2,284 research outputs found
Verocytotoxine-producerende E.coli, risicofactoren en update Nederland
In dit rapport wordt een overzicht gepresenteerd betreffende het vóórkomen van VTEC in verschillende reservoirs, infectie incidentie, transmissieroutes, risicofactoren voor verspreiding door de voedselketen, diagnostiek, uitbraaktracering en (potentiële) interventiestrategieën. De focus is op de Nederlandse situatie en hoe die zich verhoudt met de Europese situati
Digital Innovation Through Partnership Between Nature Conservation Organisations and Academia : A Qualitative Impact Assessment
We would like to thank all interviewees for sharing their experiences of working with academics, and the guest editor and three anonymous reviewers for valuable comments on earlier versions of the work. The research in this paper is supported by the RCUK dot.rural Digital economy Research Hub, University of Aberdeen (Grant reference: EP/G066051/1).Peer reviewedPublisher PD
Polarization-preserving confocal microscope for optical experiments in a dilution refrigerator with high magnetic field
We present the design and operation of a fiber-based cryogenic confocal
microscope. It is designed as a compact cold-finger that fits inside the bore
of a superconducting magnet, and which is a modular unit that can be easily
swapped between use in a dilution refrigerator and other cryostats. We aimed at
application in quantum optical experiments with electron spins in
semiconductors and the design has been optimized for driving with, and
detection of optical fields with well-defined polarizations. This was
implemented with optical access via a polarization maintaining fiber together
with Voigt geometry at the cold finger, which circumvents Faraday rotations in
the optical components in high magnetic fields. Our unit is versatile for use
in experiments that measure photoluminescence, reflection, or transmission, as
we demonstrate with a quantum optical experiment with an ensemble of
donor-bound electrons in a thin GaAs film.Comment: 9 pages, 7 figure
Entanglement of a qubit with a single oscillator mode
We solve a model of a qubit strongly coupled to a massive environmental
oscillator mode where the qubit backaction is treated exactly. Using a
Ginzburg-Landau formalism, we derive an effective action for this well known
localization transition. An entangled state emerges as an instanton in the
collective qubit-environment degree of freedom and the resulting model is shown
to be formally equivalent to a Fluctuating Gap Model (FGM) of a disordered
Peierls chain. Below the transition, spectral weight is transferred to an
exponentially small energy scale leaving the qubit coherent but damped. Unlike
the spin-boson model, coherent and effectively localized behaviors may coexist.Comment: 4 pages, 1 figure; added calculation of entanglement entrop
Electromagnetically Induced Transparency with an Ensemble of Donor-Bound Electron Spins in a Semiconductor
We present measurements of electromagnetically induced transparency with an
ensemble of donor- bound electrons in low-doped n-GaAs. We used optical
transitions from the Zeeman-split electron spin states to a bound trion state
in samples with optical densities of 0.3 and 1.0. The electron spin dephasing
time T* \approx 2 ns was limited by hyperfine coupling to fluctuating nuclear
spins. We also observe signatures of dynamical nuclear polarization, but find
these effects to be much weaker than in experiments that use electron spin
resonance and related experiments with quantum dots.Comment: 4 pages, 4 figures; Improved analysis of data in Fig. 3, corrected
factors of 2 and p
Split-gate quantum point contacts with tunable channel length
We report on developing split-gate quantum point contacts (QPCs) that have a
tunable length for the transport channel. The QPCs were realized in a
GaAs/AlGaAs heterostructure with a two- dimensional electron gas (2DEG) below
its surface. The conventional design uses 2 gate fingers on the wafer surface
which deplete the 2DEG underneath when a negative gate voltage is applied, and
this allows for tuning the width of the QPC channel. Our design has 6 gate
fingers and this provides additional control over the form of the electrostatic
potential that defines the channel. Our study is based on electrostatic
simulations and experiments and the results show that we developed QPCs where
the effective channel length can be tuned from about 200 nm to 600 nm.
Length-tunable QPCs are important for studies of electron many-body effects
because these phenomena show a nanoscale dependence on the dimensions of the
QPC channel
Stabilizing nuclear spins around semiconductor electrons via the interplay of optical coherent population trapping and dynamic nuclear polarization
We experimentally demonstrate how coherent population trapping (CPT) for
donor-bound electron spins in GaAs results in autonomous feedback that prepares
stabilized states for the spin polarization of nuclei around the electrons. CPT
was realized by excitation with two lasers to a bound-exciton state.
Transmission studies of the spectral CPT feature on an ensemble of electrons
directly reveal the statistical distribution of prepared nuclear spin states.
Tuning the laser driving from blue to red detuned drives a transition from one
to two stable states. Our results have importance for ongoing research on
schemes for dynamic nuclear spin polarization, the central spin problem and
control of spin coherence.Comment: 5 pages, 4 figure
- …
