774 research outputs found
Efficiently Clustering Very Large Attributed Graphs
Attributed graphs model real networks by enriching their nodes with
attributes accounting for properties. Several techniques have been proposed for
partitioning these graphs into clusters that are homogeneous with respect to
both semantic attributes and to the structure of the graph. However, time and
space complexities of state of the art algorithms limit their scalability to
medium-sized graphs. We propose SToC (for Semantic-Topological Clustering), a
fast and scalable algorithm for partitioning large attributed graphs. The
approach is robust, being compatible both with categorical and with
quantitative attributes, and it is tailorable, allowing the user to weight the
semantic and topological components. Further, the approach does not require the
user to guess in advance the number of clusters. SToC relies on well known
approximation techniques such as bottom-k sketches, traditional graph-theoretic
concepts, and a new perspective on the composition of heterogeneous distance
measures. Experimental results demonstrate its ability to efficiently compute
high-quality partitions of large scale attributed graphs.Comment: This work has been published in ASONAM 2017. This version includes an
appendix with validation of our attribute model and distance function,
omitted in the converence version for lack of space. Please refer to the
published versio
Eliashberg's proof of Cerf's theorem
Following a line of reasoning suggested by Eliashberg, we prove Cerf's
theorem that any diffeomorphism of the 3-sphere extends over the 4-ball. To
this end we develop a moduli-theoretic version of Eliashberg's
filling-with-holomorphic-discs method.Comment: 32 page
First exit times of solutions of stochastic differential equations driven by multiplicative Levy noise with heavy tails
In this paper we study first exit times from a bounded domain of a gradient
dynamical system perturbed by a small multiplicative
L\'evy noise with heavy tails. A special attention is paid to the way the
multiplicative noise is introduced. In particular we determine the asymptotics
of the first exit time of solutions of It\^o, Stratonovich and Marcus canonical
SDEs.Comment: 19 pages, 2 figure
Random Time Forward Starting Options
We introduce a natural generalization of the forward-starting options, first
discussed by M. Rubinstein. The main feature of the contract presented here is
that the strike-determination time is not fixed ex-ante, but allowed to be
random, usually related to the occurrence of some event, either of financial
nature or not. We will call these options {\bf Random Time Forward Starting
(RTFS)}. We show that, under an appropriate "martingale preserving" hypothesis,
we can exhibit arbitrage free prices, which can be explicitly computed in many
classical market models, at least under independence between the random time
and the assets' prices. Practical implementations of the pricing methodologies
are also provided. Finally a credit value adjustment formula for these OTC
options is computed for the unilateral counterparty credit risk.Comment: 19 pages, 1 figur
Stochastic Calculus for a Time-changed Semimartingale and the Associated Stochastic Differential Equations
It is shown that under a certain condition on a semimartingale and a
time-change, any stochastic integral driven by the time-changed semimartingale
is a time-changed stochastic integral driven by the original semimartingale. As
a direct consequence, a specialized form of the Ito formula is derived. When a
standard Brownian motion is the original semimartingale, classical Ito
stochastic differential equations driven by the Brownian motion with drift
extend to a larger class of stochastic differential equations involving a
time-change with continuous paths. A form of the general solution of linear
equations in this new class is established, followed by consideration of some
examples analogous to the classical equations. Through these examples, each
coefficient of the stochastic differential equations in the new class is given
meaning. The new feature is the coexistence of a usual drift term along with a
term related to the time-change.Comment: 27 pages; typos correcte
Global Stability of a Premixed Reaction Zone (Time-Dependent Liñan’s Problem)
Global stability properties of a premixed, three-dimensional reaction zone are considered. In the nonadiabatic case (i.e., when there is a heat exchange between the reaction zone and the burned gases) there is a unique, spatially one-dimensional steady state that is shown to be unstable (respectively, asymptotically stable) if the reaction zone is cooled (respectively, heated) by the burned mixture. In the adiabatic case, there is a unique (up to spatial translations) steady state that is shown to be stable. In addition, the large-time asymptotic behavior of the solution is analyzed to obtain sufficient conditions on the initial data for stabilization. Previous partial numerical results on linear stability of one-dimensional reaction zones are thereby confirmed and extended
The maximum principle and sign changing solutions of the hyperbolic equation with the Higgs potential
In this article we discuss the maximum principle for the linear equation and
the sign changing solutions of the semilinear equation with the Higgs
potential. Numerical simulations indicate that the bubbles for the semilinear
Klein-Gordon equation in the de Sitter spacetime are created and apparently
exist for all times
Holomorphic transforms with application to affine processes
In a rather general setting of It\^o-L\'evy processes we study a class of
transforms (Fourier for example) of the state variable of a process which are
holomorphic in some disc around time zero in the complex plane. We show that
such transforms are related to a system of analytic vectors for the generator
of the process, and we state conditions which allow for holomorphic extension
of these transforms into a strip which contains the positive real axis. Based
on these extensions we develop a functional series expansion of these
transforms in terms of the constituents of the generator. As application, we
show that for multidimensional affine It\^o-L\'evy processes with state
dependent jump part the Fourier transform is holomorphic in a time strip under
some stationarity conditions, and give log-affine series representations for
the transform.Comment: 30 page
Anomalous jumping in a double-well potential
Noise induced jumping between meta-stable states in a potential depends on
the structure of the noise. For an -stable noise, jumping triggered by
single extreme events contributes to the transition probability. This is also
called Levy flights and might be of importance in triggering sudden changes in
geophysical flow and perhaps even climatic changes. The steady state statistics
is also influenced by the noise structure leading to a non-Gibbs distribution
for an -stable noise.Comment: 11 pages, 7 figure
A functional non-central limit theorem for jump-diffusions with periodic coefficients driven by stable Levy-noise
We prove a functional non-central limit theorem for jump-diffusions with
periodic coefficients driven by strictly stable Levy-processes with stability
index bigger than one. The limit process turns out to be a strictly stable Levy
process with an averaged jump-measure. Unlike in the situation where the
diffusion is driven by Brownian motion, there is no drift related enhancement
of diffusivity.Comment: Accepted to Journal of Theoretical Probabilit
- …
