3,925 research outputs found

    Star-Like Micelles with Star-Like Interactions: A quantitative Evaluation of Structure Factor and Phase Diagram

    Get PDF
    PEP-PEO block copolymer micelles offer the possibility to investigate phase behaviour and interactions of star polymers (ultra-soft colloids). A star-like architecture is achieved by an extremely asymmetric block ratio (1:20). Micellar functionality f can be smoothly varied by changing solvent composition (interfacial tension). Structure factors obtained by SANS can be quantitatively described in terms of an effective potential developed for star polymers. The experimental phase diagram reproduces to a high level of accuracy the predicted liquid/solid transition. Whereas for intermediate f a bcc phase is observed, for high f the formation of a fcc phase is preempted by glass formation.Comment: 5 pages, 4 figures, PRL in pres

    Role of interfacial tension for the structure of PEP-PEO polymeric micelles. A combined SANS and pendant drop tensiometry investigation

    Get PDF
    We investigated the influence of interfacial tension, gamma, on the micellization properties of a highly asymmetric poly(ethylene-co-propylene)-poly(ethylene oxide) (PEP-PEO) block copolymer in mixed solvents consisting of water and dimethyl form ami de (DMF). Both are good solvents for PEO and nonsolvents for PEP but exhibit, a large difference in gamma with respect to the insoluble core block. Micellar characteristics were obtained by small-angle neutron scattering (SANS) and subsequent fitting of a core-shell form factor to the scattering patterns. The curves are perfectly described by a hyperbolic density profile for the shell, n(r) similar to r(-4/3), indicating a starlike structure of the micelles. The aggregation numbers of the micelles decrease with increasing DMF-water ratio from P = 120 in pure water to nonaggregated chains in pure DMF. Corresponding interfacial tensions were determined by pendant drop tensiometry using a PEP homopolymer of equal molar mass. A correlation of P with gamma reveals a power law dependence, P similar to gamma(6/5) in accordance with the scaling prediction of Halperin for starlike micelles. Additionally, it was found that the addition of DMF leads to a considerable decrease in the micelle radii, which cannot be explained by the decrease in P alone. Measurements of the second virial coefficients, A(2), of a PEO homopolymer by SANS reveal clearly reduced values compared to A(2) in pure water but still good solvent conditions for PEO in all water/DMF mixtures. However, a significant reduction in the radius of gyration was not found. Therefore, it was concluded that the reduced solvent quality has a more pronounced effect for the PEO chain dimensions in the confined geometry of a micellar corona

    Mid-Infrared Galaxy Morphology Along the Hubble Sequence

    Full text link
    The mid-infrared emission from 18 nearby galaxies imaged with the IRAC instrument on Spitzer Space Telescope samples the spatial distributions of the reddening-free stellar photospheric emission and the warm dust in the ISM. These two components provide a new framework for galaxy morphological classification, in which the presence of spiral arms and their emission strength relative to the starlight can be measured directly and with high contrast. Four mid-infrared classification methods are explored, three of which are based on quantitative global parameters (colors, bulge-to-disk ratio) similar to those used in the past for optical studies; in this limited sample, all correlate well with traditional B-band classification. We suggest reasons why infrared classification may be superior to optical classification.Comment: ApJS (in press), Spitzer Space Telescope Special Issue; 13 pages, LaTeX (or Latex, etc); Figure 1ab is large, color plate; full-resolution plates in .pdf format available at http://cfa-www.harvard.edu/irac/publications

    Coherent electronic and nuclear dynamics in a rhodamine heterodimer-DNA supramolecular complex

    Get PDF
    Elucidating the role of quantum coherences in energy migration within biological and artificial multichromophoric antenna systems is the subject of an intense debate. It is also a practical matter because of the decisive implications for understanding the biological processes and engineering artificial materials for solar energy harvesting. A supramolecular rhodamine heterodimer on a DNA scaffold was suitably engineered to mimic the basic donor-acceptor unit of light-harvesting antennas. Ultrafast 2D electronic spectroscopic measurements allowed identifying clear features attributable to a coherent superposition of dimer electronic and vibrational states contributing to the coherent electronic charge beating between the donor and the acceptor. The frequency of electronic charge beating is found to be 970 cm-1 (34 fs) and can be observed for 150 fs. Through the support of high level ab initio TD-DFT computations of the entire dimer, we established that the vibrational modes preferentially optically accessed do not drive subsequent coupling between the electronic states on the 600 fs of the experiment. It was thereby possible to characterize the time scales of the early time femtosecond dynamics of the electronic coherence built by the optical excitation in a large rigid supramolecular system at a room temperature in solution. © 2017 the Owner Societies.Multi valued and parallel molecular logi

    Abundances in galactic H2 regions, 3: G25.4-0.2, G45.5+0.06, M8, S159 and DR22

    Get PDF
    Measurements of the ARII (6.99 microns), ArIII (8.99 microns), NeII (12.81 microns), SIII (18.71 microns), and SIV (10.51 microns) lines are presented for five compact HII regions along with continuum spectroscopy. From these data and radio data, lower limits to the elemental abundances of Ar, S, and Ne were deduced. The complex G25.4-0.2 is only 5.5 kpc from the galactic center, and is considerably overabundant in all these elements. Complex G45.5+0.06 is at seven kpc from the galactic center, and appears to be approximately consistent with solar abundance. The complex S159 in the Perseus Arm, at 12 kpc from the galactic center, has solar abundance, while M8 in the solar neighborhood may be somewhat overabundant in Ar and Ne. Complex DR 22, at 10 kpc from the galactic center in the Cygnus Arm, is overabundant in Ar. A summary of results from a series of papers on abundances is given

    Molecular observation of contour-length fluctuations limiting topological confinement in polymer melts

    Get PDF
    In order to study the mechanisms limiting the topological chain confinement in polymer melts, we have performed neutron-spin-echo investigations of the single-chain dynamic-structure factor from polyethylene melts over a large range of chain lengths. While at high molecular weight the reptation model is corroborated, a systematic loosening of the confinement with decreasing chain length is found. The dynamic-structure factors are quantitatively described by the effect of contour-length fluctuations on the confining tube, establishing this mechanism on a molecular level in space and time

    High Resolution Molecular Gas Maps of M33

    Get PDF
    New observations of CO (J=1->0) line emission from M33, using the 25 element BEARS focal plane array at the Nobeyama Radio Observatory 45-m telescope, in conjunction with existing maps from the BIMA interferometer and the FCRAO 14-m telescope, give the highest resolution (13'') and most sensitive (RMS ~ 60 mK) maps to date of the distribution of molecular gas in the central 5.5 kpc of the galaxy. A new catalog of giant molecular clouds (GMCs) has a completeness limit of 1.3 X 10^5 M_sun. The fraction of molecular gas found in GMCs is a strong function of radius in the galaxy, declining from 60% in the center to 20% at galactocentric radius R_gal ~ 4 kpc. Beyond that radius, GMCs are nearly absent, although molecular gas exists. Most (90%) of the emission from low mass clouds is found within 100 pc projected separation of a GMC. In an annulus 2.1< R_gal <4.1 kpc, GMC masses follow a power law distribution with index -2.1. Inside that radius, the mass distribution is truncated, and clouds more massive than 8 X 10^5 M_sun are absent. The cloud mass distribution shows no significant difference in the grand design spiral arms versus the interarm region. The CO surface brightness ratio for the arm to interarm regions is 1.5, typical of other flocculent galaxies.Comment: 14 pages, 14 figures, accepted in ApJ. Some tables poorly typeset in emulateapj; see source files for raw dat

    AEGIS: A Multi-wavelength Study of Spitzer Power-law Galaxies

    Full text link
    This paper analyzes a sample of 489 Spitzer/IRAC sources in the Extended Groth Strip whose spectral energy distributions fit a red power law from 3.6 to 8.0 \micron. The median for sources with known redshift is =1.6. Though all or nearly all of the sample are likely to be active galactic nuclei, only 33% were detected in the EGS X-ray survey (AEGIS-X) using 200 ks Chandra observations. The detected sources are X-ray luminous with L_X > 10^43 erg/s and moderately to heavily obscured with N_H > 10^22 cm^-2. Stacking the X-ray-undetected sample members yields a statistically significant X-ray signal, suggesting that they are on average more distant or more obscured than sources with X-ray detections. The ratio of X-ray to mid-infrared fluxes suggests that a substantial fraction of the sources undetected in X-rays are obscured at the Compton-thick level, in contrast to the X-ray-detected sources, all of which appear to be Compton-thin. For the X-ray-detected power-law sources with redshifts, an X-ray luminosity L_X ~ 10^44 erg/s marks a transition between low-luminosity, blue sources dominated by the host galaxy to high-luminosity, red power-law sources dominated by nuclear activity. X-ray-to-optical ratios, infrared variability, and 24 micron properties of the sample are consistent with the identification of infrared power-law sources as active nuclei, but a rough estimate is that only 22% of AGNs are selected by the power law criteria. Comparison of the power-law selection technique and various IRAC color criteria for identifying AGNs confirms that high-redshift samples selected via simple IRAC colors may be heavily contaminated by starlight-dominated objects.Comment: Accepted for publication in ApJ. Corrected figures 9, 12, 13, 15, 19, and some references in v

    Phobos DTM and Coordinate Refinement for Phobos-Grunt Mission Support.

    Get PDF
    Images obtained by the High Resolution Stereo Camera (HRSC) during recent Phobos flybys were used to study the proposed new landing site area of the Russian Phobos-Grunt mission, scheduled for launch in 2011 [1]. From the stereo images (resolution of up to 4.4 m/pixel), a digital terrain model (DTM) with a lateral resolution of 100 m per pixel and a relative point accuracy of ±15 m, was determined. Images and DTM were registered to the established Phobos control point network [7]. A map of the landing site area was produced enabling mission planers and scientists to extract accurate body-fixed coordinates of features in the Phobos Grunt landing site area
    corecore