21,206 research outputs found
Surface stress of Ni adlayers on W(110): the critical role of the surface atomic structure
Puzzling trends in surface stress were reported experimentally for Ni/W(110)
as a function of Ni coverage. In order to explain this behavior, we have
performed a density-functional-theory study of the surface stress and atomic
structure of the pseudomorphic and of several different possible 1x7
configurations for this system. For the 1x7 phase, we predict a different, more
regular atomic structure than previously proposed based on surface x-ray
diffraction. At the same time, we reproduce the unexpected experimental change
of surface stress between the pseudomorphic and 1x7 configuration along the
crystallographic surface direction which does not undergo density changes. We
show that the observed behavior in the surface stress is dominated by the
effect of a change in Ni adsorption/coordination sites on the W(110) surface.Comment: 14 pages, 3 figures Published in J. Phys.: Condens. Matter 24 (2012)
13500
Ab-initio simulation and experimental validation of beta-titanium alloys
In this progress report we present a new approach to the ab-initio guided
bottom up design of beta-Ti alloys for biomedical applications using a quantum
mechanical simulation method in conjunction with experiments. Parameter-free
density functional theory calculations are used to provide theoretical guidance
in selecting and optimizing Ti-based alloys with respect to three constraints:
(i) the use of non-toxic alloy elements; (ii) the stabilization of the body
centered cubic beta phase at room temperature; (iii) the reduction of the
elastic stiffness compared to existing Ti-based alloys. Following the
theoretical predictions, the alloys of interest are cast and characterized with
respect to their crystallographic structure, microstructure, texture, and
elastic stiffness. Due to the complexity of the ab initio calculations, the
simulations have been focused on a set of binary systems of Ti with two
different high melting bcc metals, namely, Nb and Mo. Various levels of model
approximations to describe mechanical and thermodynamic properties are tested
and critically evaluated. The experiments are conducted both, on some of the
binary alloys and on two more complex engineering alloy variants, namely,
Ti-35wt.%Nb-7wt.%Zr-5wt.%Ta and a Ti-20wt.%Mo-7wt.%Zr-5wt.%Ta.Comment: 23 pages, progress report on ab initio alloy desig
A gobal fit to the anomalous magnetic moment, Higgs limit and b->s gamma in the constrained MSSM
New data on the anomalous magnetic moment of the muon together with the b->s
gamma decay rate and Higgs limits are considered within the supergravity
inspired constrained minimal supersymmetric model. We perform a global
statistical chi2 analysis of these data and show that the allowed region of
parameter space is bounded from below by the Higgs limit, which depends on the
trilinear coupling and from above by the anomalous magnetic moment.Comment: 3 pages, To appear in Proc. of SUSY01, Dubna (Russia
An investigation of some thermal and mechanical properties of a low-density phenolic-nylon ablation material Final report
Thermal and mechanical properties of phenolic nylon ablation material
The Feeling of Color: A Haptic Feedback Device for the Visually Disabled
Tapson J, Gurari N, Diaz J, et al. The Feeling of Color: A Haptic Feedback Device for the Visually Disabled. Presented at the Biomedical Circuits and Systems Conference (BIOCAS), Baltimore, MD.We describe a sensory augmentation system designed to provide the visually disabled with a sense of color. Our system consists of a glove with short-range optical color sensors mounted on its fingertips, and a torso-worn belt on which tactors (haptic feedback actuators) are mounted. Each fingertip sensor detects the observed objectpsilas color. This information is encoded to the tactor through vibrations in respective locations and varying modulations. Early results suggest that detection of primary colors is possible with near 100% accuracy and moderate latency, with a minimum amount of training
Explaining nascent entrepreneurship across countries
This paper aims at explaining cross-country variation in nascent entrepreneurship. Regression analysis is applied using various explanatory variables derived from three different approaches. We make use of the Global Entrepreneurship Monitor database, including nascent entrepreneurship rates for 36 countries in 2002 as well as variables from standardized national statistics. The first approach relates the level of entrepreneurship of a country to its level of economic development. We found evidence for a U-shaped relationship. The second approach deals with a regime switch where the innovative advantage moves from large, established enterprises to small and new firms, because new technologies have reduced the importance of scale economies in many sectors. The third approach assumes that nascent entrepreneurship depends upon aggregate conditions such as technology, demography, culture and institutions, influencing opportunities, resources, skills and preferences. Several indicators of these aggregate conditions are found to correlate with nascent entrepreneurship. A full model combining the three approaches includes a U-shaped relationship with per capita income as well as with Porter's innovative capacity index, in addition to effects of social security expenditure (-) and the total business ownership rate (+). Finally, a (former) communist-country dummy plays an important role.
Melting of Polydisperse Hard Disks
The melting of a polydisperse hard disk system is investigated by Monte Carlo
simulations in the semigrand canonical ensemble. This is done in the context of
possible continuous melting by a dislocation unbinding mechanism, as an
extension of the 2D hard disk melting problem. We find that while there is
pronounced fractionation in polydispersity, the apparent density-polydispersity
gap does not increase in width, contrary to 3D polydisperse hard spheres. The
point where the Young's modulus is low enough for the dislocation unbinding to
occur moves with the apparent melting point, but stays within the density gap,
just like for the monodisperse hard disk system. Additionally, we find that
throughout the accessible polydispersity range, the bound dislocation-pair
concentration is high enough to affect the dislocation unbinding melting as
predicted by Kosterlitz, Thouless, Halperin, Nelson and Young.Comment: 6 pages, 6 figure
Visualisation of tissue kallikrein, kininogen and kinin receptors in human skin following trauma and in dermal diseases
During dermal injury and inflammation the serine proteases kallikreins cleave endogenous, multifunctional substrates (kininogens) to form bradykinin and kallidin. The actions of kinins are mediated by preferential binding to constitutively expressed kinin-B2 receptors or inducible kinin-B1 receptors. A feature of the kinin-B1 receptors is that they show low levels of expression, but are distinctly upregulated following tissue injury and inflammation. Because recent evidence suggested that kinin-B1 receptors may perform a protective role during inflammation, we investigated the specific occurrence of the kallikrein-kinin components in skin biopsies obtained from normal skin, patients undergoing surgery, basalioma, lichenificated atopic eczema, and psoriasis. The tissue was immunolabelled in order to determine the localisation of tissue pro-kallikrein, kallikrein, kininogen and kinin receptors. The kinin components were visualised in normal, diseased and traumatised skin, except that no labelling was observed for kininogen in normal skin. Of the five types of tissue examined, upregulation of kinin-B1 receptors was observed only in skin biopsies obtained following surgery. In essence, the expression of kinin-B1 receptors did not appear to be enhanced in the other biopsies. Within the multiple steps of the inflammatory cascade in wound healing, our results suggest an important regulatory role for kinin-B1 receptors during the first phase of inflammation following injury
- …
