8,828 research outputs found

    Quantum interference from remotely trapped ions

    Full text link
    We observe quantum interference of photons emitted by two continuously laser-excited single ions, independently trapped in distinct vacuum vessels. High contrast two-photon interference is observed in two experiments with different ion species, calcium and barium. Our experimental findings are quantitatively reproduced by Bloch equation calculations. In particular, we show that the coherence of the individual resonance fluorescence light field is determined from the observed interference

    Double Exchange model for nanoscopic clusters

    Full text link
    We solve the double exchange model on nanoscopic clusters exactly, and specifically consider a six-site benzene-like nanocluster. This simple model is an ideal testbed for studying magnetism in nanoclusters and for validating approximations such as the dynamical mean field theory (DMFT). Non-local correlations arise between neighboring localized spins due to the Hund's rule coupling, favoring a short-range magnetic order of ferro- or antiferromagnetic type. For a geometry with more neighboring sites or a sufficiently strong hybridization between leads and the nanocluster, these non-local correlations are less relevant, and DMFT can be applied reliably.Comment: 9 pages, 9 figures, 1 tabl

    Coherent transport through graphene nanoribbons in the presence of edge disorder

    Full text link
    We simulate electron transport through graphene nanoribbons of experimentally realizable size (length L up to 2 micrometer, width W approximately 40 nm) in the presence of scattering at rough edges. Our numerical approach is based on a modular recursive Green's function technique that features sub-linear scaling with L of the computational effort. We identify the influence of the broken A-B sublattice (or chiral) symmetry and of K-K' scattering by Fourier spectroscopy of individual scattering states. For long ribbons we find Anderson-localized scattering states with a well-defined exponential decay over 10 orders of magnitude in amplitude.Comment: 8 pages, 6 Figure

    Pump-induced Exceptional Points in Lasers

    Full text link
    We demonstrate that the above-threshold behavior of a laser can be strongly affected by exceptional points which are induced by pumping the laser nonuniformly. At these singularities, the eigenstates of the non-Hermitian operator which describes the lasing modes coalesce. In their vicinity, the laser may turn off even when the overall pump power deposited in the system is increased. Such signatures of a pump- induced exceptional point can be experimentally probed with coupled ridge or microdisk lasers.Comment: 4.5 pages, 4 figures, final version including additional FDTD dat

    Ab initio lattice dynamics simulations and inelastic neutron scattering spectra for studying phonons in BaFe2As2: Effect of structural phase transition, structural relaxation and magnetic ordering

    Get PDF
    We have performed extensive ab initio calculations to investigate phonon dynamics and their possible role in superconductivity in BaFe2As2 and related systems. The calculations are compared to inelastic neutron scattering data that offer improved resolution over published data [Mittal et al., PRB 78 104514 (2008)], in particular at low frequencies. Effects of structural phase transition and full/partial structural relaxation, with and without magnetic ordering, on the calculated vibrational density of states are reported. Phonons are best reproduced using either the relaxed magnetic structures or the experimental cell. Several phonon branches are affected by the subtle structural changes associated with the transition from the tetragonal to the orthorhombic phase. Effects of phonon induced distortions on the electronic and spin structure have been investigated. It is found that for some vibrational modes, there is a significant change of the electronic distribution and spin populations around the Fermi level. A peak at 20 meV in the experimental data falls into the pseudo-gap region of the calculation. This was also the case reported in our recent work combined with an empirical parametric calculation [Mittal et al., PRB 78 104514 (2008)]. The combined evidence for the coupling of electronic and spin degrees of freedom with phonons is relevant to the current interest in superconductivity in BaFe2As2 and related systems

    Magneto-structural coupling and harmonic lattice dynamics in CaFe2_2As2_2 probed by M\"ossbauer spectroscopy

    Full text link
    In this paper we present detailed M\"ossbauer spectroscopy study of structural and magnetic properties of the undoped parent compound CaFe2_2As2_2 single crystal. By fitting the temperature dependence of the hyperfine magnetic field we show that the magneto-structural phase transition is clearly first-order in nature and we also deduced the compressibility of our sample to be 1.67×102GPa11.67\times10^{-2}\,GPa^{-1}. Within the Landau's theory of phase transition, we further argue that the observed phase transition may stem from the strong magneto-structural coupling effect. Temperature dependence of the Lamb-M\"ossbauer factor show that the paramagnetic phase and the antiferromagnetic phase exhibit similar lattice dynamics in high frequency modes with very close Debye temperatures, ΘD\Theta_D \sim270\,K.Comment: 6 pages,5 figures Accepted by J. Phys.: Condens. Matte

    Scalable numerical approach for the steady-state ab initio laser theory

    Get PDF
    We present an efficient and flexible method for solving the non-linear lasing equations of the steady-state ab initio laser theory. Our strategy is to solve the underlying system of partial differential equations directly, without the need of setting up a parametrized basis of constant flux states. We validate this approach in one-dimensional as well as in cylindrical systems, and demonstrate its scalability to full-vector three-dimensional calculations in photonic-crystal slabs. Our method paves the way for efficient and accurate simulations of lasing structures which were previously inaccessible.Comment: 17 pages, 8 figure

    New PbSnTe heterojunction laser diode structures with improved performance

    Get PDF
    Several recent advances in the state-of-the-art of lead tin telluride double heterojunction laser diodes are summarized. Continuous Wave operation to 120 K and pulsed operation to 166 K with single, lowest order transverse mode emission to in excess of four times threshold at 80 K were achieved in buried stripe lasers fabricated by liquid phase epitaxy in the lattice-matched system, lead-tin telluride-lead telluride selenide. At the same time, liquid phase epitaxy was used to produce PbSnTe distributed feedback lasers with much broader continuous single mode tuning ranges than are available from Fabry-Perot lasers. The physics and philosophy behind these advances is as important as the structures and performance of the specific devices embodying the advances, particularly since structures are continually being evolved and the performance continues to be improved

    Reflection resonances in surface-disordered waveguides: strong higher-order effects of the disorder

    Full text link
    We study coherent wave scattering through waveguides with a step-like surface disorder and find distinct enhancements in the reflection coefficients at well-defined resonance values. Based on detailed numerical and analytical calculations, we can unambiguously identify the origin of these reflection resonances to be higher-order correlations in the surface disorder profile which are typically neglected in similar studies of the same system. A remarkable feature of this new effect is that it relies on the longitudinal correlations in the step profile, although individual step heights are random and thus completely uncorrelated. The corresponding resonances are very pronounced and robust with respect to ensemble averaging, and lead to an enhancement of wave reflection by more than one order of magnitude
    corecore