736 research outputs found

    Metal-insulator transition in the In/Si(111) surface

    Full text link
    The metal-insulator transition observed in the In/Si(111)-4x1 reconstruction is studied by means of ab initio calculations of a simplified model of the surface. Different surface bands are identified and classified according to their origin and their response to several structural distortions. We support the, recently proposed [New J. of Phys. 7 (2005) 100], combination of a shear and a Peierls distortions as the origin of the metal-insulator transition. Our results also seem to favor an electronic driving force for the transition.Comment: Presented in the 23 European Conference in Surface Science, Berlin, September 2005. Submitted to Surface Science (proceedings of the conference) in August 200

    Self-assembled quasi-1D and 2D nanostructures of fullerenes on silicon

    Full text link
    The work was supported by Russian Foundation for Basic Researches (Grant No. 17-02-00577)

    Atomic Force Microscopy Study of Cross-Sections of Perovskite Layers

    Get PDF
    Improvement of methods for imaging of the volume structure of photoactive layers is one of the important directions towards development of highly efficient solar cells. In particular, volume structure of photoactive layer has critical influence on perovskite solar cell performance and life time. In this study, a perovskite photoactive layer cross-section was prepared by using Focused Ion Beam (FIB) and imaged by Atomic Force Microscopy (AFM) methods. The proposed approach allows using advances of AFM for imaging structure of perovskites in volume. Two different types of perovskite layers was investigated: FAPbBr3 and MAPbBr3. The heterogeneous structure inside film, which consist of large crystals penetrating the film as well as small particles with sizes of several tens nanometers, is typical for FAPbBr3. The ordered nanocrystalline structure with nanocrystals oriented at 45 degree to film surface is observed in MAPbBr3. An optimized sample preparation route, which includes FIB surface polishing by low energy Ga ions at the angles around 10 degree to surface plane, is described and optimal parameters of surface treatment are discussed. Use of AFM phase contrast method provides high contrast imaging of perovskite structure due to strong dependence of phase shift of oscillating probe on materials properties. The described method of imaging can be used for controllable tuning of perovskite structure by changes of the sample preparation routes

    Ion Dynamics in Single and Multi-Cation Perovskite

    Get PDF
    In organic-inorganic perovskites currently widely used to fabricate high-efficiency solar cells the electrical properties are to a large extent determined by the presence of mobile ions. These mobile ions are commonly held responsible for many undesirable features of perovskite solar cells, such as hysteretic behavior of electrical properties and degradation of parameters during operation. Hence, developing methods to study the properties of mobile ions and distinguish their contribution to electrical properties from the usual effects due to electronic states are essential for gaining control over the type and density of mobile ions. In this paper we show that comparison of deep levels transient spectroscopy (DLTS) measurements performed in the normal and reverse biasing/pulsing sequences provides a useful means of discriminating between the contributions of electronic traps usual for all semiconductors and the mobile ions very important in perovskites. To simplify things these experiments were performed on Schottky diodes rather than heterojunctions with organic-inorganic electron transport and hole transport layers. The results of experiments are presented and compared for single cation MAPbI(3)and multication perovskites. In both cases the main features observed in DLTS could be attributed to mobile ions

    Ion-beam sputtering of NiO hole transporting layers for p-i-n halide perovskite solar cells

    Full text link
    Ion-beam sputtering offers significant benefits in terms of deposition uniformity and pinhole-free thin-films without limiting the scalability of the process. In this work, the reactive ion-beam sputtering of nickel oxide has been developed for the hole transporting layer of a p-i-n perovskite solar cells (PCSs). The process is carried out by oxidation of the scattered Ni particles with additional post-treatment annealing regimes. Using deposition rate of 1.2 nm/min allowed growth of very uniform NiO coating with the roughness below 0.5 nm on polished Si wafer (15x15 cm2). We performed a complex investigation of structural, optical, surface and electrical properties of the NiO thin-films. The post-treatment annealing (150-300C) was considered as an essential process for improvement of the optical transparency, decrease of defects concentration and gain of the charge carrier mobility. As result, the annealed ion-beam sputtered NiO films delivered a power conversion efficiency (PCE) up to 20.14%, while device without post-treatment reached the value of 11.84%. The improvement of the output performance originated from an increase of the short-circuit current density (Jsc), open circuit voltage (Voc), shunt and contact properties in the devices. We also demonstrate that the ion-beam sputtering of NiO can be successfully implemented for the fabrication of large area modules (54.5 cm2) and PSCs on a flexible plastic substrate (125 microns)

    Creation of a Tunable Diode Based on Nanotubes with an Ion Gate

    Get PDF
    The new concept of an electronic tunable device based on nanostructured materials is suggested. A tunable organic diode is represented by the example of a vertical architecture with a polymer layer of poly3 hexylthiophene-P3HT and an upper carbon electrode whose properties vary in a wide range when it is doped in a double electric layer in an ionic liquid. Two types of ionic liquids with different ion sizes and different breakdown voltages are used. It is shown that diode based on nanotubes plus organic can be used for photodetectors and in photovoltaic elements

    Single layer nickel disilicide on surface and as embedded layer

    Get PDF
    Single monolayers of various materials (e.g. graphene, silicene, bismuthene, plumbene, etc) have recently become fascinating and promising objects in modern condensed-matter physics and nanotechnology. However, growing a monolayer of non-layered material is still challenging. In the present report, it will be shown that single monolayer NiSi2 can be fabricated at Si(111) surface stabilized by either Tl, Pb or In monolayers. Nickel atoms were found to intercalate the stabilizing metal layers upon deposition and to reside in the interstitial sites inside the first silicon bilayer of bulk-like-terminated Si(111)1×1 surface. The interstitial positions almost coincide with the bulk NiSi2 atomic positions thus forming NiSi2 single layer. Atomic and electronic structure of formed systems is described in detail by means of a set of experimental techniques, including low-energy electron diffraction, scanning tunneling microscopy, angle-resolved photoemission spectroscopy and also first-principles density-functional-theory calculations. Quality of formed single monolayer NiSi2 was additionally confirmed by in situ four-probe transport measurements that show that single monolayer NiSi2 preserves a metallic-type conductivity down to 2.0 K. Moreover it was found that delta-type structure with atomic sheet of NiSi2 silicide embedded into a crystalline Si matrix can be fabricated using room-temperature overgrowth of a Si film onto the Tl stabilized NiSi2 surface layer. Confinement of the NiSi2 layer to a single atomic plane has been directly confirmed by high-resolution transmission electron microscopy
    corecore