENFISNIR.V

2227.9432 2226.9360 2227.1154 49 K.QATELKDLQCLEDELGPLR.H

2551.8858 2550.8786 2551.0809 70 K.GSDNTFECQFDDESATVVDFLR.R

IL2_MOUSE Mass: 19616 Score: 356 Queries matched: 4.
Sequence Coverage: 33.1%, pI 4.7.
doi:10.1371/journal.pone.0102191.t001

Cytotoxicity of Dimeric IL-2
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with S4B6 blocked dimer-mediated cell cytotoxicity in a dose-

dependent fashion. This result suggests that the peptide sequence

within IL-2 that mediates proliferation is exposed in the dimeric

form and is likely important for dimer-mediated cytotoxicity.

We next asked whether interference with the IL-2 receptor

would alter dimer-mediated cell death. Little information exists

about the expression of the IL-2 receptor in VSMCs. Previous

studies from our laboratory indicate that these cells express at least

the b portion of the IL-2 receptor [8]. To assess the role of the IL-

2R in dimeric IL-2 mediated cell death, we pre-incubated human

VSMCs with a polyclonal anti-IL2Rb antibody and then exposed

them to dimeric IL-2. As seen in Figure 6B, pre-incubation with

anti IL-2Rb antibodies inhibited dimer-mediated cell death in a

dose dependent fashion, suggesting that dimer-mediated cell death

occurs through association with IL-2Rb. Similar results were

obtained in rat kidney epithelial cells using a monoclonal anti-rat

anti-IL2Rb antibody (Figure 6C) and melanoma cells (not shown).

Whether the a and c portions of the IL-2R are also involved in

dimer-mediated cell death is currently under investigation.

Discussion

This report demonstrates, for the first time, the identification

and isolation of a dimeric form of IL-2 from mammalian tissues.

The cytotoxicity of dimeric IL-2 stands in stark contrast to the

proliferative and survival functions of the monomer. This finding

leads to several questions concerning the function and regulation

of the dimeric form.

While the proliferative properties of IL-2 have been recognized

since its discovery, the importance of IL-2 in cell death was

revealed after the generation of IL-2 knockout mice, which

develop a lymphoproliferative disorder [4]. At approximately the

Figure 4. Dimeric IL-2 is cytotoxic to multiple cell types. Dimeric IL-2, isolated from murine aortas or conditioned media from EL-4 T
lymphoma cells were added to cultures of (A) primary human vascular smooth muscle cells, (B) normal rat kidney cells (NRK cell line), (C) human renal
epithelial cells (HK-2 cell line), (D) murine melanoma cells (B16-F10). The cells were incubated for 2 h with increasing concentrations of dimeric IL-2.
Cytotoxicity was assessed by release of LDH and expressed as % lysis (experimental/total lysis x 100). Smooth muscle cells cultured under identical
conditions with either 1000 ng/ml eluted, commercial, murine IL-2 or eluate from an empty gel slice each yielded a % lysis of 2.9%, and 3.2%
respectively. Results shown are the means 6 SD of triplicate wells, and are representative of 5–20 experiments. Percent lysis is significantly different
across the 4 concentrations of dimeric IL-2 in each figure (A–D, p = 4.861027, p = 3.261027, p = 161024, p = 1.8610210, by ANOVA).
doi:10.1371/journal.pone.0102191.g004
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same time, IL-2 was shown to induce apoptosis when activated T

cells were exposed to antigen and IL-2 [2]. Activation-induced cell

death, mediated by IL-2, was therefore identified as a mechanism

through which IL-2 induces cell death [19]. In light of our

findings, we suggest that dimeric IL-2 also contributes to IL-2-

mediated cell death in vivo.

During an immune response, activated T cells produce both

glycosylated and non-glycosylated IL-2. In vitro studies have

shown that the ratio of glycosylated to non-glycosylated IL-2

produced by human peripheral blood lymphocytes depends on the

stimulus and duration of stimulation [20]. In the study by

Conradt, et al, human peripheral blood lymphocytes stimulated

with A23187 and PMA initially produced non-glycosylated IL-2,

and only produced glycosylated IL-2 30–40 h after stimulation.

Glycosylation of IL-2 appears to be important since both

unglycosylated (bacterial) and simply glycosylated (insect) forms

of dimeric IL-2, generated from recombinant sources, are not

cytotoxic. Whether glycosylation contributes to conformation of

the dimer, binding to the receptor, or other, is not known. The

role of glycosylation in dimer-mediated cell death is currently

under investigation.

The presence or absence of glycosylation likely represents one

means by which the cytotoxicity of dimeric IL-2 is controlled. The

aforementioned in vitro data suggests one possible scenario. In
vivo, T cells activated by foreign antigen initially produce non-

glycosylated IL-2. As the immune response proceeds, glycosylated

IL-2 is produced, resulting in the generation of cytotoxic, dimeric

IL-2 that kills IL-2R+ cells and restricts their excess accumulation.

Alternatively, the later production of glycosylated IL-2 may serve

to replenish stores released by heparanase earlier in the immune

response.

The potency of dimeric IL-2 suggests that it is tightly regulated

in vivo. In addition to glycosylation, other mechanisms to control

dimeric IL-2 include IL-2R expression, heparanase expression,

and the presence/absence of transglutaminase. Our results

indicate that antibodies recognizing IL-2Rb block the cytotoxicity

of dimeric IL-2. Interestingly, IL-2Rb also dimerizes, and this

property may facilitate association with dimerized IL-2 [21].

Studies addressing whether IL-2Ra or c are involved in the

cellular response to dimeric IL-2 are in progress.

Although produced by most mammalian cells, heparanase is

tightly controlled by several mechanisms, including (1) regulated

secretion, (2) uptake of secreted heparanase by low-density

lipoprotein-related receptor protein [22] and syndecan-4 [23],

and (3) expression, in that only one functional isoform of

mammalian heparanase has been identified [16]. Since dimeric

Figure 5. Dimeric IL-2 induces rapid onset of cell death. (A, B) CellTox Green dye was added to cultured VSMC followed by increasing
concentrations of dimeric IL-2 isolated from murine aortas (A) or EL4 media (B). Tissue culture plates were immediately placed in the microplate
reader and excited at 485 nm per manufacturer’s instructions. Cells were lysed, as a positive control, using a proprietary lysis buffer (Roche). In part A,
100 ng/ml and 50 ng/ml are significantly different than 0 ng/ml (p = 161024 for each, by Dunnett’s test for multiple comparisons). In part B, 20 ng/ml
and 10 ng/ml are significantly different than 0 ng/ml (p = 161024 for each, by the same analysis). (C) Normal rat tubular epithelial cells (NRK-52E)
were cultured for 30 minutes with 20 ng/ml dimeric IL-2, 40 ng/ml monomeric IL-2, or PBS. Scale bar: 50 mm. Results are representative of 10
experiments.
doi:10.1371/journal.pone.0102191.g005
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IL-2 is released by heparanase, tight control of heparanase

expression would, in turn, regulate the release of dimeric IL-2.

Whether other matrix-degrading enzymes, such as matrix-

metalloproteinases, release dimeric IL-2 is currently under

investigation.

Studies by our laboratory and Eitan, et al, indicate that

cytotoxic, dimeric IL-2 is generated by transglutaminase-mediated

crosslinking of monomeric IL-2. Transglutaminases are ubiqui-

tous, well-described cross-linking enzymes known to alter the

functions of proteins through oligomerization. Probably the best-

studied example is the crosslinking of fibrinogen or fibrin [24] in

the formation of blood clots. Other examples include the

dimerization of osteopontin, which increases its adhesivity to

osteoclasts as compared to the monomer [25], and the oligomer-

ization of sonic hedgehog, which increases its bioactivity as a

morphogen [26]. The functional differences conferred by dimer-

ization of IL-2, however, may represent one of the most distinct,

transglutaminase-mediated changes in a biologically active pro-

tein.

Our finding that dimeric IL-2 is cytotoxic to several parenchy-

mal cell types begs the question as to its function in vivo with

respect to these cells. Given that dimeric IL-2 is released by

heparanase and cross-linked by enzymes such as transglutaminase,

its presence in vivo may be limited to or concentrated in areas of

injury or inflammation. Because dimeric IL-2 appears to

precipitate a necrotic vs apoptotic cell death, we anticipate that

dimeric IL-2 would serve to propagate inflammation.

In summary, our laboratory has identified a dimeric form of IL-

2 present in mammalian tissues. This form of IL-2 causes a very

rapid cell death, which appears to be oncotic rather than

apoptotic. These findings yield several questions regarding the

mechanism of cell death mediated by dimeric IL-2, its regulation,

and the contribution of dimeric IL-2 to cellular homeostasis in

both immune and non-immune systems. These answers, as they

unfold, may dramatically alter our perception of how IL-2

functions in vivo.
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