1,027 research outputs found
Continuous laser hardening with induction pre-heating
A novel way of continuous surface hardening of steel bodies by a laser beam is modeled. This heat treatment is supplemented with pre-heating of the hardened parts by a classic inductor in order to reduce the temperature gradients and subsequent mechanical stresses in the processed material. The mathematical model of the process is solved numerically in 3D and the solution respects all important nonlinearities (a saturation curve of the hardened steel and temperature dependences of its physical properties). The methodology is illustrated with a typical example, whose results are presented and discussed
Cosmological CMBR dipole in open universes ?
The observed CMBR dipole is generally interpreted as a Doppler effect arising
from the motion of the Earth relative to the CMBR frame. An alternative
interpretation, proposed in the last years, is that the dipole results from
ultra-large scale isocurvature perturbations. We examine this idea in the
context of open cosmologies and show that the isocurvature interpretation is
not valid in an open universe, unless it is extremely close to a flat universe,
.Comment: 26 pages, Latex, 6 figures, to appear in Phys. Rev.
Inflationary Cosmological Perturbations of Quantum-Mechanical Origin
This review article aims at presenting the theory of inflation. We first
describe the background spacetime behavior during the slow-roll phase and
analyze how inflation ends and the Universe reheats. Then, we present the
theory of cosmological perturbations with special emphasis on their behavior
during inflation. In particular, we discuss the quantum-mechanical nature of
the fluctuations and show how the uncertainty principle fixes the amplitude of
the perturbations. In a next step, we calculate the inflationary power spectra
in the slow-roll approximation and compare these theoretical predictions to the
recent high accuracy measurements of the Cosmic Microwave Background radiation
(CMBR) anisotropy. We show how these data already constrain the underlying
inflationary high energy physics. Finally, we conclude with some speculations
about the trans-Planckian problem, arguing that this issue could allow us to
open a window on physical phenomena which have never been probed so far.Comment: Review Article, 47 pages, 3 figures. Lectures given at the 40th
Karpacz Winter School on Theoretical Physics (Poland, Feb. 2004), submitted
to Lecture Notes in Physic
Generating --cosmologies with perfect fluid in dilaton gravity
We present a method for generating exact diagonal -cosmological
solutions in dilaton gravity coupled to a radiation perfect fluid and with a
cosmological potential of a special type. The method is based on the symmetry
group of the system of -field equations. Several new classes of explicit
exact inhomogeneous perfect fluid scalar-tensor cosmologies are presented.Comment: 10 pages, LaTe
Fly ash-derived MCM-41 as a low-cost silica support for polyethyleneimine in post-combustion CO2 capture
The mesoporous silicate molecular sieve, MCM-41, has been synthesized from pulverized coal fly ash (PFA), where the silicate filtrate used is a by-product from hydrothermal zeolite production. Rice husk ash was also used for comparison but fusion with sodium hydroxide was used to prepare the silicate filtrate, along similar lines to earlier reports of using PFA as a precursor for MCM-41 synthesis. The MCM-41 samples are chemically and mineralogically similar to a commercially available sample, but with higher pore volumes dominated by mesopores (0.92–1.13 cf. 0.88 cm3 g−1). After polyethyleneimine (PEI) impregnation for CO2 capture, the ash derived MCM-41 samples displayed higher uptakes than the commercial sample with the maximum achievable PEI loading of 60 Wt.% PEI (dry basis) before particle agglomeration occurs, approximately 13 compared to 11 Wt.%, respectively, the latter being comparable to earlier reports in the literature. The PFA sample that displays the fastest kinetics to achieve 90% of the equilibrium uptake had the largest mesopore volume of 1.13 cm3 g−1. Given the PFA-derived MCM-41 uses a waste silicate solution for hydrothermal preparation and no prior preparation is needed, production costs are estimated to be considerable lower where silicate solutions need to be prepared by base treatment, even if ash is used, as for the RHA derived MCM-41 used here
Strike point splitting induced by the application of magnetic perturbations on MAST
Divertor strike point splitting induced by resonant magnetic perturbations
(RMPs) has been observed on MAST for a variety of RMP configurations in a
plasma scenario with Ip=750kA where those configurations all have similar
resonant components. Complementary measurements have been obtained with
divertor Langmuir probes and an infrared camera. Clear splitting consistently
appears in this scenario only in the even configuration of the perturbation
coils, similarly to the density pump-out. These results present a challenge for
models of plasma response to RMPs.Comment: 9 pages, 4 figures, submitted to the proceedings of the 20th
Conference on Plasma Surface Interactions, to be published in the Journal of
Nuclear Material
EMon : embodied monitorization
Serie : Lecture Notes in Computer Science, vol. 5859The amount of seniors in need of constant care is rapidly rising: an
evident consequence of population ageing. There are already some
monitorization environments which aim to monitor these persons while they
remain at home. This, however, although better than delocalizing the elder to
some kind of institution, may not still be the ideal solution, as it forces them to
stay inside the home more than they wished, as going out means lack of
accompaniment and a consequent sensation of fear. In this paper we propose
EMon: a monitorization device small enough to be worn by its users, although
powerful enough to provide the higher level monitorization systems with vital
information about the user and the environment around him. We hope to allow
the representation of an intelligent environment to move with its users, instead
of being static, mandatorily associated to a single physical location. The first
prototype of EMon, as presented in this paper, provides environmental data as
well as GPS coordinates and pictures that are useful to describe the context of
its user
The No-defect Conjecture: Cosmological Implications
When the topology of the universe is non trivial, it has been shown that
there are constraints on the network of domain walls, cosmic strings and
monopoles. I generalize these results to textures and study the cosmological
implications of such constraints. I conclude that a large class of
multi-connected universes with topological defects accounting for structure
formation are ruled out by observation of the cosmic microwave background.Comment: 4 pages, 1 figure, accepted for publication as a brief report in
Phys. Rev.
Microwave Background Anisotropies and Nonlinear Structures I. Improved Theoretical Models
A new method is proposed for modelling spherically symmetric inhomogeneities
in the Universe. The inhomogeneities have finite size and are compensated, so
they do not exert any measurable gravitational force beyond their boundary. The
region exterior to the perturbation is represented by a
Friedmann-Robertson-Walker (FRW) Universe, which we use to study the anisotropy
in the cosmic microwave background (CMB) induced by the cluster. All
calculations are performed in a single, global coordinate system, with
nonlinear gravitational effects fully incorporated. An advantage of the gauge
choices employed here is that the resultant equations are essentially Newtonian
in form. Examination of the problem of specifying initial data shows that the
new model presented here has many advantages over `Swiss cheese' and other
models. Numerical implementation of the equations derived here is described in
a subsequent paper.Comment: 10 pages, 4 figures; Monthly Notices of the Royal Astronomical
Society (MNRAS), in pres
DT/T beyond linear theory
The major contribution to the anisotropy of the temperature of the Cosmic
Microwave Background (CMB) radiation is believed to come from the interaction
of linear density perturbations with the radiation previous to the decoupling
time. Assuming a standard thermal history for the gas after recombination, only
the gravitational field produced by the linear density perturbations present on
a universe can generate anisotropies at low z (these
anisotropies would manifest on large angular scales). However, secondary
anisotropies are inevitably produced during the nonlinear evolution of matter
at late times even in a universe with a standard thermal history. Two effects
associated to this nonlinear phase can give rise to new anisotropies: the
time-varying gravitational potential of nonlinear structures (Rees-Sciama RS
effect) and the inverse Compton scattering of the microwave photons with hot
electrons in clusters of galaxies (Sunyaev-Zeldovich SZ effect). These two
effects can produce distinct imprints on the CMB temperature anisotropy. We
discuss the amplitude of the anisotropies expected and the relevant angular
scales in different cosmological scenarios. Future sensitive experiments will
be able to probe the CMB anisotropies beyong the first order primary
contribution.Comment: plain tex, 16 pages, 3 figures. Proceedings of the Laredo Advance
School on Astrophysics "The universe at high-z, large-scale structure and the
cosmic microwave background". To be publised by Springer-Verla
- …
