787 research outputs found

    Detection of spin injection into a double quantum dot: Violation of magnetic-field-inversion symmetry of nuclear polarization instabilities

    Full text link
    In mesoscopic systems with spin-orbit coupling, spin-injection into quantum dots at zero magnetic field is expected under a wide range of conditions. However, up to now, a viable approach for experimentally identifying such injection has been lacking. We show that electron spin injection into a spin-blockaded double quantum dot is dramatically manifested in the breaking of magnetic- field-inversion symmetry of nuclear polarization instabilities. Over a wide range of parameters, the asymmetry between positive and negative instability fields is extremely sensitive to the injected electron spin polarization and allows for the detection of even very weak spin injection. This phenomenon may be used to investigate the mechanisms of spin transport, and may hold implications for spin-based information processing

    Nonlocal Damping of Helimagnets in One-Dimensional Interacting Electron Systems

    Full text link
    We investigate the magnetization relaxation of a one-dimensional helimagnetic system coupled to interacting itinerant electrons. The relaxation is assumed to result from the emission of plasmons, the elementary excitations of the one-dimensional interacting electron system, caused by slow changes of the magnetization profile. This dissipation mechanism leads to a highly nonlocal form of magnetization damping that is strongly dependent on the electron-electron interaction. Forward scattering processes lead to a spatially constant damping kernel, while backscattering processes produce a spatially oscillating contribution. Due to the nonlocal damping, the thermal fluctuations become spatially correlated over the entire system. We estimate the characteristic magnetization relaxation times for magnetic quantum wires and nuclear helimagnets.Comment: Final version accepted by Physical Review

    Composite Topological Excitations in Ferromagnet-Superconductor Heterostructures

    Full text link
    We investigate the formation of a new type of composite topological excitation -- the skyrmion-vortex pair (SVP) -- in hybrid systems consisting of coupled ferromagnetic and superconducting layers. Spin-orbit interaction in the superconductor mediates a magnetoelectric coupling between the vortex and the skyrmion, with a sign (attractive or repulsive) that depends on the topological indices of the constituents. We determine the conditions under which a bound SVP is formed, and characterize the range and depth of the effective binding potential through analytical estimates and numerical simulations. Furthermore, we develop a semiclassical description of the coupled skyrmion-vortex dynamics and discuss how SVPs can be controlled by applied spin currents.Comment: Final version accepted by Physical Review Letters; 9 pages, 5 figure

    Spectrum of the Nuclear Environment for GaAs Spin Qubits

    Full text link
    Using a singlet-triplet spin qubit as a sensitive spectrometer of the GaAs nuclear spin bath, we demonstrate that the spectrum of Overhauser noise agrees with a classical spin diffusion model over six orders of magnitude in frequency, from 1 mHz to 1 kHz, is flat below 10 mHz, and falls as 1/f21/f^2 for frequency f ⁣ ⁣1f \! \gtrsim \! 1 Hz. Increasing the applied magnetic field from 0.1 T to 0.75 T suppresses electron-mediated spin diffusion, which decreases spectral content in the 1/f21/f^2 region and lowers the saturation frequency, each by an order of magnitude, consistent with a numerical model. Spectral content at megahertz frequencies is accessed using dynamical decoupling, which shows a crossover from the few-pulse regime ( ⁣16\lesssim \! 16 π\pi-pulses), where transverse Overhauser fluctuations dominate dephasing, to the many-pulse regime ( ⁣32\gtrsim \! 32 π\pi-pulses), where longitudinal Overhauser fluctuations with a 1/f1/f spectrum dominate.Comment: 6 pages, 4 figures, 8 pages of supplementary material, 5 supplementary figure

    Quantum Phase Tomography of a Strongly Driven Qubit

    Get PDF
    The interference between repeated Landau-Zener transitions in a qubit swept through an avoided level crossing results in Stueckelberg oscillations in qubit magnetization. The resulting oscillatory patterns are a hallmark of the coherent strongly-driven regime in qubits, quantum dots and other two-level systems. The two-dimensional Fourier transforms of these patterns are found to exhibit a family of one-dimensional curves in Fourier space, in agreement with recent observations in a superconducting qubit. We interpret these images in terms of time evolution of the quantum phase of qubit state and show that they can be used to probe dephasing mechanisms in the qubit.Comment: 5 pgs, 4 fg

    A Gibbs approach to Chargaff's second parity rule

    Full text link
    Chargaff's second parity rule (CSPR) asserts that the frequencies of short polynucleotide chains are the same as those of the complementary reversed chains. Up to now, this hypothesis has only been observed empirically and there is currently no explanation for its presence in DNA strands. Here we argue that CSPR is a probabilistic consequence of the reverse complementarity between paired strands, because the Gibbs distribution associated with the chemical energy between the bonds satisfies CSPR. We develop a statistical test to study the validity of CSPR under the Gibbsian assumption and we apply it to a large set of bacterial genomes taken from the GenBank repository.Comment: 16 page

    The PDZ domain of the SpoIVB serine peptidase facilitates multiple functions

    Get PDF
    During spore formation in Bacillus subtilis, the SpoIVB protein is a critical component of the sigma (K) regulatory checkpoint. SpoIVB has been shown to be a serine peptidase that is synthesized in the spore chamber and which self-cleaves, releasing active forms. These forms can signal proteolytic processing of the transcription factor sigma (K) in the outer mother cell chamber of the sporulating cell. This forms the basis of the sigma (K) checkpoint and ensures accurate sigma (K)-controlled gene expression. SpoIVB has also been shown to activate a second distinct process, termed the second function, which is essential for the formation of heat-resistant spores. In addition to the serine peptidase domain, SpoIVB contains a PDZ domain. We have altered a number of conserved residues in the PDZ domain by site-directed mutagenesis and assayed the sporulation phenotype and signaling properties of mutant SpoIVB proteins. Our work has revealed that the SpoIVB PDZ domain could be used for up to four distinct processes, (i) targeting of itself for trans proteolysis, (11) binding to the protease inhibitor BofC, (iii) signaling of pro-sigma (K) processing, and (iv) signaling of the second function of SpoIVB

    Hot Carrier Transport and Photocurrent Response in Graphene

    Full text link
    Strong electron-electron interactions in graphene are expected to result in multiple-excitation generation by the absorption of a single photon. We show that the impact of carrier multiplication on photocurrent response is enhanced by very inefficient electron cooling, resulting in an abundance of hot carriers. The hot-carrier-mediated energy transport dominates the photoresponse and manifests itself in quantum efficiencies that can exceed unity, as well as in a characteristic dependence of the photocurrent on gate voltages. The pattern of multiple photocurrent sign changes as a function of gate voltage provides a fingerprint of hot-carrier-dominated transport and carrier multiplication.Comment: 4 pgs, 2 fg

    Large-amplitude driving of a superconducting artificial atom: Interferometry, cooling, and amplitude spectroscopy

    Get PDF
    Superconducting persistent-current qubits are quantum-coherent artificial atoms with multiple, tunable energy levels. In the presence of large-amplitude harmonic excitation, the qubit state can be driven through one or more of the constituent energy-level avoided crossings. The resulting Landau-Zener-Stueckelberg (LZS) transitions mediate a rich array of quantum-coherent phenomena. We review here three experimental works based on LZS transitions: Mach-Zehnder-type interferometry between repeated LZS transitions, microwave-induced cooling, and amplitude spectroscopy. These experiments exhibit a remarkable agreement with theory, and are extensible to other solid-state and atomic qubit modalities. We anticipate they will find application to qubit state-preparation and control methods for quantum information science and technology.Comment: 13 pages, 5 figure
    corecore