6,426 research outputs found
SINDA/SINFLO computer routine, volume 1, revision A
The SINFLO package was developed to modify the SINDA preprocessor to accept and store the input data for fluid flow systems analysis and adding the FLOSOL user subroutine to perform the flow solution. This reduced and simplified the user input required for analysis of flow problems. A temperature calculation method, the flow-hybrid method which was developed in previous VSD thermal simulator routines, was incorporated for calculating fluid temperatures. The calculation method accuracy was improved by using fluid enthalpy rather than specific heat for the convective term of the fluid temperature equation. Subroutines and data input requirements are described along with user subroutines, flow data storage, and usage of the plot program
Approximation Algorithms for the Max-Buying Problem with Limited Supply
We consider the Max-Buying Problem with Limited Supply, in which there are
items, with copies of each item , and bidders such that every
bidder has valuation for item . The goal is to find a pricing
and an allocation of items to bidders that maximizes the profit, where
every item is allocated to at most bidders, every bidder receives at most
one item and if a bidder receives item then . Briest
and Krysta presented a 2-approximation for this problem and Aggarwal et al.
presented a 4-approximation for the Price Ladder variant where the pricing must
be non-increasing (that is, ). We present an
-approximation for the Max-Buying Problem with Limited Supply and, for
every , a -approximation for the Price Ladder
variant
An O(n^3)-Time Algorithm for Tree Edit Distance
The {\em edit distance} between two ordered trees with vertex labels is the
minimum cost of transforming one tree into the other by a sequence of
elementary operations consisting of deleting and relabeling existing nodes, as
well as inserting new nodes. In this paper, we present a worst-case
-time algorithm for this problem, improving the previous best
-time algorithm~\cite{Klein}. Our result requires a novel
adaptive strategy for deciding how a dynamic program divides into subproblems
(which is interesting in its own right), together with a deeper understanding
of the previous algorithms for the problem. We also prove the optimality of our
algorithm among the family of \emph{decomposition strategy} algorithms--which
also includes the previous fastest algorithms--by tightening the known lower
bound of ~\cite{Touzet} to , matching our
algorithm's running time. Furthermore, we obtain matching upper and lower
bounds of when the two trees have
different sizes and~, where .Comment: 10 pages, 5 figures, 5 .tex files where TED.tex is the main on
Discrete Self-Similarity in Type-II Strong Explosions
We present new solutions to the strong explosion problem in a non-power law
density profile. The unperturbed self-similar solutions discovered by Waxman &
Shvarts describe strong Newtonian shocks propagating into a cold gas with a
density profile falling off as , where (Type-II
solutions). The perturbations we consider are spherically symmetric and
log-periodic with respect to the radius. While the unperturbed solutions are
continuously self-similar, the log-periodicity of the density perturbations
leads to a discrete self-similarity of the perturbations, i.e. the solution
repeats itself up to a scaling at discrete time intervals. We discuss these
solutions and verify them against numerical integrations of the time dependent
hydrodynamic equations. Finally we show that this method can be generalized to
treat any small, spherically symmetric density perturbation by employing
Fourier decomposition
The Provable Virtue of Laziness in Motion Planning
The Lazy Shortest Path (LazySP) class consists of motion-planning algorithms
that only evaluate edges along shortest paths between the source and target.
These algorithms were designed to minimize the number of edge evaluations in
settings where edge evaluation dominates the running time of the algorithm; but
how close to optimal are LazySP algorithms in terms of this objective? Our main
result is an analytical upper bound, in a probabilistic model, on the number of
edge evaluations required by LazySP algorithms; a matching lower bound shows
that these algorithms are asymptotically optimal in the worst case
Universal linear relations between susceptibility and Tc in cuprates
We developed an experimental method for measuring the intrinsic
susceptibility \chi of powder of cuprate superconductors in the zero field
limit using a DC-magnetometer. The method is tested with lead spheres. Using
this method we determine \chi for a number of cuprate families as a function of
doping. A universal linear (and not proportionality) relation between Tc and
\chi is found. We suggest possible explanations for this phenomenon.Comment: Accepted for publication in PR
Quark mass and condensate in HQCD
We extend the Sakai-Sugimoto holographic model of QCD (HQCD) by including the
scalar bi-fundamental "tachyon" field in the 8-brane-anti-8-brane probe theory.
We show that this field is responsible both for the spontaneous breaking of the
chiral symmetry, and for the generation of (current algebra) quark masses, from
the point of view of the bulk theory. As a by-product we show how this leads to
the Gell-Mann- Oakes-Renner relation for the pion mass.Comment: 23 pages, 7 figures; v2: corrected typos in eqs. (4.3), (4.4), (4.5),
(4.9) and (4.11), and corrected figures 3, 4, 5 and 6; v3: section 5.3 on the
pion mass rewritten in a clearer way, version published in JHE
Nonlinear Induction Detection of Electron Spin Resonance
We present a new approach to the induction detection of electron spin
resonance (ESR) signals exploiting the nonlinear properties of a
superconducting resonator. Our experiments employ a yttrium barium copper oxide
(YBCO) superconducting stripline microwave (MW) resonator integrated with a
microbridge. A strong nonlinear response of the resonator is thermally
activated in the microbridge when exceeding a threshold in the injected MW
power. The responsivity factor characterizing the ESR-induced change in the
system's output signal is about 100 times larger when operating the resonator
near the instability threshold, compared to the value obtained in the linear
regime of operation. Preliminary experimental results, together with a
theoretical model of this phenomenon are presented. Under appropriate
conditions nonlinear induction detection of ESR can potentially improve upon
the current capabilities of conventional linear induction detection ESR
Imaging Active Infection in vivo Using D-Amino Acid Derived PET Radiotracers.
Occult bacterial infections represent a worldwide health problem. Differentiating active bacterial infection from sterile inflammation can be difficult using current imaging tools. Present clinically viable methodologies either detect morphologic changes (CT/ MR), recruitment of immune cells (111In-WBC SPECT), or enhanced glycolytic flux seen in inflammatory cells (18F-FDG PET). However, these strategies are often inadequate to detect bacterial infection and are not specific for living bacteria. Recent approaches have taken advantage of key metabolic differences between prokaryotic and eukaryotic organisms, allowing easier distinction between bacteria and their host. In this report, we exploited one key difference, bacterial cell wall biosynthesis, to detect living bacteria using a positron-labeled D-amino acid. After screening several 14C D-amino acids for their incorporation into E. coli in culture, we identified D-methionine as a probe with outstanding radiopharmaceutical potential. Based on an analogous procedure to that used for L-[methyl-11C]methionine ([11C] L-Met), we developed an enhanced asymmetric synthesis of D-[methyl-11C]methionine ([11C] D-Met), and showed that it can rapidly and selectively differentiate both E. coli and S. aureus infections from sterile inflammation in vivo. We believe that the ease of [11C] D-Met radiosynthesis, coupled with its rapid and specific in vivo bacterial accumulation, make it an attractive radiotracer for infection imaging in clinical practice
Recommended from our members
Strategic addition of an N-linked glycan to a monoclonal antibody improves its HIV-1-neutralizing activity
Ibalizumab is a humanized monoclonal antibody that binds human CD4—a key receptor for HIV—and blocks HIV-1 infection. However, HIV-1 strains with mutations resulting in loss of an N-linked glycan from the V5 loop of the envelope protein gp120 are resistant to ibalizumab. Previous structural analysis suggests that this glycan fills a void between the gp120 V5 loop and the ibalizumab L chain, perhaps causing steric hindrance that disrupts viral entry. If this void contributes to HIV-1 resistance to ibalizumab, we reasoned that ‘refilling’ it by engineering an N-linked glycan into the ibalizumab L chain at a position spatially proximal to gp120 V5 may restore susceptibility to ibalizumab. Indeed, one such ibalizumab variant neutralized 100% of 118 tested diverse HIV-1 strains in vitro, including ten strains resistant to parental ibalizumab. These findings demonstrate that the strategic placement of a glycan in the variable region of a monoclonal antibody can substantially enhance its activity
- …
