GLOBAL STABILITY OF A PREMIXED REACTION ZONE
(TIME-DEPENDENT LINAN’S PROBLEM)*
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Abstract. Global stability properties of a premixed, three-dimensional reaction zone are considered. In
the nonadiabatic case (i.e., when there is a heat exchange between the reaction zone and the burned gases)
there is a unique, spatially one-dimensional steady state that is shown to be unstable (respectively, asymptoti-
cally stable) if the reaction zone is cooled {respectively, heated) by the burned mixture. In the adiabatic
case, there is a unique {up to spatial translations)} steady state that is shown to be stable. In addition, the
large-time asymptotic behavior of the solution is analyzed to obtain sufficient conditions on the initial data
for stabilization. Previous partial numerical results on linear stability of one-dimensional reaction zones are
thereby confirmed and extended.
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1. Introductien. We consider the time-dependent structure of a premixed n-
dimensional (n =1, 2, or 3) reaction zone which, after convenient nondimensionaliz-
ation, is governed by

(1.1} ou/at=Aau—{u/2)exp(mx,—u) for (x, t)eR" x]0, T,
(1.2) u->0 if m=0, # is bounded if m>0 as x;—»—c0,
(1.3) |~ x,| is bounded as x, >0,

(1.4) u is bounded as xi+---+xZ>0,

{1.5) u(x,0)=¢(x)>0 for xeR"

where conditions (1.2) and (1.3) are assumed to hold uniformly for (x,, - -+, x,)eR"™’
and for te[0, T], for all T[0, T {for some T, =00}, and condition (1.4) is assumed
to hold uniformly for (x,,t)e Ix[0, T], for all bounded intervals TcR and all
Te[0, Tl.

Here, A is the Laplacian operator, ¢ and x =(x,, -+ -, x,) (n=1,2, or 3) are the
time and space variables, and u =0 is a reactant concentration. The parameter m is a
measure of the heat flux (heat loss if m >0 and heat gain if m < @) from the reaction
zone towards the burned mixture, which is located at x, = —oc; m is assumed to satisfy
—co<m<1, for the chemical reaction to be frozen (i.e., for the reaction term
(u/2) exp (mx, — u) to vanish) at the fresh mixture (i.e., at x, = +0). The initial state
¢ is assumed to satisfy the boundary conditions (1.2)-(1.4), which, of course, are
expected to be superflucus; they are written to emphasize that the solution of the
Cauchy problem (1.1)-(1.5) is physically meaningful only if it satisfies (1.2)-(1.4).

In this paper we will analyze the stability of steady states of (1.1}-(£.3) that depend
only on the x; coordinate. Since the reaction term does not depend explicitly on the
X, and x, coordinates, it makes sense (mathematically) to consider the {spatially) one-
and two-dimensional cases in which u = u(x;, t) and u = u(x,, x;, t), respectively. But



since the underlying physical problem is spatially three-dimensional, to obtain conclus-
ive stability results we must consider (1.1)-(1.5) in three space dimensions. It is not
at all obvious (although it will be true under certain conditions for (1.1)-{1.5)) that
initial inhomogeneities in the x, and x; coordinates disappear as ¢ » . Some results
in the literature [1] could perhaps be extended to include (1.1)-(1.5) if the spatial
domain R® were replaced by a cylinder Q=R x,, with @, cR? bounded, and if
boundary conditions of the Neumann type were imposed on R xd{),, provided that
the size of ), is sufficiently small. But to assume that the characteristic lengths in the
x; and x, directions are small (or even finite) is not justified from a physical point of
view. Therefore, we will consider (1.1)-(1.5) mainly for n =3, although the case where
n =1 will be considered also for technical reasons.

The one-dimensional, time-independent version of (1.1)-(1.3) was introduced by
Lifidn [2], in a pioneering work on counterflow diffusion flames in the large activation
energy limit, and (1.1)-(1.5) is currently known in the literature as Lifidn’s problem.
It has subsequently appeared in high-activation energy analysis of many other realistic
problems that are significant in both combustion and chemical reactor theory. For
example, it has appeared in the analysis of burning monopropellant drops [3]-[5],
chambered diffusion flames [6], two-step sequential reactions [7], [8], and tubular
nonadiabatic chemical reactors [9]; in all these instances, the parameter m is different
from zero, but the adiabatic case (m =0} appears in a large number of problems [10],
such as the analysis of premixed flames [11]-{13] and porous catalysts [14], [15], to
cite only two examples.

Problem {1.1)-(1.5) is also of interest if the nonlinearity u exp (mx; — u) is replaced
by a more general one. For example, if we use Langmuir-Hinshelwood kinetic laws
for the chemical reaction, instead of the Arrhenius law that has been used to derive
(1.1}, we obtain nonlinearities of the type [16], [17]

(1.6} uf/(1+u)? or [uf/(a+u)]exp{mx —u),

where pz0, g>p+1, a>0, and m <1 (the exponents p, q, and r are not necessarily
integers). These generalizations will be considered in remarks after some of the main
results.

A numerical analysis of the one-dimensional steady states of (1.1)-(1.3) has been
done by Lifidn [2). His results were rigorously proven true by Hastings and Poore
[18], [19], who showed that the solution is unique if either —0 <m <0 or 0 <m <},
while there is no solution if 3= m < (if m =0, there is a unique steady state up to
translations in the space variable, as is easily seen by means of simple phase-plane
arguments). To derive stability results, we will need slightly more precise information
about the dependence of the steady state on m for 0 <m <1, which will be obtained
in the Appendix, where a simpler proof of the results by Hastings and Poore [18],
{19] (partially based on their ideas) will also be given.

The first analysis of the stability of the steady states of (1.1)-(1.4) is due to Peters
{20], who computed numerically the maximum eigenvalue of the (self-adjoint) linear-
ized problem in the spatially one-dimensional case, and found that m > 0 is necessary
and sufficient for a strictly positive eigenvalue to exist. More recently, Stewart and
Buckmaster [21] performed an asymptotic analysis of the same linearized problem in
the limit m - 0", which is singular. Those results ignore the continuous spectrum of
the linearized problem, which has been calculated, for related spatially one-dimensional
problems on combustion, by Buckmaster, Nachman, and Taliaferro [22], by means of
a general theory developed by Taliaferro {23]. Unfortunately, Taliaferro’s results deal
with a weak notion of linear stability {a steady state is said to be stable if the maximum



of the spectrum is nonpositive and zero is not an eigenvalue) and, anyway, do not
apply to the linearized problem associated with (1.1)~(1.3). Those results need comple-
tion also because they apply only to the one-dimensional case.

At this point, the boundary conditions {1.2}, (1.3) deserve some attention. In this
analysis of the steady state problem, Lifidn [2] imposed the following conditions at
Xy =300

(1.7 dufax, >0 as x,>—w, duféx,»>1 as x,>00,

Stewart and Buckmaster [21] maintain conditions {1.7) for the time-dependent problem,
while Peters [20] replaces them by

(1.8) M- ¢, as X = —00, H—X;=>C; 88 X0

for some constants ¢; and ¢,. In fact, conditions {1.2), (1.3}, and (1.7) and (1.8), are
equivalent when applied to the one-dimensional steady state problem (see the Appen-
dix) and are seen to lead to equivalent linearized eigenvalue problems. But those three
conditions are not equivalent when applied to the time-dependent problem. We will
use conditions (1.2), {1.3), which are obtained from matching conditions in the singular
perturbation analysis that leads to (1.1)-(1.5), as may be seen.

In this paper we will obtain precise global stability properties of the one-
dimensional steady states of {1.1)-(1.5) for n = 3. First, existence, uniqueness, and
some properties of the solution of {1.1)-(1.5) are considered in § 2. In § 3, sub- and
supersolutions of {1.1)~(1.5), and some properties of the steady state, from the Appen-
dix, are used to show that the (unique) steady state is stable and pointwise globally,
asymptotically atiracting if —co < m <0, while it is unstable if 0< n < }. Comparison
methods do not yield good enough results on the critical adiabatic case m =0, which
exhibits infinitely many steady states due to translation invariance. In § 4, a Lyapunov
function argument and a nonlinear change of variables will be used to analyze the
global stability of the steady states, In particular, we will obtain sufficient conditions
on the initial data for the solution of (1.1)-(1.5) to approach the set of steady states
as f- o0, and for it to approach a given steady state.

2. Some preliminary results, In this section we analyze the well-posedness of
problem (1.1)-(1.5), as well as some basic properties of its solutions.

The following notation will be used. Let < R" be a convex, smooth domain and,
for some 7> 0, let Qr =1 x 10, T[. Let W3(Q) (respectively, W2%3(Qr)} be the Sobolev
space of those (classes of) functions, u: {} > R (respectively, u : Qr = R) such that |D"u|”
(respectively, |D}DLu|") is integrable in Q (respectively, in Q) for all i =g (respec-
tively, for all i and j such that 2i+j =24). The norms of W%(2) and W;*¥(Qr) will
be denoted as

I-I% and |-[Z&2,
respectively. W3 ,.(R"} (respectively, Wf,jg"c(R“ x [0, To[)) will be the linear space of
those functions u:R" >R (respectively, u:R" X [0, To[ » R) such that ue WI(B) for
all bounded balls BCR” (respectively, ue Wf,"“’(Bx]O, T[} for all bounded balls
B<R" and all T €]0, T,[). For any nonintegral positive number r, C"(}) (respectively,
C"2(Qr)) will be the Holder space of those functions u: ) - R (respectively, u: Qr -
R) having in ) bounded, uniformly continuous derivatives up to order [r] equal to
the integral part of r (respectively, having in Qr bounded, uniformly continuous
derivatives D| D, u, for all i and j such that 2i+j < r) and such that the [r)-derivative
is uniformly Hélder continuous of order r—[r] in & (respectively, the derivatives
D} D’u are uniformly Holder continuous, of order r —[r], in the x variable if 2i + j =[r],



and of order (r—2i—j)/2 in the ¢ variable if r—2<2i+j<r). The norms of C'({})
and C™/*(Qr) (see, e.g., [24] for their precise definition) will be denoted as

|18 and |15,

respectively. Finally, C"(R") (respectively, C™"/*(R" x [0, T,{) will be the linear space
of those functions u:R" > R (respectively, u:R" x[0, T,[ > R) such that u € C"(B) for
all bounded balls BcR" (respectively, ue C*/*(Bx{0, T]) for ail bounded balls
BcR" and all Te 10, Ty).

We first show that (1.1)-(1.5) possesses a unique classical solution in 0=¢< T,
if —co<m<1, with To=c0if m=0.

THeoreM 2.1. If —co<m <1, let r>0 be a noninteger. If ¢ € C**"(R") satisfies
(1.2)-(1.4), then (1.1)-(1.5} possess a unique classical solution u in R" X [0, Ty[, where
To=w if m=0 and Ty=[2e(l —m)/m]) exp (—a,) if 0<m <1, with

a,=sup {x,—e¢(x}: xeR"}.
Furthermore, ue C**"'"*""3(R" x [0, Ty[) and is such that
(2.1) sup {0, x,—a()}=Su(x, 1)=U(x, 1) forall (x,1)eR" %[0, T,
where g is given by
2e(1—m) da/dt =exp (ma), a(0)=a,,
and U >0 is the unique solution of
(2.2) aU/at=AU inR" %[0, 00, U(-,0)=¢ inR",

which satisfies (1.2)-(1.4).
Proaf. The solution of (1.1)-(1.5) will be obtained as the limit of the sequence
{u.} defined inductively by

(2.3} ou/of—Au + (i /2) exp (mx;} = (- /2)[1 —exp (—u,_,}] exp (mx,),
(24) u(x, 0} = p(x),

where u,= U is given by (2.2) and each u; satisfies (1.2)-(1.4). The coefficient of u;
in (2.3) is unbounded but positive. Therefore, the linear problem (2.3), (2.4) is dissipa-
tive, and each wu, is well defined with u, € C*™"""/3(R" x [0, o). This is proven by
using the estimates of Eidel’man [25, Thm. 3.1, p. 131] for the fundamental solution
of (2.3}, in standard proofs of the solvability of the Cauchy problem for linear parabolic
equations (e.g., in the proof of Theorem 6.1 [24, p. 324]}.

The sequence {u,} satisfies, for each k=0,

(2.5) 0=t =u, in R”x[0, oo,

as is seen inductively by means of the Phragmén-Lindeldf (Ph-L) maximum principle
[26], [27], when we take into account that the function u —» u[1 —exp (—u}], appearing
in the right-hand side of (2.3), is strictly increasing for 0= u <C20. Then the bounded,
monotone sequence {u,} is pointwise convergent to a function u such that

(2.6) 0=u=sU inR"Xx[0,0[,

as it comes from (2.5).

Let us see that uc C**"*"""}R" x[0, 0o[), and that u is a classical solution of
(1.1)-(1.5). For each bounded, open ball B < R", let B’ be another ball such that B< B,
Local estimates of the solution of (2.3), (2.4} on W3! and C***!'**/2 [24, pp. 355, 352]



imply that, for each T > 0, each integer p =1 and each noninteger s € [0, r], there exist
constants, ¢,,* -+, ¢4, depending only on B, B’, T, p, and s, such that

(2.7} " U, — W ||:3i3'>)<]0.1'[ =¢ ".ﬁ _f;| ::?i?']x]o,ﬂ + Cz" U; — Il }fﬂ(]o,ﬂ N
(2.8) b, — | Grrort > = e f —F 85 re+ caluty ~ il 558 oy

for all integers i, j= 1, where fi = (u,_;/2)[1 —exp (—u,_;}] exp (mx,). Since u,~> v in
W%(B'x 10, T[} = L,(B'x]0, T[) (monotone convergence theorem [28]) then f, » f =
(u/2)[1 —exp (—u)) exp (mx,), and {u;} and {f;} are Cauchy sequences in the same
space. Then {u.} is a Cauchy sequence in Wf;’(Bx]O, T {by (2.7)) and thus it
converges (to ) in the same space. Now, if we take p > (n+2)/(2 —r+[r]), embedding
theorems [24, p. 80] imply that u, - u in C**/?(B x[0, T]), where « = r —[r]. Estimate
(2.8) with s = a implies, by the same argument as above, that u, - u in C>**"**/*(B x
[0, T]) and, by repeating the argument if necessary (i.e., if r> «), (2.8) implies that
> w in CTHB x [0, T]). Then uwe C 3B x[0, T]) for every bounded ball
and every T>> 0 as stated, and u satisfies (1.1) and (1.5), as we see when taking limits
in (2.3), (2.4).

We now show that u satisfies (2.1) and, therefore, that it satisfies (1.2)-(1.4). It
is enough to prove that x, — a{f) = u(x, ¢) for all (x, 1) e R" X [0, To[ {see (2.6)); this is
true since, for all k=1,

x;—a{t)=u,(x, t} forall (x, t)eR" x{0, Ty[,

as is seen inductively when the Ph-L maximum principle is applied to u.(x, 1) — x, + a(¢),
and it is taken into account that w(x, £} =x, — a(r) satisfies

aw/ot = Aw —max {0, (w/2) exp (mx, —w)}, wix, 0) = ¢{x)

for all (x, t}eR" X[0, Ty[, as is easily seen.

Finally, we see that u is the unique solution of (1.1}-(1.5) in R" x[0, Ty[. To this
end, first observe that any other solution of (1.1)-(1.5), ', is such that #'=u, in
R" %[0, Ty[, for all k=0, as is seen inductively by means of the Ph-L maximum
principle. Therefore,

(2.9) wW=u inR"x[0, T,

and W= u—u' satisfies
W/t —AW=(W/2)}(£—-1) exp (mx,— &) in R" %[0, Ty,
Wix,0)=0 inR"

for some function £:R" %[0, To[ = R such that u'= £=u in R" [0, Ty[. Then the Ph-L
maximum principle implies that W=0 in R" x[0, To[ (observe that the coefficient of
W in (2.10) is bounded above, since u and u’ satisfy (1.2), (1.3)), and (see (2.9)) the
conclusion follows.

Remarks 2.2. Some remarks about Theorem 2.1 are in order:

(A) The function u in the proof of Theorem 2.1 satisfies (1.1), (1.2), (1.4), (1.5)
for all (x, ) eR" x{0, o[ if —co< m <1, but if 0 < m <1 we have proved only that u
satisfies (1.3) for 0= r < Ty; for £ = T, u is a maximal {and not necessarily the unique)
solution of (1.1}, (1.2), (1.4), {1.5). It seems that this resuit cannot be improved
significantly for arbitrary initial data. In fact, some numerical and asymptotic results
{see [29]) suggest that for (0 < m < 1 and) appropriate initial data, the maximal solution
of (1.1), (1.2), (1.4), (1.5), u, is such that u(x, t)=>0 as x, = +cc, uniformly in
(%2, -, x,)eR"L,if > T,, for some finite T,; for such initial data, (1.1)}~(1.5) cannot
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have a solution for all 1= 0. On the other hand, the proof of Theorem 2.1 is easily
extended to show that (1.1)-(1.5) possesses a unique solution in R" x [0, cof if the
initial datum is such that ¢ = w( -, 0) in R”, where w e C**="**/3(R" x [0, ®[) for some
a >0 and

aw/at =S Aw—(w/2)exp (mx, —w} in R"x[0, oof.

{B) The conclusion of Theorem 2.1 (existence and uniqueness of the solution of
(1.1)-(1.5)in R" x [0, Ty[, for some T, = 00) remains true if the nonlinearity u exp (mx, —
“u) is replaced by a more general one, of the type

g(x)f (),

where g:R-R and f:[0, o[ -+ R are positive C'-functions and:
(i) J(0)=0, f'(«) is bounded in 0= u <00,
(ii) g(&)f(E+c)»0 as £ 00, for any fixed ceR,
(iii) The boundary condition (1.2) at x; = —c0 is replaced by “u bounded™ if
g(x)=0 (as x,» —0), and “u-» 0" otherwise,
In particular, conditions (i} and (ii) are fulfilled by the first nonlinearity in (1.6} if
1=p<g, and by the second if a>0, p= 1§, and —cc<m<1.

(C) If, for m =0, the boundary condition (1.2) at x, = —o0 is replaced by u = ¢ as
x, > —0o, uniformly in x,, -+ -, x,, and ¢, for some constant ¢ such that 0<<¢ <1, then
the conclusion of Theorem 2.1 remains true, as is easily seen. This fact wiil be used
in § 3, where we will take a supersolution w, of (1.1), such that lim w,(x) =1 as x, » —c0,
as initial datum.

Problem (1.1)-(1.5) defines a monotone flow, as shown in the following.

Tueorem 2.3. Under the hypothesis of Theorem 2.1, if u, and u, are two solutions
of (1.1)-(1.5), defined in 0=t < T,, such that u,(-,0)Su,(-,0}) in R", then u,(-, )=
(-, 1) in R", for all t [0, T,{.

Proof. The monotone sequences that (in the proof of Theorem 2.1) define u,, #,,
{12}, and {1} satisfy w,, S us in R" %[0, T for all k=0, as is seen inductively by
means of the Ph-L maximum principle. Thus we have the conclusion.

As is usual in the literature, a function we C*'(R" %[0, To[) is said to be a
supersolution (respectively, a subsolution) of (1.1) in 0=1<T, if ow/otz=Aw~
(w/2) exp (mx, — w) (respectively, aw/or=Aw —(w/2) exp (mx,—w)} in R" x[0, T[.
A sub- or supersolution of (1.1} is said to be steady if it does not depend on time.

THEOREM 2.4. Under the hypothesis of Theorem 2.1, if w=0 is a supersolution
(respectively, a subsolution) of (1.1) in 0=t < T, that satisfies (1.2)-(1.4), and if v is a
solution of (1.1)-(1.5), defined in 0=t < Ty, such that u(-,0)= w(-,0) (respectively,
u(-,0=zw(-,0)) in R", u(-, )= w(-, 1) (respectively, u(-, t)=w(-,1)) in R", for all
tefo, T.

Proof. If w is a supersolution (respectively, a subsolution) of (1.1), we define the
sequence {1}, given by (2.3}, (2.4), with u, = w. As in the proof of Theorem 2.1, it is
seenthat 0= uy ., = u, = w (respectively, w=u, Su = U)inR" %[0, Ty[ forall k=1,
and that w#, > u as k— o0; then the conclusion readily follows.

Tueorem 2.5. Under the hypothesis of Theorem 2.1, if u(-,0)=¢:R">R is a
steady supersolution (respectively, subsolution) of (1.1), and satisfies (1.2)-(1.4), then
Ju/at =0 (respectively, dufat=0) in RB" x [0, Tyl.

Proof. We consider only the case in which ¢ is a supersolution. Theorem 2.4
yields: u(x, 1} = ¢(x) = u(x, 0} for all (x, 1)eR" %[0, Ty[. Then, for each constant he
10, Tol, wix, 1)=u(x, t+h} is a solution of (1.1)-(1.4) such that w(-,0)=u(-, h)=
u(+,0}) in R". Thus, Theorem 2.3 leads to u{-, t+h)=w(-,)=ul-,t) in R", for all



t€[0, T,— k). Therefore, for each fixed x ¢ R”, the function ¢ - u(x, ¢} is nonincreasing
and du/ar =0 as stated.

Remarks 2.6, (A) Theorems 2.3-2.5 stand when the nonlinearity of (1.1} 1s
modified as in Remark 2.2B, and also, if m =0, when the boundary condition {1.2) at
x, = — is modified as in Remark 2.2C.

(B) Theorems 2.3-2.5 give properties of the solution of (1.1)-(1.5) that are well
known for scalar parabolic equations in bounded domains (see, e.g., [30]).

3. Global stability results in the nonadiabatic case (m#£0). In this section we
analyze global stability properties of the (spatially one-dimensional} steady state of
(1.1)-(1.4) under (spatially) three-dimensional perturbations, for —o<m <3, m#0,
Among the many different definitions of stability, we select the following [31]. Let X
be the set of functions u € C**'(R®?), for some r >0, that satisfy (1.2)-(1.4), and let
be a family of subsets of X. A steady state u, of (1.1)-(1.4), such that u, €8 for
all S Z, will be called Z-stable if for any § € X there exists S'c T such that u(-,0)c §"
implies that u(-, 1) € S for all ¢ > 0; u, will be said to be Z-unstable if it is not Z-stable.
Below u, will be a steady state that depends only on the x, coordinate, and the family
2 will be

(.1) S={S.s @, B >0},
where
S, s={ue X:ulx,—a)<u(x)<ulx,+g), for all xeR*}.

Observe that if a, 8> 0, then u,(x,—a) <u/x,+p) for all x,€R (Theorems A.4 and
A.8 of the Appendix), and S, z is a nonempty open neighborhood of u, in X with the
order topology (i.e., the topology generated by the order intervals of the form Ju,, u,[ =
{ue X: u,(x)<u(x)<uxx) for all xeR?}) defined for u,, u,€ X; see [31].

In connection with asymptotic stability, u, will be said to be globally pointwise
attracting if u(-,0)e X implies that u(-, 1) - u, pointwise as - 00,

We first consider the case m <,

THeEoOREM 3.1. If m<0, then (1.1)-(1.4) possesses a unique, spatially one-
dimensional steady state u, that is Z-stable (X defined by (3.1)), and globally pointwise
attracting,

Proof. We first show that (1.1)-(1.4) has a unique spatially one-dimensional steady
state that is globally pointwise attracting. To this end, let us consider the functions
w,, w;:R R, defined by

0 ify=aq,
w(¥)={ Aly—a)’/64 ifa<y=a+4,
w(y) ifatd<y,

where A =2(+/2-1)/3 and W, is the unique solution of
d*w,/dy’ = ()W, exp (A- W), w(a+4)=A, dm(a+4)/dy=3A/4,
1 ify=-b,
(3.2) wyly) = 1+(p+b)[1-(y+b)/2] if~b<y=-b+1,
yt+b if —b+i<y
It is easily seen that w, satisfies (1.2), (1.3), w, satisfies the boundary conditions

considered in Remark 2.2C of § 2, w, wye C*7(R) for every re 10, 1, w, is a steady
subsolution of (1.1} if a=|m|™'In%, and w, is a steady supersolution of (1.1) if



b=1+]1+1n%)/|m|. Also, for every function ¢ :R*> > R satisfying (1.2), (1.3) (uniformly
for x,, xR}, and (1.4} (uniformly for x, on bounded intervals of R}, we have

(3.3) wi{x)=e(x)=wyx,) forall xeR?,

provided that @ and & are sufficiently large, as is easily seen.
Now, for i=1 and 2, let u&; :R x [0, co[ > R be given by

(3.4) /ot =a"u /oy’ — (w/2) exp (my ~u)  in Rx[0, cof,
(3.5) u,»0, O0<w,=} asy->-00 for0=t<o0,

(3.6) |u; — ¥| bounded as y -0, =<0,

3a.7n u{y, 0 =wi(y) for —0o<y<o0,

where conditions (3.5), (3.6) hold uniformlyin0 = ¢t = T, for all T € ]0, oo[. The functions
u; and u, are uniquely defined by (3.4)-(3.7), and u,, uye C**""""2(R x [0, 0o ) (see
Theorem 2.1 and Remark 2.2C). Furthermore, if the initial datum of (1.1)-(1.5) satisfies
(3.3}, then

w=u=u, inR>x[0, o[,

as is seen when Theorem 2.3 is applied. Also, for each y € R, the functions ¢ - w,(y, ¢)
and ¢ - u,(y, t) are monotonic (Theorem 2.5), and bounded since

(3.8) wi=u -, 02w, 0)=w, inR forall r=0,

as seen by means of Theorems 2.3 and 2.5. Then, for i =1 and 2, (-, ¢}~ i, pointwise
as t= 00, for a certain function ;R - R such that (see (3.8))

(3-9) W= ﬁ] = ﬁzé W in R.

Thus, according to Lemmas A.1 and A.3 of the Appendix, the conclusion will follow
if we prove that i, and ii, are steady states of (1.1), since these two functions satisfy
the boundary conditions (A.4) for @ =1 (see (3.9}).

To prove that, for i=1 and 2, 4 is a steady state of (1.1) (i.e,, that it satisfies
(A.1)), let e C5(R) (the space of functions of CT(R) with compact support). We
multiply (3.4) by ¢, integrate from —o0 to o in the y variable, and integrate by parts
twice to obtain

J $(y)auly, 1)/ot] dy

o

= J $"(Pu(y, 1) dy —I $(y)f(uly, 1), y) dy,

-t —

where f(u, y) = (u/2) exp (my — u). We further integrate from zero to T in the ¢ variable
and divide by T, to obtain

J_ (N [uly, 1) —wly, 01/ T} dy

o T
(3.10) = J w”(y}( j i (y, t}a'th) dy

]

—J_ t!f(y)(L fluly, 1), ) dr/T) dy.



But since, for each yeR, w,(y, 1) @(y) as ¢+ 0, we have

[ui(yy t)_ “1(}’, 0)]{7-_’0’ J “i(ys t) df/T_) ﬁl(y)’
(3.11) . °
j fuly, 1), y) dt/ T f(ii;(y), y) pointwise as T >0,

0

Furthermore, the left-hand sides in the limits (3.11) are uniformly bounded in every
bounded interval of R (see (3.8)) and, in particular, in supp ¢ Then if we let T—»®
in (3.10), the dominated convergence theorem [28] yields

J_ ¢ (yhiy) dy= j

]

G(y)f (), y) dy,

forall ¢ € Cy(R). Therefore 4; satisfies (A.1) as a distribution (observe that 4, € L, ,.(R),
as we see by means of the dominated convergence theorem when taking into account
(3.8)) and, since the function y = f(ii;(y), y) belongs to L,,,(R), # € W3 ,.(R). Also,
e WE(R) for all p>>2, as is seen by reiterating the argument. Then embedding
theorems [28] imply that ;¢ C”(R) and satisfies (A.1) as stated.

Finally, #, =d,=u, is Z-stable, as comes out when Theorems 2.3 and 2.4 are
applied, and it is taken into account that, if a, 8 = 0, then the functions x » u,(x; —a)
and x = u,(x, + B) are steady sub- and supersolutions of (1.1), respectively, as is easily
sgen.

CoroLLary 3.2, If m<0 and n=3, then (1.1)-(1.4) has a unique steady state u,
which depends only on the x, variable.

Proof. The steady state of Theorem 3.1 is necessarily the unique steady state of
(1.1)-(1.4) since it is globally attracting.

Remarks 3.3. (A) In Theorem 3.1 we have shown that, for every initial datum ¢
satisfying (1.2)-(1.4), the solution of (1.1}-(1.5} is such that u(-, {) > u, pointwise as
t=» . It may be seen that the convergence is uniform on compact subsets of R?, but
it is not uniform in R* for arbitrary initial data. For example, if ¢ depends only on
the x, variable, ¢(x,) — x, has a limit as x, » <, and lim (@(x,}— x,) # lim (&, (x,) ~ x,)
as x, > <o, then the solution of (1.1)-(1.5) satisfies, for each >0, lim (u{x,, ) —x,})=
lim (@(x.) —x,) # lim (4,(x,) — x,} as x, =00, as may be seen.

(B) Corollary 3.2 shows that, in addition to the (spatially one-dimensional) steady
state of (1.1)-(1.4) found by Lifan [2], there are no other steady states, possibly
depending on the x, and x, coordinates. For a more precise information about the
(unique) steady state of (1.1)-(1.4), see Theorem A.4 in the Appendix.

We now consider the case m >0, in which (1.1)-(1.4) possesses a unique spatially
one-dimensional steady state (see Theorem A.8 in the Appendix), that is expected to
be unstable, according to the numerical results by Peters [20].

THEOREM 3.4, If 0 <<m <3 andn =3, let u, be the (unigue) spatially one-dimensional
steady state of (1.1)-(1.4). Then;

(A) If the initial state (1.5) satisfies ¢{x) Z u,(x, + &) for some a >0 and all x e R®,
then the solution of (1.1}-(1.5} is uniquely defined for all 1 =0 and such that, for each
xeR lim u(x, t) =00 as 1>,

(B) If a solution of (1.1)-(1.5) is defined for all t =0 and the initial state satisfies
o(x)=u(x,— a) for all xeR* and some a >0, then lim u(-, t) =0 pointwise as t -» .

(C) The steady state u, is Z-unstable (3 defined by (3.1)).

Remark 3.5. Under the hypothesis of Theorem 3.4B, the solution of (1.1)-(1.5)
is uniquely defined in 0=t <o whenever the initial state satisfies u(x, 0} = ¢(x) for



all xeR"” (¢ as given in Theorem 3.4B), as is seen when taking the solution considered
in Theorem 3.4B as w in Remark 2.2A. If the solution of Theorem 3.4B is not assumed
to exist for alk ¢ = 0 but the other hypothesis is maintained, then the maximal soiution
of (t.1), (1.2), (1.4), (1.5) (that exists for 0=t <a>; see Remark 2.2A) satisfies the
conclusion, as is seen after slight modifications in the proof.

Proof of Theorem 3.4. (A) To prove that u is vniquely defined for all 1 =0, observe
that w = u, satisfies the required properties of Remark 2.2A. It is sofficient to prove
the remaining parts of the statement when ¢(x)}=u.(x;+a) (Theorem 2.3); then
u(x, ) =u(x., t} does not depend on the x, and x; coordinates, and satisfies
du(x,, t}/at=0 for all (x,, t)eRx[0, [ (apply Theorem 2.5 and take into account
that the function x, - u,(x,+ a) is a subsojution of (1.1) since a >0). To prove that
lim u(x, ) » 00 pointwise as ¢-»<c0 suppose, on the contrary, that for some finite ¢,
x1eR, u(x?, t)= ¢ for all t>>0. Then

ul(x,, ¥=c forall (x,, )€ ]—00, x7]x [0, o[,
u(x,, = c+x,—x) forall (x,, 1) e[x?, o x [0, o[,

as is seen by applying the Ph-L maximum principle on the intervals ]1—oo, x{[ and
]1x2, oo[. Then, for each x, € R, the increasing function 7-> u(x,, ¢} is bounded above
and, by the argument of the proof of Theorem 3.1, u(x,, 1)~ i, (x,) pointwise as 1 - 00,
where i, is a solution of (A.1), (A.2) such that u,(x,) < #,(x,) for all x, €R. But this
is not possible, according to Theorem A4

(B) As in the proof of part A, it is sufficient to prove the result when ¢(x) =
u,(x;—a). Then the solution does not depend on the x, and x; coordinates, but is
defined for all =0 (Remark 3.5), and, by the argument of the proof of part A
(t>u(x,, )20 is now decreasing), u(x,, ¢} it,(x,} pointwise as -, where i,
satisfies (A.1) and 0= &, (x,) < u,(x,) for all x, € R. Then ii.(x,) = 0 forall x, € R (Lemma
A.10 in the Appendix} and the conclusion follows,

(C) Apply parts A and B above,

4. Global stability results in the adiabatic case (m =0). Let us now consider the
critical case m = 0. Again, we are interested in the stability properties of the spatially
one-dimensional steady states of (1.1)-(1.4) (there are infinitely many due to translation
invariance; see Theorem A.2 in the Appendix) under spatially three-dimensional
perturbations. The last part of the proof of Thearem 3.1 is readily extended to yield
Theorem 4.1 below.

THEOREM 4.1. If m =0, then every spatially one-dimensional steady state of (1.1)-
(1.4) is Z-stable (X as given in (3.1)).

The remaining part of Theorem 3.1 cannot hold in this case, since there is no
unigue steady state now. We can easily be convinced that comparison methods alone
cannot lead us further in the analysis of asymptotic stability properties if m =0, Linear
stability of the steady states of (1.1)-{1.4) is easily analyzed for n = 1. Although linear
stability results do not solve the problem, they are enlightening, and help us to avoid
the pursuit of ideas that cannot work in this case. For n=1, the linear eigenvalue
problem associated with a given steady state u, of (1.1)-(1.3) is

(4.1) U —flu)u=wu in —00<x <00,

where f{u)=(u/2) exp (—u). The steady state u, is easily seen to be such that uf/u’,
ulful, and f(u,) are bounded_in —co< x <<c0. We consider (4.1) in L2(R) (where
(4.1} is self-adjoint) and in C(R) (the space of real, bounded, uniformly continuous



functions on R with the sup norm). The function u’ e C(R) satisfies
(4.2) w’—f(udul=0 in —0<x<w®,

and thus is an eigenfunction of (4.1} associated with @ =0, Then the general solution
of the homogeneous equation (4.1) is easily calculated for w =0, and it is seen that
w =0 is a simple eigenvalue in C(R) and that it is not an eigenvalue in L2(R). Also,
if Re w >0, then any bounded eigenfunction of (4.1) belongs to L2(R}, as is seen from
its asymptotic behavior as x - o (see, e.g., [32]); then w R also in C(R), and any
eigenfunction u of (4.1) is such that

(4.3) w J w? dx = —J [w' —wul/ul]’ dx,
as seen after multiplication of (4.1) by u, integration from —<0 to o, substitution of
(4.2), and integration by parts. To obtain (4.3) observe that, since u € L2{R), u”< L2(R)
(see (4.1)}, and u’'e L2{(R) as shown by interpolation inequalities (see, e.g., [28, p. 70]).
Equation (4.3) implies that every eigenvalue of (4.1} in C(R) or in L2(R) is such that
Re w =0. If the continuous spectrum of (4.1), o, were such that max Re o <0, then
standard results on linear stability [33, p. 108, Exercise 6] would show that if u(-, Q)
is in a certain neighborhood (in C(R)) of u,, then the solution of (1.1)-(1.5) for n =1
approaches exponentially a translate of u, as {00, Unfortunately, the continuous
spectrum of (4.1), in L2(R) and in C(R), is o = ]—, 0]< R [33, p. 140], and the result
above does not apply. Observe that the spectrum of (4.1) is equal to that of the heat
equation (which also has infinitely many steady states in C(R)), which, as is well
known, exhibits erratic behavior as - o for appropriate initial conditions in every
neighborhood (in C(R))} of each steady state (see, e.g., [26, p. 349}). Finally, let us
point out that problem (1.1})-(L.3) for n=1 has some features in common with
one-dimensional reaction-diffusion problems exhibiting travelling fronts, which have
received considerable attention in the literature (see [33] and [34] and references given
therein).

We first consider problem (1.1}-(1.5) in one space dimension. The first part of
the following theorem contains an invariant principle that holds for a general class of
semilinear parabelic equations in a bounded domain, as is well known [33, § 4.3]. There
are some more recent extensions of this principle (see, e.g., (35], [36]) that, unfortu-
natety, do not apply to (1.1)-(1.5). Observe also that the result of Theorem 4.2B implies
stabilization of certain solutions of (1.1)-(1.5) in a very weak sense, and resembles
well-known results for travelling fronts, such as those appearing in the celebrated
Kolmogorov-Petrovsky-Piscounov model equation [33, p. 134].

THEOREM 4.2. If n =1, let the hypothesis of Theorem 2.1 be satisfied, and let u, be
a steady state of (1.1)-(1.3). If the initial state (1.5) is such that u(x —a)Se(x)=
u(x+8), ¢(x}>0 in —00<x <, for some finite constants « and B, and ¢'—u' e
W3(R), then the unique solution of (1.1)-(1.3), (1.5) is such that

(44) ux—ea}su(lx)=ulx+p), wlx,t)=0 forall (x,t)cRx[0,00[,
(4.5) u,—ule Wi*(Rx[0, T[) for all Te[0, o[,
and satisfies the following properties:

(A) There exists a C® bounded function £:[0,00[>R such that wu(x, t)—
u (x+ £(1)} = 0, uniformly on bounded intervals of R, as t .

(B) £(1)>0 as 1->c0.

Proof. The first inequalities (4.4) are readily obtained by applying Theorem
4.1. Then (4.5) is obtained by standard estimates on W3™7" spaces (see, e.g.



[24, Chap. IV, § 91) applied to the (linear) parabolic Cauchy problem for u, — u; which
is obtained by differentiating (1.1) with respect to x. Then lim (u, — ul) =0 as x » £00,
uniformly in 0=r< T for all T¢[0,c0[, and the second inequality (4.4} is readily
obtained when the Ph-L maximum principle is applied to the equation obtained by
differentiating (1.1} with respect to x, and we take into account that ¢'(x)=0 in
—oo < x <200, We now prove properties A and B.

(A) We define the energy integral

H(t)=J‘a° [ — ui)+ (1 + u —ugu + u3) exp (—u) —(1+u) exp (—u)] dx,

-0

which, when using (4.5), is easily seen to satisfy

H(t)=~2 J u? dx.
Then the fuaction r— H(1) is monotonically decreasing; since it is bounded below
(see (4.4)), it has a limit as ¢ - o0, and

(4.6) J (w,—ul) dx and J dtj u® dx are bounded in 0= ¢ < 0.

—a o —

On the other hand, when differentiating (1.t) with respect to ¢, muliiplying by w«,,
integrating in the x variable from —oo to 0, and taking into account (4.4}, (4.5) we obtain

d o o0 [+ 2
(4.7) %B‘?J ufdxé~—J u?,,dx-i-kj uldx in0=t1<w

G —-—c -

for a certain positive, finite constant k. When we take into account (4.6), this inequality
yields

(4.8) d%j u? dx is bounded above in 0=t<,
Then, (4.6) and (4.8) imply that
(4.9) J uldx->0 ast->o,

Now, when using Holder’s inequality, (4.6} and (4.9} yield

x an - 1/2
J . u, dx E[J (ux—u;)zdxj ufdx]

x oo 1/2
+[J ufdxj ufdx] -0 as -0,

0=

-—0 -0

uniformly on each bounded interval of R. Then, when multiplying (1.1} by wu, and
integrating in the x variable from —0 to x, we easily obtain

(4.10) wi-1+(1+u)exp(-u)>0 ast->o,

uniformly on each bounded interval of R.
Finally, for each ¢ 0, let us define £(¢) as the unique solution of the equation

(4.11) u(0, t) = u (£(1)).



Since u'{(x)>0 in —o<x <o, t- &(t) is a well-defined C*-function in 0=r<
{Inverse Function Theorem) and (see (4.4)}

(4.12) —o<—aSEEL<0 In0=t<w,

Then, since u satisfies (4.10), (4.11), u,(x, 1) =0 for all (x, t)eR %[0, [ (see (4.4))
and, for each fixed ¢ =0, the function x - u,(x+ £(¢)) satisfies (A.6), standard resulits
on continuous dependence on parameters of the solution of the Cauchy problem for
ordinary differential equations [32] imply that u(x, 1) — u.(x + £(#)} = 0, uniformly on
bounded intervals of R, as ¢ -0,

(B) We first observe that

J ul, dx is bounded inO0=r<ow,
as obtained from (1.1) when taking into account (4.4) and (4.9). Then for each
(x, 1)e Rx[0, o[ we have

x

[etx, ) —ui(x)F =2 J (a4 —u s )(thax —ug) dx

—l

a0 -5} 1/2
éZ[I (ux_”;)z de (uxx_u:)z dx:l s

and (see {4.6))
(4.13) u,(x, t) is uniformly bounded in Rx[0, oof.

On the other hand, when integrating (4.7} from zero to o0 and taking into account
{4.6) and (4.9), we obtain

] K
(4.14) J er uZ, dx is bounded in 0=¢<o0.

0

-—l

In addition, when differentiating (1.1) twice with respect to x and to ¢, multiplying
by u,,, integrating in the x variable from —oo to oo, and taking into account (4.4}, (4.3),
and (4.13), we obtain

1d [~ , © o = 12
2@ uy dx=k, uy, dx+k; us, dx u; dx

for certain finite constants k, and k,. If we integrate this inequality from zero to ¢,
and take into account (4.6) and (4.14), we get that

I u2, dx is bounded in0=¢<co,

—ag

Then (4.9} yields

1] -] [ <] 1/2
ogu,(o,:)’=2j u,ux,dxgz[f ufdxj ufxdx] 0 ast-o,
and, since (0, £) = ul(&(1))&' (¢} and £(r) satisfies (4.12), the conclusion follows.
Observe that Theorem 4.2 does not imply that u approaches a steady state of
(1.1)-(1.3} as t > 0. Nevertheless, if u(x, 0) — u,(x)—> 0 as x> +c0, for a certain steady
state wu,, then u approaches w4, as £ 00, as is proven below. To this end, let us assume
that the hypotheses of Theorem 4.2 are satisfied (less than that is needed in the following



analysis, but more generality will not be necessary and is avoided for the sake of
brevity). Let us introduce the function p:Rx{0, o[ >R by

u(p(x, 1)) =u(x, ).

Since #(x)>0 in —0<x <00, p is a well-defined function of C*/*(R %[0, [} for
some r>>3 (Inverse Function Theorem) and satisfies

(4.15) spfat=dplax*+g(p)(9p/ax)*—1] in Rx[0, o[,
as is easily seen, where
glp)=ui(p)/ulp)
is positive and uniformly bounded and
g'(p) =Luip)ut(p)—us(p)) uilp)

is uniformly bounded. To prove that, take into account that u, satisfies (A.1) and (A.6).
In addition, the function p satisfies

(4.16) x—aSp(x, 1)=Ex+8, pix, Y20 in Rx[0, o[,

from (4.4}.

The required result will be easily obtained from the following two lemmas.

Lemma 4.3. Under the assumptions above, if 0=p,(x,0}=1 (respectively, 1=
plx, 0) <) in —0o<<x <, then 0= p.{x, 1) =1 (respectively, 1 = p.(x, t} <) for all
{x, tyeRx[0, .

Proof. Let us first show that there is a finite constant k such that

(4.17) 0=p.(x, 1)=k forall (x, t)eRx[0,of.

£« 1s nonnegative (see (4.16)) and, since p,(x,0) is bounded in —oco<x<co,
u'(x) exp (—x/+/2) has a limit as x » —o0 (as is seen from the asymptotic behavior of
(A.1), (A.2)), and p satisfies (4.16), we have

(4.18) 0= u,(x,0)=ui(p(x,0))p.(x,0) = k; exp (x/vV2) in —0<x<®
for a certain finite constant k,. Then we can see that
(4.19) udx, )=k, exp (x/v2) for all (x, t) € ]—00, xo[ x [0, o[,

where x, is any point of R such that 4,(x,+ 8) <1 (then u{x, 1) =1in ]—90, x,] %[0, co[;
see (4.16)) and k,=max {k,, sup {u.(x,, £}: t = 0}} (k, is finite; see (4.13)). To prove
that (4.19) holds, apply the Ph-L maximum principle in —co < x = x, to the equation
obtained when (1.1) is differentiated with respect to x, and take into account
{413} and (4.18). Then p.(x, )=u.(x, 0)/uilp(x, t)) satisfies (4.17} since
(i) ui(x) exp (—x/+2) and u’(x) are bounded below by a strictly positive constant in
]=00, x,] 2nd in [x,, oo[, respectively; (ii) the function x - ui{x) is strictly increasing
in —co< x <00y (iii) p satisfies {4.16}; and (iv) u, satisfies (4.13) and (4.19).

Then the conclusion of the lemma readily follows when the Ph-L maximum
principle is applied to the equation obtained when (4.15) is differentiated with respect
to x, and it is taken into account that g and g’ are uniformly bounded, and that (4.17)
holds.

Lemma 4.4. If, in addition to the assumptions of Theorem 4.2, the initial condition
(1.5) is such that ¢(x) = u,(x) in k < x < co, for some finite constant k, then w(x, t) > u(x)
pointwise as t - 00,



Proof. Let the function p°:R—R be defined by u,( p°(x)) = ¢{x); as above, p° is
a well-defined function such that x —a = p%(x)=x+8 in ~0<x <0,
It is easily seen also that there exist two functions, p'f, pie CP(R), such that

{4.20) x—a=pi)=p%)=pdx)=x+8, —w<x<w,
(4.21) plix)=x-a,  pHx)=x+8 in —c<x<k,,
(4.22) plx)=px)=p%x)=x in k,<x<oo,
(4.23) 1= dpl/dx <00, 0=dpi/dx=1 in-c0<x<00

for some finite constants k, and k,. Then the assumptions of Theorem 4.2 are satisfied
for the functions u, and u, given by (1.1)-(1.3) and

u(x,0)=u,{p)(x)) in —co<x<ow fori=1,2.

Furthermore, since w,(+,0}=u(-,0)=u(-,0) and u,(-,0)=u, = uy(-,0) in R (see
(4.20)-(4.23)), Theorem 2.3 vields

{4'24) ul('st)éu(‘yt)éuz(',t)’ H[(‘,I)éuséuz(‘,t) inR
for all t=0. Then the conclusion follows if we prove that
{4.25) u{x, t}» u,(x) pointwise as ¢ 00,

To this end, let us define, for i =1 and 2, the function g,:Rx[0, [ =R by wu,{x, t)=
i, p(x, £)); that function is again well defined and p,(x, 0)=pY(x) in —cO< x <0,
Then (apply Lemma 4.3 and take into account (4.23)),

(4.26) 1=4dp,/ox <0, 0=ap,fox=1 in Rx[0,cc],

and, since p; satisfies (4.15) and au;(x, t}/at = u{p;(x, 1))8p,/dt, we have, for i=1 and
2 and for all +=0,

d oo oo ; 3
EEJ'_J“""" r)—us(x)1dx=J_m Wz, 220

=f wi pilx, t))%‘—’dx

—od

+r u(pi(x, :))[( p'(i ”) l]dx

=1 —Jm us(pilx, 1)} dx

=r e r))[a"""” 1]dx,

—a

dx

where the manipulations on the tmpreper integral required to obtain the first equality
are easily seen to be justified. The third equality is obtained by integration by parts in
the first integral of the left-hand side, when taking into account that p,.(x, ¢} is bounded
and u,( p;(x, 1))~ 0 as x> —00, and that p,{x, )= 1 and ui(p/(x, 1))>1 as x>0, for
ali £z {; the last equality is obtained when taking into account that

ap

o« ; : d
J u?(pf(x,t))@'%ldx=j o Lslplx )] dx=1.

—c —a



Then the functions ¢ [~ _(u,—u,) dx and t-{*_(u,—u,) dx are monotonically
decreasing (see (4.26)) and nonnegative (see (4.24}) in 051 <o,
Therefore, for i=1 and 2,

J lu; — 14| dx is bounded in 0= ¢ <o

since, in addition, u, and u, satisfy property A of Theorem 4.2, (4.25) readily follows,
and the proof is complete.

Finally, we prove the main result of this section.

THEOREM 4.5. If m=0 and n =21, let u, be a spatially one-dimensional steady s1ate
of (1.1)-(1.3), and let the assumptions of Theorem 2.1 hold. If the initial state (1.5) is
such that

u(x,~a)se(x)=ulx,+8) forall xeR’
Jor some finite constants a and 8, and
lim (p(x) —u(x,}}=0 as x,>,

uniformly for (x,, x,) € R?, then the solution of (1.1}-(1.5) is such that lim u{(-, 1) > u,
pointwise as (- 0.

Proof. From the assumptions above, it is clear that, for each £ = 0, there exist two
functions, ¢}, ¢3 € C™(R), that satisfy (1.2), (1.3), and

i) = p(x) = @5(x,) for all xe R,
(4.27) eix)=u(x ~a), eix}=ulx+p) in —o<x <k,
ei(x)=ux, ~¢), ei(x))=u(x;+2) in k,<x; <00,

for some finite constants k, and k,. For i=1 and 2, let us define the functions
u; iR x[0,c0of »R by {1.1)-(1.3) (with n=1) and

ui(x;,0)=¢i(x,}) in—c0<x, <0
Then {(apply Theorem 2.3 and take into account (4.27})
(4.28) ui(x, D= ulx, = ui(x, 1) forall (x 1)e R x [0, oof,
and (apply Lemma 4.4)
(4.29) uj(x,, t}»ulx,—¢), us(x,, t)»>u,{x,+¢e) pointwise as t->c.

Since (4.28) and {4.29) are true for all £ >0, the conclusion follows,

Remarks 4.6. Some remarks about the resuit above are in order.

(A) Theorem 4.5 is true also in one and two space dimensions (after obvious
modifications).

(B) The results of this section and, in particular, of Theorem 4.5, stand when the
nonlinearity of (1.1) is replaced by a positive C>-function f:[0, o[ » R such that

(1) J0)y=0, f'(u) is bounded in 0= u < o0,

(ii) [y f(u) du exists and is equal to 1,
as may be seen. In particular, conditions (i} and (ii) are fulfilled by the first nonlinearity
in (1.6) if either p=1 or 2, or p=3 and ¢ > p+1, and by the second if m=0, a >0,
and p=1 or 2 or p23, after multiplication by an appropriate positive constant.

5. Conclusions. In § 2 we showed that problem (1.1}-(1.5) has a unique classical
solution in 0=1 < T, with To= if m=0. If 0<m <1, then T, = for appropriate
initial conditions, but the solution is not expected to exist in 0= ¢ <00 for arbitrary
initial data, as pointed out in Remark 2.2A.



Global stability properties for m # { were considered in § 3, where some previous
partial numerical resuits on linear stability were confirmed and extended. In particular,
the unique spatially one-dimensional steady state of (1.1)-(1.4) was shown to be
unstable if 0< m <} and globally, asymptotically stable in a certain sense if m <0; in
the latter case, it was shown also that (1.1)-{1.4) does not have other steady states,
depending on the x; and/or the x; coordinates.

In § 3 we obtained sufficient conditions on the initial data for the solution of
(1.1)-(1.5) to approach a given one-dimensional steady state.

Finally, let us point out that some questions about existence of more steady states
and about the dynamics of (1.1)~{1.5) for m =0 remain unsolved. It seems that their
solution requires more powerful mathematical tools (and perhaps some numerics on
the two- and three-dimensional problems to get predictions) than those used in this
paper. We think that any effort towards a complete understanding of (1.1}-(1.5) is
worthwhile since, as was pointed out in the Introduction, Lifidn’s problem is ubiquitous
in combustion theory.

Appendix. Spatially one-dimensional steady states of (1.1)(1.4). We consider the
one-dimensional steady states of (1.1)-(1.4) that satisfy the (slightly more general if
m =0) boundary value problem

(A1) u"=(u/2)exp (mx—u) in —o0< x <00,
(A.2) u bounded at x = —co, |# — x| bounded at x = +o0,

where u>0in R.
If m#=0, for each constant & such that 0<< @ <00, {A.1) is invariant under the
transformation

(A.3) x> x—(2/m)ln 8, m->m/o,
while the boundary conditions (A.2) become
(A.4) u bounded at x = -,  |u-—8x| bounded at x =co.

Therefore, problem (A.1)}-(A.4), which will be considered below for convenience, is
not essentially more general than {(A.1), (A.2).
Lemma A.l. Every positive solution of (A1), (A.4) satisfies

U>uy, w0 asx->-0, 0<u' <@ in —V<x<®,
(A.5)
u—6x-c, wW->8 asx->+©

for some finite constants u, Z 0 and ¢, with t1,=0 if m=0.

Progf. Since u">0 in —c0<Cx <00, the function x - u'(x} is strictly increasing,
and the limits of ¥’ at x = —c0 and x = +00 exist; these limits are zero and 8, respectively,
for (A.4) to be satisfied. Then #'> 0 in —co < x < o0, and the limit of u at x = —co exists,
and it vanishes if m =0, for (A.4) to be satisfied. Finally, since 0 <4’ < 0 in —oo < x <00,
the function x > u{x) — 8x is strictly decreasing, and bounded at x =+00, and thus it
must have a finite limit.

We first consider the case m =0,

THEOREM A2, If m=0 and 8=1, then (A.1), (A4) possess a solution u that is
unique up to translations, and such that

(A.6) >0, wt=1—(1+u)exp(—u) in —0O<x <0,

Ifm=0and 0<08<00, 851, then (A.1)-(A.4) has no solution,



Proof. Equation (A.6) is obtained after multiplication of (A.1) by ' and integration
from —0 to x, when taking into account (A.5). A further integration of (A.6) easily
yields the desired result by phase-plane arguments.

The case m <0 is considered next. We first prove the following uniqueness result,
which is used in the proof of Theorem 3.1 in § 3.

LEmMmMa A3, If m<0 and 0<8<00, then there are not two distinct solutions of
(A1), (A.5), u, and u,, such that u,(x) = u,(x) in —c0< x <00,

Proof. Suppose, on the contrary, that wu,#u,, and define Ui(x)=
ul(x)?/2~ F(u;(x)) exp (mx), for i=1 and 2, where F(u)={1-(1+u)exp(—u))/2.
Then Uj(x}=—mF(u,(x)) exp {(mx), and

U{x)=—m I F(u,(x)) exp (mx) dx

(the improper integral is seen to exist). Since the function F is strictly increasing, the
function x - U,(x)— U,(x), which does not vanish identically, is nonnegative and
increasing. Therefore, lim U/ (x} <lim U;(x) as x>0, and this is not possible since
lim U,(x)=1lim U,(x) = 6°/2 as x—» o0, from condition (A.5).

THEOREM Ad. [f m<0 and 0< 8 <o0, then (A1), (A4) have a unique solution
u such that u'(x)>0 in —00<<x <00, u(x)~»0 as x»—00, u(x)—0x->c as x>0, for
some finite constant c.

Proof. If 6 =1, the result is readily obtained from Corollary 3.2 and Lemma A.1;
if 8 1, the result 15 obtained by means of the transformation {(A.3).

Remark A.5. Theorem A.4 contains the results by Hastings and Poore [18], who
proved existence and uniqueness of solution of (A.1) for m < 0, with boundary condi-
tions

(A7) '(x)»0 asx->—00, w(x)>8 asx->c0,

since, as we will see now, conditions (A.4) and (A.7) are equivalent when applied to
(A.1). In fact, we will see that both (A.4) and (A.7) are equivalent to the following
boundary condition:

(A.8) u{x)>0 as x-> -0, u(x)—6x-»¢ asx->w

for some finite constant ¢. That (A.4) implies (A.7) and (A.8) comes from Lemma A.l.
Formulae (A.7) imply (A.4) since, by the argument in the proof of Lemma A.1, any
solution u of (A.1), (A.7) satisfies {A.5). Furthermore, the function x - u(x)—6x is
decreasing and thus it is bounded above as x + <. Then, u{x) = w,(x) in —0 < x < 00,
where w, is the supersolution of (3.2}, if b is sufficiently large. By the argument of the
proof of Theorem 3.1, u(x)}=f#(x) in —0 < x < oo, where i is the unique solution of
(A.1), (A4). Since & satisfies (A.5), u=4 (Lemma A.3) and satisfies (A.4). Finally,
any solution of (A.1), (A.8) clearly satisfies (A.4).

Now we consider the case m>0.

LEMMA A6, If m=>0, for each u, =0, there is a unique solution, u{u,, x), defined
in —w < x <0, of the initial value problem

(A.9) ufox’=(u/2) exp (mx—u), u->uy, u/ax>0 asx—>—o,

and it is such that

(a) w(0; x)=0 forall xeR; qu/ox>0 for all u,>0 and all xcR.

(b) If u,>> 0, then the derivative du(uy, x)}/ dug = z(ug, x) exists in «~0 < x <0 and
is twice continuously differentiable with respect to x.



(c) Ifuy> 0, then the limits lim du{uy; x)/8x = ¢r(u,) and lim 8z (uy; x)/3x = h(u,),
as x>, exist. In addition, the function u,— (ug) is continuously differentiable and
satisfies gr(ug) > m, ' (1) = h(up) # 0 in 0 <y <00,

Proof. See Hastings and Poore [19], where this result is used to obtain uniqueness
for (A.1), (A.7) when m>0 and 0=1.

Lemma A7, If m>>0, the function § of Lemma A6 is such that

(a) ¢(up)~>2m as uy~>x;

(b) #(ug)>0 as uy—> 0;

() &' (up) <0 for all u,= 0.

Proof. (a) We multiply {(A.9) by du/dx, integrate from zero to +oo, and integrate
by parts twice, to obtain (recall that dufu,, o0)/9x > m},

[ (o) +3u(ug; 0}/ ax —2m[¥r(uo) — du(ug; 0)/8x])
(A.10) =[1+u(uy; 0)] exp [—u{uy; 0)]

+m J exp [mx — u(uy; x)] dx.
[
(Equation (A.10) was used by Ludford, Yanitell, and Buckmaster [5] to prove that
(A.1), (A.7) has no solution if 8=1and }=m<1.)
Now, since the function x - u(ug; x} is strictly increasing, we have

o

f exp (mx—u) dx{I (u/ up) exp (mx —u) dx

il L

(A.11)
= {2/ ue)[ ¥ (ug) — 3uluy; 0)/9x)

(use (A.9) to obtain the last equality). In addition, we multiply (A9} by ou/ax, and
integrate from —o0 to zero, to obtain

(0

[auluy; 0)/3x])* = w(ou/ox) exp (mx —u) dx

O

< u(du/dx) exp (—u) dx

J—m

< | wuexp(—u)du

LY

Then
(A.12) du{uy; 0)/ox—>0 as uy—> 0,

and the desired result is easily obtained from (A.12), when we take into account (A.11),
(A.12).

(b) For each uy<1, let x,€R be (uniquely)} defined by u(uy; x,)=1. Then
u{uy; x) < for x < x; and integration of {A.9) from —c0 to x yields

X

{u/2) exp (mx—u) dx

auluy, x)/ax= I

x

<{u/2)exp (—u) I exp {mx) dx

=(u/2Zm)exp (mx—u)



for all xe]-o0, x,[ (the function u - u exp(—u) is strictly increasing in 0=u=1),
Then (2m/u}{ou/ax)exp (u)<exp(mx) in —o<x<x;, and integration of this
inequality from —oo to x, leads to

1

2m? .[ u~" exp (u) du < exp (mx,).
Hip

Thus x, =% as u,~ 0, and the conclusion follows from the next equation, which is

obtained by multiplying (A.9) by su/dx and integrating from x, to %

[+ =]

lug)* —[ouluy, x,)/ax)* = J u(ou/ox) exp (mx —u) dx

> exp (mx,) J uexp (—u) du.
1

(¢) Since ¢'(1e) # 0 in 0< uy<oo (Lemma A.6), parts (a) and (b) above yield the
result.

THEOREM AB. (a) If m>0 and 2m <8< 0, then (A.1), (A.4) have a unique
solution u, and u'(x) > 0 in —c0 < x <0, u(x}> tgas x» —o0 and u(x)— 8x ~ cas x - <o,
Jor some finite constants u, and c such that u,> 0. If 0<< 8 =2m, then (A.1}, (A.4) have
no solution.

(b) If m=>0, let u, and u, be the solutions of (A.1), (A4) for =0, and 6 =0,,
with 2m < 8, << 8, <00, Then w, << t, as x - —.

Proof. Apply Lemmas A.1 and A7.

Remarks A9. (a) Part (b} of Theorem A.8 is needed in §3 to analyze the
asymptotic behavior of some solutions of (1.1)-(1.4) as ¢t >0 when m > 0.

(b) Part (a) of Thecrem A.8 contains the results by Hastings and Poore [19], who
proved existence and uniqueness of the solution of (A.1), (A.7) for 8=1if 0<m<}
and nonexistence if m =1, since, as in Remark A.5, conditions (A.4), (A.7), and

(A.13) U U, as x> =00, u—fx->¢c as x-00,

are equivalent when applied to {(A.1). The equivalence of conditions (A.4), (A.7), and
(A.13) can be proved by the same argument in Remark A.5 using Lemmas A.6 and
A.7 and Theorem A.8.

The following result is needed in the proof of Theorem 3.4.

LEMMA A.10. If 0< m <3, let u be the unique solution of (A.1), (A.2). If a solution
i of (A.1) is such that

O0=d(x)<u(x) forallxeR,

then G(x)=0 for all xeR.

Proof. Since the function x - #'(x) is strictly increasing, there exist the limits of
ii’ as x»—0o0 and as x- 0, and lim #'{x) =0 as x> —c0, lim #'(x) =0 as x> o, for
some @¢[0,1]. Then & satisfies (A.1), (A.4) (Remark A.9b), the limit of i as x » ~00,
iy, exists and is finite (Lemma A.1), and @ cannot be strictly positive (Theorem A.8).
Therefore, ii;=0 (Lemma A.6¢) and #(x)=0 for all xe¢R (Lemma A.6a).
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