# **General Disclaimer**

# One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

(MASA-CP-144511) SINFA/SINFLO COMPUTER FOUTINE, VOLUME 1, PEVISION & (LTV Aerospace COED.) 15C p HC 86.25 CSCL 20P

N75-33352

NASA CR-

44511

Unclas G3/34 42778

SINDA/SINFLO COMPUTER ROUTINE

Report No. 2-53002/4R-3167

Revision A

VOLUME I

15 February 1975

Submitted By

VOUGHT SYSTEMS DIVISION LTV Aerospace Corporation P.O. Box 5907 Dallas, Texas

To

TRW SYSTEMS GROUP P.O. Box 58327-Space Park Drive Houston, Texas

LTV AEPOSPACE CONFORMION

AVAIL

PERFORMED UNDER TRW SUBCONTRACT 183LK3E NASA CONTRACT NAS9-10435

SINDA/SINFLO COMPUTER ROUTINE

Report No. 2-53002/4R-3167

**Revision** A

VOLUME I 15 February 1975

Submitted By

VOUGHT SYSTEMS DIVISION LTV Aerospace Corporation P.O. Box 5907 Dallas, Texas

То

TRW SYSTEMS GROUP P.O. Box 58327 Space Park Drive Houston, Texas

Prepared by:

So the second marine and

Ī

I

I

and the second

Law and

- 2-

A DEC

The second

T

I

A. Oren

W Mans A.R. D. R. Williams

Approved by:

R. J. French, Supervisor EC/LS Group

#### TABLE OF CONTENTS

1

(\*\*\* · \*|\*

| 1.0 | INTRODUCTION AND SUMMARY                                 | 1  |
|-----|----------------------------------------------------------|----|
| 2.0 | DISCUSSION OF METHODS                                    | 3  |
|     | 2.1 Thermal Analysis Methods                             | 3  |
|     | 2.1.1 Flow-Hybrid Solution for Explicit Problems         | 3  |
|     | 2.1.2 Fluid Temperature Solution for Implicit Problems . | 6  |
|     | 2.1.3 Fluid Temperature Solution for General Hybrid      |    |
|     | Problems                                                 | 7  |
|     | 2.1.4 Fluid Temperature Solution for Steady State        |    |
|     | Problems                                                 | 8  |
|     | 2.1.5 Coefficient to Temperature Equations               | 9  |
|     | 2.1.6 Heat Exchanger Analysis                            | 2  |
|     | 2.1.7 Cabin Analysis                                     | 7  |
|     | 2.2 Fluid Flow Analysis                                  | 4  |
|     | 2.2.1 Overall Flow Model Description 2                   | :4 |
|     | 2.2.2 Tube Conductor Determination                       | 8! |
|     | 2.2.3 Valve Analysis                                     | 10 |
|     | 2.2.4 Pressure-Flow Network Solution                     | 16 |
|     | 2.2.5 Pump and System Pressure - Flow Matching 3         | 19 |
| 3.0 | SINDA ROUTINE MODIFICATIONS AND ADDITIONS                | 4  |
|     | 3.1 Preprocessor Modifications and Additions 4           | 4  |
|     | 3.2 Execution Routine Modifications                      | 14 |
| 4.0 | FLOW DATA BLOCK INPUT FORMAT                             | 15 |
|     | 4.1 NETWORK and SUBNETWORK Formats                       | 17 |
|     | 4.2 FLUID LUMP DATA Block Format                         | 53 |
|     | 4.3 VALVE DATA Input Block (Optional)                    | 54 |
|     | 4.4 FLOW SOURCE Data Block                               | 56 |
|     | 4.5 Example of Flow Input                                | 57 |
| 5.0 | USER SUBROUTINES                                         | 50 |
| 6.0 | SAMPLE PROBLEM                                           | 03 |
| 7.0 | REFERENCES                                               | 29 |

# PAGE

7

184

e

# TABLE OF CONTENTS (CONT'D)

# PAGE

2

# APPENDICES

| A | Radiation Interchange Analysis     | A-1 |
|---|------------------------------------|-----|
| В | Flow Data Storage                  | B-1 |
| С | Users Description For Plot Program | C-1 |
| D | Subroutine Listings                | D-1 |

# LIST OF TABLES

| 1 | SINFLO Input Blocks                                     | • | • | • | • | 46              |
|---|---------------------------------------------------------|---|---|---|---|-----------------|
| 2 | Input Format for The NETWORK and SUBNETWORK Data Blocks | • | • | • | • | <sup>-</sup> 48 |
| 3 | Value of GC For Various Problem Units                   | • | • | • | • | 51              |
| 4 | Flow Data Input for Sample Problem                      | ٠ | • | • | • | 58              |
| 5 | User Subroutines                                        | • | • | • | • | 61              |
| 6 | Listing of Sample Problem Input                         | • | • | • | • | 106             |
| 7 | Sample Problem Printed Output                           | • | • | • | • | 113             |
| 8 | Plot Run Printed Output                                 | • | • | • |   | 117             |

# LIST OF FIGURES

| 1 | Flow System Schematic              | 25 |
|---|------------------------------------|----|
| 2 | Main Network and Subnetworks       | 27 |
| 3 | Friction Factor vs Reynolds Number | 31 |
| 4 | Rate Limited Valve Operation       | 33 |
| 5 | System/Pump Curve Solution         | 40 |
| 6 | Flow Charts of FLOSOL and NTSOL    | 70 |
| 7 | Flow Charts of NTSOL1 and NTSOLN   | 71 |
| 8 | Flow Chart of FLBAL                | 72 |

\*Contained in Volume 11

× 1 1

# LIST OF FIGURES (CONT'D)

and the second second second second second second second

Ţ

frand f

Ţ

T

Ţ

Ţ

and a state of the state of the second second

# PAGE

| 9  | Fluid Model of the Sample Problem      | 104 |
|----|----------------------------------------|-----|
| 10 | Structure Model for The Sample Problem | 105 |
| 11 | Radiator Temperature Plots             | 122 |
| 12 | System Temperatures Plots              | 123 |
| 13 | System Flow Rate Plots                 | 124 |
| 14 | Radiator Flow Rate Plots               | 125 |
| 15 | System Pressure Plots                  | 126 |
| 16 | Radiator Pressure Plots                | 127 |
| 17 | Valve Position Plots                   | 128 |

#### 1.0 INTRODUCTION AND SUMMARY

N

(internal)

1

Ī

中主体

This report describes the SINFLO modification package for SINDA, "which was developed by the Vought Systems Division (VSD) of LTV Aerospace Corporation under subcontract to TRW Systems Group during the period of August 1973 to February 1975. Also included in this report is a description of the capabilities added during the development of SINDA-VERSION  $9^5$ . The SINFLO package was developed to modify the SINDA preprocessor to accept and store the input data for fluid flow systems analysis and adding the FLOSOL user subroutine to perform the flow solution. This greatly reduced and simplified the user input required for analysis of flow problems. Also, a temperature calculation method, the Flow-Hybrid method which was developed in previous VSD thermal simulator routines<sup>3</sup>, was incorporated for calculating fluid temperatures. The calculation method accuracy was improved by using fluid enthalpy rather than specific heat for the convective term of the fluid temperature equation.

The effort described herein was performed under Task Order LT-1 and Task Order LT-2 of Subcontract 183LK3E of NASA Contract NAS9-10435. Task Order LT-1 calls for the completion of the following tasks:

- A. Optimize the SINDA Routine flow input data which includes the following effort:
  - Establish the best input format for the flow systems data block to be added.
  - Establish the format for storing the flow systems data by the preprocessor.
  - Submit the user input and preprocessor output formats for mutual agreement between NASA-JSC, TRW, Inc. and VSD.
  - Modify the preprocessor to accept the input from the new flow data block and store for use with processor routines.
- B. Write routine to perform fluid flow analysis using data stored by proprocessor.
- C. Develop Fluid Hybrid Routine for SINDA which will take advantage of the temperature calculation equation form for the fluid lumps to calculate the fluid and the tube lumps temperatures using an implicit method while the remaining structure lumps will be calculated utilizing the method specified by the user.

<sup>\*</sup>Superscripts indicate reference numbers in Section 7.0

Task Order LT-2 required the completion of the following tasks:

- A. Modify the following SINDA execution routines to interface with subroutine FLUID so that thermal analysis of fluid flow systems may be performed: (1) SNFRDL, (2) SNFRWD, (3) CINDSL, (4) FWDBCK, (5) SNDSNR, (6) STDSTL.
- B. Add the capability to analyze valves which will split incoming flow between the two outlet sides of the valve in proportion to the valve position regardless of the pressure balance.

These tasks were completed and the resulting routines added to and substituted into the SINDA general thermal analyzer routine expanded the capabilities of the SINDA to include analysis of systems containing flowing fluids, fluid system controls and heat exchangers. A pressure-flow analysis of a system containing an arbitrary tube network is performed simultaneously with the thermal analysis during transient or steady state solutions. This permits the mutual influences of thermal and fluid problems to be included in the analysis.

The general flow solution capabilities include extensive valve characterizations and ability to match pump curves and system pressure-flow characteristics. The valves have been formulated so that either cooling (space radiator) or heating (solar absorber) situations may be controlled with any of the valve types. Pump options included are pressure rise as a tabulated function of system flow rate and pressure rise as a polynomial function of flow rate.

The formulation of the capabilities added during this effort are described in Section 2.0, modifications to the SINDA subroutines are described in Section 3.0, and the data input requirements for the new data block are described in Section 4.0. Section 5.0 describes user subroutines which have been added or modified by VSD including those developed for SINDA-VERSION9. Ì

ľ

THE

Appendix A contains a description of the capabilities incorporated into subroutines during the development of SINDA-VERSION 9 to facilitate analysis of radiation heat transfer in an enclosure. A description of the usage of the plot program is presented in Appendix C.

A discussion of the flow data storage is presented in Appendix B. Listings of the new and modified subroutines are given in Appendix C. Appendix D is contained in Volume II.

#### 2.0 DISCUSSION OF METHODS

de

11

4.00

9 FF

Ţ

雷見

The analytical methods utilized in the subroutines which were added to the SINDA routine are described in this Section. Section 2.1 describes the methods used for calculating temperatures of flowing fluids and Section 2.2 describes methods used in the pressure/flow analysis of flow networks.

#### 2.1 <u>Thermal Analysis Methods</u>

The Flow-Hybrid method for obtaining temperature solutions was formulated for use with several SINDA temperature solution routines including CNFRWD, CNFAST, CNBACK, CNFWBK, CINDSS, HYBRID, SNFRDL, SNFRWD, CINDSL, FWDBCK, SNDSNR and STDSTL. The formulation included utilization of the fluid flow analysis data for the thermal analysis thus minimizing input and data storage requirements. The Flow-Hybrid method is described separately below for explicit methods (CNFRWD, SNFRDL, SNFRWD, and CNFAST), implicit methods (CNBACK, FWDBCK and CNFWBK), general hybrid methods (HYBRID) and steady state (CINDSS, SNDSNR, STDSTL and CINDSL).

e

#### 2.1.1 Flow-Hybrid Solution for Explicit Problems

The fluid nodes temperatures are solved using the "Flow-Hybrid" solution method in the explicit SINDA user subroutines, CNFRWD, SNFRDL, SNFRWD and CNFAST. This method requires that the finite difference equations be written in the implicit form for the fluid lumps, while remainder of the lumps in the problem are solved using the explicit methods.

> The finite difference equations for the Flow-Hybrid method are as follows: For the fluid lump

$$T_{f} = T_{f} + \frac{\Delta \tau}{w_{f}c_{f}} \left[ \dot{w} \, \bar{C}p \, (T_{u} - T_{f}) + HA(T_{t} - T_{f}) + Q_{f} \right]$$
(1)

For the tube lump

Τ<sub>f</sub>

$$T_{t}' = T_{t} + \frac{\Delta \tau}{w_{t}c_{t}} \left[ \sum_{j} G_{tj}(T_{j} - T_{t}) + HA(T_{f}' - T_{t}') + Q_{t} \right]$$
 (2)

where:

- = the fluid lump temperature
- $T_{t}$  = the tube lump temperature

Δτ = time increment

- W<sub>f</sub> = weight of fluid lump
- C<sub>f</sub> = capacitance of the fluid
- $\dot{w}$  = flowrate in the tube which contains the fluid lump

Cp = mean specific heat for the flowing fluid between the upstream lump and the fluid lump

$$\frac{h_{f} - h_{u}}{T_{f} - T_{u}}$$

=

the enthalpy of the fluid lump at temperature  $T_{f}$ h<sub>f</sub> the enthalpy of the fluid lump at temperature T, h, ₽ T<sub>11</sub> the temperature of upstream lump = the convection coefficient times area HA ₽ G<sub>tj</sub> the conductance value from tube lump t to lump j W<sub>t</sub> weight of tube lump t = ct Qf = specific heat of tube lump t the heat absorbed by fluid lump f = the heat absorbed by tube lump t

If the fluid lump is the first in the tube,  $h_u$  is determined as follows:

$$h_{u} = \frac{\sum_{k} \cdot w_{k} h_{ok}}{\sum_{k} \cdot w_{k}}$$

where

h = is the enthalpy of the fluid leaving tube k and entering
fluid lump f

 $\dot{w}_{b}$  = is the flow rate of tube k

The value for  $T_u$  for the first fluid lump in a tube is obtained by reverse interpolation of the enthalpy curve at  $h_u$ . The primed temperatures in equations (1) and (2) represent temperatures at the end of the iteration; the unprimed temperature represent these at the iteration start.

The fluid hybrid solution methods are derived as follows:

Solve equation (2) for  $T_t'$ 

. .

Ŧ

Ţ

すじる

144

No.

Ĩ

T

$$T_{t}' = \frac{T_{t} + \frac{\Delta \tau}{wt^{c}t} \left[\sum_{j} G_{tj} (T_{j} - T_{t}) + Q_{t}\right] + \frac{\Delta \tau HA}{wt^{c}t} T_{f}'}{1 + \frac{\Delta \tau HA}{wt^{c}t}}$$

$$= \frac{T_{ti}' + \frac{\Delta \tau HA}{w_t c_t} T_f'}{1 + \frac{\Delta \tau HA}{w_t c_t}}$$
(3)

where T<sub>ti</sub> is the intermediate tube temperature that would be obtained with no connection to the fluid lump.

If equation (3) is substituted into equation (1) and simplified we get:

$$T_{f}' = \frac{T_{f} + \frac{\Delta \tau}{w_{f}c_{f}}}{1 + \frac{\Delta \tau}{w_{f}c_{f}}} \left[ \dot{w} \, \bar{c}pT_{u}' + \left( \frac{HA}{1 + \frac{HA\Delta \tau}{w_{t}c_{t}}} \right) T_{ti}' + Q_{f} \right]$$
(4)

The value of  $T'_{ti}$  in equation (3) is given by

$$T'_{ti} = T_t + \frac{\Delta \tau}{w_t c_t} \left[ \sum_j G_{tj} (T_j - T_t) + Q_t \right]$$
(5)

Examination of equation (4) reveals two primed temperatures:  $T_u$  and  $T_{ti}$ . Thus, we must calculate these values prior to evaluation of equation (4). The value of  $T_u$  can be obtained if the order of calculations start with the first lump in the system and progresses around the system in order, one lump at a time. Since the value of  $T_{ti}$  given by equation (5) contains no primed values, its value may be evaluated first. Thus, the order of calculations are:

- (1) Calculate the value of all  $T_{ti}$  using the normal explicit temperature calculations assuming no fluid lump convection exist. This is given by Equation (5).
- (2) Calculate the value of all  $T_f$  in order of their position in the tubes starting with the first lump in the first tube and progressing around the system.

(3) Update the tube temperature using equation (3) to obtain  $T_t$ . Of course the coefficients in equations (3), (4) and (5) are evaluated prior to evaluation of the equations. Methods used in determining coefficient values are discussed in Section 2.1.5.

#### 2.1.2 Fluid Temperature Solution for Implicit Problems

The implicit user subroutines, CNBACK, FWDBCK and CNFWBK, were modified so that the fluid temperatures are calculated simultaneously with the other temperatures of the problem. For CNBACK, FWDBCK and CNFWBK, the fluid lump temperatures are calculated using the relation

$$T_{f}' = \frac{T_{f} + \frac{\Delta \tau}{w_{f}c_{p}} \left[ \dot{w} \ \ddot{c}_{p}T_{u}' + HAT_{t}' + Q_{f} \right]}{1 + \frac{\Delta \tau}{w_{f}c_{p}} \left[ \dot{w} \ \ddot{c}_{p} + HA \right]}$$
(6)

Where all the variables are as defined for equations (1) and (2) and  $T_t$  is the last calculated value of the tube lump temperature.

The tube temperatures are calculated using the normal equations but are modified to use the  $HAT_f$  and HA terms as follows: For CNBACK:

$$T_{t}' = \frac{T_{t} + \frac{\Delta \tau}{w_{t}c_{t}} \left[\sum_{j} G_{tj}T_{j}' + Q_{t}' + HAT_{f}'\right]}{1 + \frac{\Delta \tau}{w_{t}c_{t}} \left[\sum_{j} G_{tj} + HA\right]}$$
(7)

For CNFWBK

L

十上

Ī

Į

Castin L

Ţ

The second se

$$T_{t}' = \frac{T_{t} + 2\frac{\Delta \tau}{W_{t}c_{t}} \left[ \sum_{j} G_{tj}T_{j}' + Q_{t}' + HAT_{f}' + \Sigma G_{tj}(T_{j}-T_{t}) + Q_{t} + HA(T_{f}-T_{t}) \right]}{1 + \frac{\Delta \tau}{2W_{t}c_{t}} \left[ \sum_{j} G_{tj} + HA \right]}$$
(8)

The order of calculations for the implicit routines are:

- Calculate the value of all T<sub>f</sub> using equation (6). Fluid flow data is utilized to obtain coefficients in the equation.
- (2) During the calculation in (1) the HA values and the fluid lump number for each tube lump are stored in the X array. (captured dynamic storage)
- (3) The temperatures for the remaining lumps are calculated using the normal calculations, except tube lump temperatures equations are modified to include the HA and HAT terms as shown in equations (7) and (8).

2.1.3 Fluid Temperature Solution for General Hybrid Problems

The HYBRID user subroutine was modified to permit calculation of fluid lump temperatures during the normal temperature calculations. Explicit and implicit lumps are determined by calculating the CSG value for each lump and comparing it with the input time increment. Those lumps with CSG values larger than the input time increment are explicit and the remaining lumps are implicit. If the tube lumps are all explicit, the fluid and tube lump temperatures are calculated using equations (3) and (4). If any of the tube lumps are implicit, the fluid lumps are calculated using equation (6) and tube lumps are calculated using the following equation:

$$T_{t}' = \frac{T_{t} + \frac{\Delta \tau}{w_{t}c_{t}} \left[ \left( \sum_{j=1}^{ni} G_{ji}T_{ji}' + HAT_{f}' + (1-\alpha) \sum_{j=1}^{ni} G_{ji}(T_{ji}-T_{t}) + Q_{t}'' + \sum_{j=1}^{ne} G_{je}(T_{je}-T_{t}) \right]}{1 + \frac{\Delta \tau}{w_{t}c_{t}} \left[ \left( \alpha \sum_{j=1}^{ni} G_{ji} + HA \right) \right]}$$

(9)

Where

The following calculation procedure is used:

- Determine the explicit and implicit lumps by comparing the CSG value for each lump with the input computation interval.
- (2) Determine which of the explicit lumps determined in step (1) are interface lumps. Interface lumps are subsequently treated as implicit lumps. Interface lumps are any explicit lumps which are connected to an implicit lump. If any tube lump is treated as an implicit lump, all tube lumps are treated as implicit lumps.
- (3) Calculate explicit lump temperatures using the same  $\Sigma G_{je}(T_j-T_i)$  for all interface nodes and for adjacent lumps if the adjacent lumps are implicit.
- (4) Calculate fluid and tube lump temperatures for tube lumps which are explicit.
- (5) Calculate implicit lump temperatures.

2.1.4 Fluid Temperature Solution for Steady State Problems

The steady state solution subroutines, CINDSS, CINDSL, STDSTL were modified to include a calculation of fluid lump temperatures. The following relations are used for calculating the fluid and tube lump temperatures: For the tube lump:

$$T_{t}' = \frac{\sum G_{ij}T_{j} + Q_{t} + HAT_{t}}{\sum G_{ij} + HA}$$
(10)

For the fluid lump:

**11 24** 

37

Å.

$$T_{f} = \frac{\dot{w} \, \overline{C}_{p} \, T_{u} + HAT_{t} + Q_{f}}{\dot{w} \, \overline{C}_{p} + HA}$$
(11)

The following order of calculation is used:

- (1) Calculate the fluid lump temperatures.
- (2) Calculate temperatures for all other lumps using the normal SINDA temperature equation, except tube lump temperature equations are modified to include the HA and HAT terms.

#### 2.1.5 Coefficient To Temperature Equations

A brief description of the methods used to obtain the convection heat transfer coefficient, H, and the mean specific heat for a flowing fluid  $\overline{C}p$  (Equation 1) is considered to be of value. They are discussed separately below.

#### Convection Coefficient Determination

Several methods are available to the SINFLO user for determine the heat transfer coefficient, H. The different options are available for each fluid lump and are specified by supplying values for Fl, the eighth value of the type array (see Section 4.2). When Fl is real, the programmed equations for flow in a tube are used to obtain H. Using this method, the flow regime is assumed to be laminar when the Reynolds number is 2000 or less. For this regime the convection heat transfer coefficient is calculated by:

$$h = \frac{k}{D} \begin{bmatrix} 3.66 \cdot F1 + \frac{.0155 \cdot F2}{\frac{1}{R \cdot P_{r}} \cdot D} \end{bmatrix} \begin{bmatrix} 1.65 \cdot F2 \\ \frac{1}{R \cdot P_{r}} \cdot D \end{bmatrix} (12)$$

where: k = thermal conductivity  
D = hydraulic diameter to flow  
X = distance from tube entrance  
Re = Reynolds number  

$$= \frac{4}{\mu} \frac{\dot{m}}{P}$$
  
 $\dot{m}$  = flow rate of fluid  
 $\mu$  = viscosity of fluid  
P = wetted perimeter of fluid flow passage  
Fl = An input factor for modifying fully  
developed flow  
F2 = An input factor for modifying developing  
flow

Equation (12) is a curve fit obtained by VSD to approximate the Graetz solution to flow in a tube for values of  $\frac{X}{D}$   $\frac{1}{\text{RePr}}$  greater than 0.001. The convection heat transfer coefficient for flow in a tube in the transition flow regime (2000 < Re < 6400) is approximated by the following relation:

h = 
$$\frac{K}{D}$$
 [0.116 (Re<sup>2/3</sup> - 125) (Pr)<sup>1/3</sup>] (13)

This relation was derived by Hausen and holds only for fully developed flow. The relation used to determine h for turbulent flow (Re  $\geq$  6400) is the following

h = 
$$.023 \frac{K}{D} (Re)^{.8} (Pr)^{1/3}$$
 (14)

If F1 is the integer 1, a more general option is used for determining the convection heat transfer coefficient. A curve of  $St(Pr)^{2/3}$  vs Reynolds No. is interpolated to obtain the value of  $St(Pr)^{2/3}$ . That is,

$$St(PR)^{2/3} = F(Re)$$
 (15)

where:

$$= \frac{Nu}{Re Pr}$$
$$= \frac{h}{CpV}$$

Stanton number

St

=

The heat transfer coefficient is calculated by

$$h = \frac{K}{D} F_{Re} Re(Pr)^{1/3}$$
(16)

If Fl is input as the integer 2 the convection heat transfer coefficient is obtained by direct interpolation of a curve of heat transfer coefficient vs flowrate which is identified by F2.

#### Mean Specific Heat

A CONTRACTOR OF THE OWNER OF THE

Ĩ

The method for obtaining the convective term (wCp) in equation (1) was modified with SINFLO to get better accuracy. Rather than just using the lump specific heat, a mean value of specific heat was obtained as follows.

The mean specific heat for a fluid going from upstream temperature  $T_{f}$  to fluid lump temperature  $T_{f}$  may be obtained by integrating:

$$\bar{C}p = \frac{\int_{T_u}^{t_f} C_p(T) \cdot dT}{\int_{T_u}^{T_f} dT}$$

$$= \frac{\int_{T_o}^{T_f} C_p(T) dT}{\int_{T_o}^{T_f} C_p(T) dT} - \int_{T_o}^{T_u} C_p(T) dT}$$

$$= \frac{T_f - T_u}{T_f - T_u}$$

$$= \frac{h_f - h_u}{T_f - T_u}$$
(17)

Where h is the fluid enthalpy

Equation (17) is used to obtain the mean specific heat for equation (1). The enthalpy curve is required as input.

For temperature lumps that have multiple upstream lumps, such as mixing junctions, the value of  $h_{\rm H}$  is determined as follows:

$$h_{u} = \frac{\sum_{i}^{w_{i}hu_{i}}}{\sum_{i}^{w_{i}}}$$
(18)

į

and the upstream temperature,  $T_u$ , obtained by reverse interpolation of the enthalpy curve. Equation (17) is then applied using the values of  $h_u$  and  $T_f$  thus obtained.

#### 2.1.6 Heat Exchanger Analysis

Five subroutines have been written to facilitate the thermal analysis of systems containing heat exchangers. These are HXCNT for analysis of counter flow heat exchangers, HXPAR for parallel flow heat exchangers, HXCROS for cross flow heat exchangers, HXEFF for any heat exchanger with an input effectiveness, and HXCOND for condensing heat exchangers. These subroutines calculate the outlet temperatures of two sides based upon the inlet temperatures and heat exchanger effectiveness. The relations used for calculating effectiveness are described below.

2.1.6.1 Counterflow Heat Exchanger

Subroutine HXCNT calculates the heat exchanger effectiveness using the relation from Reference 1 for counterflow heat exchangers. That is,

$$\epsilon = \frac{-\left[\frac{UA}{(MC)_{s}}\left\{1 - \frac{(MC)_{s}}{(MC)_{1}}\right\}\right]}{1 - \frac{(MC)_{s}}{(MC)_{1}} e^{-\left[\frac{UA}{(MC)_{s}}\right] - \frac{(MC)_{s}}{(MC)_{1}}\right\}}$$
(19)

Where

= effectiveness

- UA = overall effectiveness
- (MC)<sub>s</sub> = mass, specific heat product for the side with the smallest MC

The limiting cases for this relation are:

(1) When  $(MC)_{S}/(MC)_{1} = 0$ ,

$$\varepsilon = 1 - e^{-UA/(MC)_s}$$

(2) When  $(MC)_{S}/(MC)_{1} = 1$ 

$$\varepsilon = \frac{\frac{UA}{(MC)s}}{1 + \frac{UA}{(MC)s}} = \frac{UA}{(MC)s + UA}$$

Using the effectiveness as calculated by the above method, the outlet temperatures are calculated as follows:

1. For the side with the smallest MC,  $(MC)_S$  :

$$Tout_{s} = Tin_{s} - \varepsilon (Tin_{s} - Tin_{s})$$
 (20)

The enthalpy of outlet for the side with the large MC is then calculated by

$$hout_{\ell} = hin_{\ell} + (hin_{s} - hout_{s}) \frac{\dot{w}_{s}}{\dot{w}_{\ell}}$$
(21)

where:

ŀ

5

Trees and

Tak

enthalpy of the outlet for the side with the large MC hout, = enthalpy of the inlet for the side with the large MC = hin<sub>e</sub> hin<sub>s</sub> enthalpy of the inlet for the side with the small MC = enthalpy of the outlet for the side with the small MC hout = flow rate of the side with the small MC ŵ = flow rate of the side with the large MC Ŵρ =

3. Tout<sub> $\ell$ </sub> is obtained by reverse interpolation of the enthalpy curve at hout<sub>p</sub>.

2.1.6.2 Parallel Flow Heat Exchanger

Subroutine HXPAR calculates the heat exchanger effectiveness using the relation for parallel flow heat exchangers<sup>1</sup> which is:

$$\epsilon = \frac{1 - e^{-\frac{UA}{(MC)_s} \left[\frac{1 + (MC)_s}{(MC)_l}\right]}}{1 + \frac{(MC)_s}{(MC)_l}}$$

(22)

-

produced

Treat

The second second

1217 v

¶:-181,jeun-15

1

and a second

F

The limiting cases are

. ŧ

(1) When 
$$(MC)_{S}/(MC)_{I} = 0$$
,  
 $\epsilon = 1 - e^{-UA/(MC)_{S}}$ 

(2) When 
$$(MC)_{S}/(MC)_{1} = 1.,$$

$$\epsilon = \frac{1 - e}{2.0}$$

The heat exchanger outlet temperatures are then calculated using the method described for HXCNT.

#### Cross Flow Heat Exchanger 2.1.6.3

Subroutine HXCROS calculates the effectiveness for cross flow heat exchangers using one of the four relations below depending upon mixing of the streams.

Where

 $\eta = \begin{bmatrix} (\underline{MC})_{S} \\ UA \end{bmatrix}^{0.22}$ 

Both Streams Mixed

$$\epsilon = \underbrace{\frac{UA}{(MC)_{s}}}_{I-e} (24)$$

$$\frac{\frac{UA}{MC_{s}}}{-\frac{UA}{(MC)_{s}}} + \underbrace{\frac{UA}{(MC)_{l}}}_{-\frac{UA}{(MC)_{l}}}$$

Stream (MC)<sub>S</sub> Unmixed

$$\epsilon = \frac{1 - e}{(MC)_{l}} \begin{bmatrix} -\frac{UA}{(MC)_{s}} \\ 1 - e \end{bmatrix}$$
(25)  
$$\frac{(MC)_{s}}{(MC)_{l}}$$

Stream (MC), Unmixed

$$\epsilon = 1 - e^{-\frac{(MC)}{(MC)}l} \begin{bmatrix} -\frac{UA}{(MC)}l \end{bmatrix}$$
(26)

The heat exchanger outlet temperatures are calculated using the method described for HXCNT.

2.1.6.4 User Supplied Effectiveness

Subroutine HXEFF was written to perform heat exchanger thermal analysis with a user supplied effectiveness. The effectiveness may either be supplied as a constant or as an array number which gives the effectiveness as a bivariant function of the flowrates on the two sides. The outlet temperatures are then calculated using the method described for HXCNT.

2.1.6.5 Condensing Heat Exchanger

Subroutine HXCOND was written to analyze a condensing heat exchanger. The effectiveness may either be supplied as a constant or as a trivariant function of humidity, flow rate of the gas, and flow rate of the coolant. The outlet temperatures are calculated as follows:

where:

ε

1

T

I

re: TG<sub>out</sub> = temperature of the gas out of the heat exchanger

= effectiveness

 $TG_{in}$  = temperature of the gas into the heat exchanger

TC<sub>in</sub> = temperature of the coolant into the heat exchanger

The saturation pressure is given by

$$(19.3 \frac{TG_{out} - 500}{TG_{out}})$$
  
PB<sub>out</sub> = .1217 e

• ••

1

where: PB<sub>out</sub> = saturation pressure of the gas

And the outlet humidity is

$$\psi = \frac{XMIMO \cdot PBOUT}{P - PBOUT}$$
Where  $\psi$  = humidity ( $\psi_{in} > \psi_{out} > 0$ )  
XMIMO = molecular weight ratio  
P = total gas pressure

 $\dot{w}_{e} = \dot{w}_{e} \left( \psi_{in} - \psi_{out} \right)$ 

The flow rate of the liquid is

$$\dot{w}_{\ell}$$
 = flow rate of the liquid  
 $\dot{w}_{g}$  = flow rate of the gas

where:

The enthalpy of the coolant out of the heat exchanger is

$$hc_{out} = hc_{in} + \frac{\left[ \left\{ (hg_{in} + hg_{out}) \tilde{w}_{g} \right\} + \tilde{w}_{\ell} \cdot XLAM \right]}{\tilde{w}_{c}}$$

where: XLAM = latent heat of vaporization

The outlet temperature of the coolant is obtained by reverse interpolation of the enthalpy curve at  ${\rm hc}_{\rm out}$  ,

#### 2.1.7 Cabin Analysis

والمراجع والمراجع

**A** 

でおい

Ĵ

Ŧ

Ł

Į,

T

A subroutine has been written for use with SINDA which will give the user the ability to perform thermal analyses on cabin air systems including condensation on the walls and a vapor mass balance. The cabin heat transfer and condensation analysis involves the two-component flow of a condensible vapor and a non-condensable gas, with condensation of the vapor occurring on surfaces in contact with the fluid. Two problems of this nature have been studied extensively.

- Condensation on, or evaporation from, a surface over which a free stream of fluid is passing. In this case, for relatively low mass transfer rates, the fluid properties can be assumed to be constant.
- 2. Dehumidification of a confined fluid stream by a bank of tubes. In this case there is a marked change in the temperature and vapor content of the fluid, and the detailed deposition of the condensate is not of primary interest. This type of analysis is usually handled on an overall basis similar to heat exchanges effectiveness calculations.

The following additional assumptions have been made with respect to the cabin atmospheric conditions.

- The heat of circulation in the cabin is sufficiently high that the temperature and humidity are effectively the same throughout the cabin.
- The velocity at all points where heat transfer and/or condensation can occur is known, and is proportional to the total mass flow rate in the cabin.

These assumptions make it possible to calculate the heat and vapor balance in the cabin for the entire volume as a unit, and to solve the heat transfer and condensation equations at each node independently of the other nodes.

Cabin humidity can be determined from an overall vapor balance in the cabin. The total vapor in the cabin at the end of an iteration is:

$$W_{V} = W_{V}^{1-i} + W_{V}$$
 in -  $W_{V}$  out -  $\Sigma W_{L}$ 

Where

 $W_V$  = mass of vapor in cabin at end of iteration i  $W_V$ <sup>i-1</sup> = mass of vapor in cabin at start of iteration i-1  $W_V$  in = mass of vapor flowing into cabin during iteration i  $W_V$  out = mass of vapor flowing out of cabin during iteration i  $\Sigma$   $W_I$  = mass of vapor condensed during iteration -1

 $W_{\mbox{v}\ in}$  is determined from the known conditions of the gas flowing into the cabin.

$$W_{v \text{ in}} = \mathfrak{m} \text{ in} \left[ \frac{\psi_{\text{in}}}{1.+\psi_{\text{in}}} \right]$$
  
 $\mathfrak{m} \text{ in} = \mathfrak{m} \text{ ass flow rate into cabin}$   
 $\psi_{\text{ in}} = \operatorname{specific humidity of gas flowing into cabin}$   
 $= \operatorname{time increment}$ 

It is assumed that an equal volume of gas is flowing out of the cabin. Then,

$$W_v \text{ out} = \dot{m} \text{ out} \left[ \frac{\psi_c}{1 + \psi_c} \right]$$

Where

ψ

Where

= specific humidity in the cabin (at the end of the previous iteration)

and

 $\dot{m}$  out =  $\dot{m}$  in [Pc /Pin]

Where

ρ<sub>c</sub> = cabin density

pin = density of gas flowing into cabin

The condensation term  $\Sigma W_L$  is determined from the calculations for the individual nodes as described below. The properties of the cabin atmosphere are determined from the calculated value of  $W_W$ . The vapor pressure

in the cabin is

277 P

電影

Ţ

Į

ĨIJ,

THE.

T.

$$P_V = \frac{W_V}{V_C} R_V T_C$$

| Where | ٧c             | = | cabin volume             |
|-------|----------------|---|--------------------------|
|       | Rv             | = | gas constant             |
|       | Тc             | = | temperature of cabin gas |
|       | ۶ <sup>۸</sup> | = | vapor pressure           |

Assuming that the cabin pressure  $\mathsf{P}_{\mathsf{C}}$  is a constant, the gas partial pressure  $\mathsf{P}_{a}$  is:

$$P_a = P_c - P_v$$

and

$$W_a = \frac{P_a}{R_a T_c}$$

Where  $W_a$  = mass of non-condensible gas in the cabin.

Now the new value of specific humidity in the cabin can be determined by

$$\Psi_{\rm C} = \frac{W_{\rm V}}{W_{\rm a}}$$

The properties of the atmosphere can now be determined by

$$\mu_{C} = \frac{\chi \mu_{g} + \psi_{c} \mu_{v}}{\chi + \psi_{c}}$$

$$Cpc = \frac{Cpg + \psi_{c}Cpv}{1 + \psi_{c}}$$

$$k_{c} = \frac{\chi kg + \psi_{ckv}}{\chi + \psi_{c}}$$

$$\rho_{c} = \frac{W_{v} + W_{s}}{V_{c}}$$
Where 
$$\mu = viscosity$$

$$C_{p} = specific heat$$

$$k = thermal conductivity$$

$$\chi = molecular weight ratio, M_{v}$$

Mg

and all values are evaluated at T  $_{\rm C}^{\rm i-1}$ . Cabin temperature T  $_{\rm C}$  can be determined by a heat balance on the cabin atmosphere.

$$T_{c} = T_{c}^{i-1} + \frac{\dot{m} \text{ in } C_{pc} (T_{in} - T_{c}^{i-1}) - \Sigma Q_{L}}{(W_{v} + W_{A}) C_{pc}}$$

Where

 $T_c^{i-1} = T_c$  after previous iteration

T<sub>in</sub> = temperature of gas flowing into cabin

 $\Sigma Q_i$  = net heat loss to cabin lumps

The heat transfer between the cabin atmosphere and the tube and structure lumps in the cabin is defined by:

 $Q_{L_i} = hA_{L_i} [T_c - T_{L_i}]\Delta r$ 

Where

| h               | = | heat transfer coefficient  |
|-----------------|---|----------------------------|
| A <sub>Li</sub> | = | heat transfer area of lump |
| TLi             | = | temperature of tube lump   |
| ∆۲              | = | time increment             |

Using the Colburn-Chilton heat transfer-mass transfer analogy, the condensation (or evaporation) at the tube lump is determined by:

 $\Delta W_{Li} = K_m A_{Li} [P_V - P_{Wi}] \Delta r$ Where  $W_{Li}$  = condensation on wall, lb.  $K_m$  = mass transfer coefficient  $P_{Wi}$  = vapor pressure at T<sub>Li</sub>

The latent heat addition to the lump due to this condensation

is

 $\Delta Q_{\lambda} = \Delta W_{1,i} \lambda$ 

Where

 $\lambda$  = latent heat of vaporization

The vapor pressure  $P_{wi}$  can be determined by a relationship derived from the Clausius-Clapeyron equation and the perfect gas law (Appendix K of Reference 3).

20

$$P_{wi} = P_{o} \exp \left\{ \frac{\lambda}{R_{g}T_{o}} \left[ \frac{T_{Li} - T_{o}}{T_{Li}} \right] \right\}$$

Where P<sub>o</sub> is known vapor pressure at a reference temperature

Three methods are available for determining mass and heat transfer coefficient. For tube lumps the equations from Reference 1 for gas flowing normal to the tube axis was assumed. Three different equations are used depending on the value of the Reynold's number.

Nu = 
$$0.43 + .533$$
 (Re)<sup>.5</sup> (Pr)<sup>.31</sup> Re < 4000  
Nu =  $0.43 + .193$  (Re)<sup>.618</sup> (Pr)<sup>.31</sup> 4000 < Re < 40000  
Nu =  $0.43 + .0265$  (Re)<sup>.805</sup> (Pr)<sup>.31</sup> 40000 < Re < 400000

These equations were derived for an air-vapor mixture, but should be relatively accurate for other similar gases. The Nusselt and Reynold's numbers in the equations are defined using the tube diameter for the characteristic dimension, and the velocity in the Reynold's number is input at each lump and ratioed to the total cabin atmosphere flow rate.

Where

Το.

ľ

l

ł

re Wco = nominal cabin atmosphere circulation rate vio = velocity at lump at Wco Wc = circulation rate at time of calculation

The second option assumes flat plate flow for cabin wall lumps. In this case the heat transfer coefficient, for laminar flow, varies along the plate. Hence, direction of gas flow and the location of an assumed leading edge must be assumed. The equation for flat plates from Reference 1 is:

$$N_{\rm u} = 0.332 \ {\rm Re}^{.5} \ {\rm Pr}^{1/3}$$

where the Nusselt and Reynold's numbers are local values and are defined by the distance X from the assumed leading edge. For a wall lump of length  $L_i$  which is located a distance  $L_{io}$  from the assumed leading edge, the

average Nusselt number can be defined as:

 $N_u = 0.664 \text{ Pr}^{1/3} \left[ (Re_1)^{.5} - (Re_0)^{.5} \right]$ 

Where Nu is defined by L<sub>i</sub> Re<sub>O</sub> is defined by L<sub>iO</sub> Rej is defined by L<sub>iO</sub> + L<sub>i</sub>

The third option is a direct user input for convective heat transfer coefficient. For the determination of mass transfer coefficients, the same equations which were used for heat transfer coefficient can be used with the Sherwood number substituted for Nusselt number and Schmidt number for Prandtl number. However, if the diffusion coefficient for the cabin is approximately equal to thermal diffusivity, the Sherwood number is equal to the Nusselt number and the mass transfer coefficient can be determined directly from the heat transfer coefficient. That is:

$$\frac{K_{m}RT_{g}x}{D} = \frac{h_{x}}{k}$$

If D 🗳 a then

 $K_{\rm m} = \frac{hD}{\alpha \rho C_{\rm p} RT_{\rm g}}$ (28)  $K_{\rm m} \cong \frac{h}{C_{\rm p} P_{\rm c}}$ 

Equation (28) is the Lewis relationship (Reference 1). For a mixture of oxygen and water vapor characteristic values are .866 for the diffusion coefficient, D, and .879 for thermal diffusivity,  $\alpha$ , so the relationship should be valid.

For cabin tube and wall lumps the values for  $\Delta Q_{Lj}$  and  $\Delta Q_{\lambda j}$  are added to the basic heat balance equation for these lumps. Values for  $\Delta Q_{Lj}$ 

are summed for all participating lumps for input to the cabin atmosphere heat balance. Values for  $\Delta WL_i$  are also summed for all lumps for cabin humidity balance, and the value for total water condensed on each lump  $WL_i$  is main-tained.

If the rate of evaporation or condensation is high it would be possible for the cabin humidity to change significantly during a single iteration. This could lead, for example, to overestimating condensation by assuming that the humidity is constant in the calculation. A test of the approximate vapor pressure in the cabin at the end of the iteration is made, and the condensation or evaporation at any lump is reduced, if the sign of the  $\Delta WL_i$  term is changed. A value  $W_V$ ' is calculated by:

$$W_v' = W_v^{i-1} - \Sigma W_L i$$

and

ΥĽ

J

Ī

 $P_{V}! = \frac{W_{V}'}{144 V_{C}} R_{V} T_{g}$ 

Then for each lump if

$$\frac{P_{v}' - P_{wi}}{P_{v} - P_{wi}} < 0$$

a new value of  $\Delta W_{L}i$  is calculated by:

 $\Delta W_{Li} = \Delta W_{Li} \left[ \frac{P_{V} - P_{Wi}}{P_{V} - P_{V}'} \right]$ 

The new values of  $\Delta W_{Li}$  are now again summed for the new value of  $\Sigma \Delta W_L$  for establishing cabin humidity for the next iteration. A test is also made to assure that  $W_V$ ' is never less than zero.

### 2.2 Fluid Flow Analysis

1.1.1

\_\_\_\_£

Subroutine FLOSOL was written as a SINDA user subroutine to provide the ability to perform fluid pressure/flow analysis for flow of an incompressible fluid in tubes. The fluid flow analysis of FLOSOL is integrated with the thermal analysis capability so that the temperature dependence of properties is included in the pressure balances. FLOSOL is called from the VARIBLES 2 user logic block.

۴.

FLOSOL performs a pressure-flow balance on a general flow network including the following effects:

- (1) Friction pressure drop
- (2) Orifices and fitting type pressure losses
- (3) Valves
- (4) Pumps

(5) Incoming flow sources at any pressure point in the system The user describes the flow model to the subroutine by supplying the tube network connections and information concerning fluid properties, flow geometry, temperature model lumps, orifices, valves and pumps. Using this information, the subroutine determines the flow distribution required to satisfy (1) the conservation of mass at each node point and (2) equal pressure drops across tubes in parallel. The model used to describe the flow system and the analytical methods for determining the solution are described below.

2.2.1 Overall Flow Model Description

A flow problem may be analyzed with FLOSOL, simultaneously with a thermal analysis, so that the flow solution is continually updated based on the thermal conditions. To perform a flow analysis, the user must input a mathematical model of the flow system. The flow system is assumed to consist of a set of interconnected tubes such as the example shown in Figure 1, which consists of two radiator panels, each containing four tubes and connected so that they flow in parallel.

For clarity the following definitions are made at this point:





----

3

I

I

I

I

I

T

九下

1-1-1-1

I

I

I

I

I

Tube Numbers

XX Pressure Nodes

FIGURE 1 FLOW SYSTEM SCHEMATIC

 A tube is any single length of pipe between two pressure nodes. A tube "contains" fluid temperature nodes and may contain as many of these as required.

(2) A pressure node is located at each end of a tube. As many tubes as desired may be connected at a node junction and a node must exist at the junctions of two flow pipes.

We must make a mathematical model to describe the fluid flow information to the computer. The information required consists of:

- (1) Identification of the pressure node numbers
- (2) Identification of the tube numbers and the two pressure nodes connected by tube
- (3) The fluid temperature nodes contained in each tube
- (4) The flow geometry for each temperature fluid nodes
- (5) The number of "head losses" for items such as orifices
- (6) Fluid property information
- (7) Valve connections and characteristics
- (8) Pump characteristics

To build a flow mathematical model, a schematic of the flow system is needed. As shown in Figure 1, the pressure nodes and tubes may be superimposed on the schematic. It is also helpful to impose the fluid temperature lump numbers for each tube.

To facilitate speedy analysis on a general flow problem, provisions have been made for the user to divide the flow system network into subnetwork elements. For example, the flow system shown in Figure 1 could be divided as shown in Figure 2. Tubes 23 and 24 are added in the main network as shown in 2(a) to replace subnetwork elements 1 and 2. The subnetwork elements 1 and 2 which are shown in Figures 2(b) and 2(c) are then input as separate network elements. This type of subdivision allows the solution to be obtained by solving two sets of 6 simultaneous equations and one set of 8 equations rather than the original set of 16 simultaneous equations. This type of subdivision has been found to enhance the solution speed and accuracy for problems with a large number of nodes.

In summary, the pressure/flow solution is obtained by the following sequence:



1

- ALL

TIL

Salah Sa

63

- The flow resistance is obtained for each fluid temperature lump in each tube including the effects of friction, orifices, and fitting type losses.
- (2) The flow conductor value is obtained for each tube by summing all the resistances of the fluid lumps in the tube, adding the value and user supplied resistance to the sum, and inverting the resistance.
- (3) A set of simultaneous equations is set-up and solved for each main system and subnetwork to obtain the pressures.
- (4) The flow rates are then calculated.

A detail discussion of each element in the above sequence is described in the following subsections.

#### 2.2.2 Tube Conductor Determination

The value of the flow conductor is determined for each tube by first calculating the flow resistance for each temperature fluid lump contained in the tube, summing these resistances up to obtain the flow resistance of the tube and inverting the tube resistance to get the conductance. Flow conductance is defined by the relationship

$$w_{ij} = GF_{ij} [P_i - P_j]$$
 (29)

Where  $\hat{w}_{ij}$  = flow rate between pressure nodes i and j  $GF_{ij}$  = flow conductance between nodes i and j  $P_i$  = pressure at pressure node i  $P_j$  = pressure at pressure node j

The flow resistance for each lump is then

$$R_{K} = \frac{1}{GF} = \frac{\Delta P}{\dot{w}} k$$

Where  $R_k = flow$  resistance for lump k

 $\Delta P_k$  = pressure drop for lump k

But  $\Delta P_k$  is given by

$$\Delta P_{k} = \left(f_{k} \cdot ff_{c} \cdot \frac{L_{k}}{D_{k}} + K\right) \frac{\dot{w}^{2}}{2g_{c} \rho_{k} A^{2}} \qquad (30)$$

Where  $f_k =$  the friction factor for lump k ffc = the friction factor coefficient  $L_k =$  the lump length for lump k D = the lump hydraulic diameter for lump k K = the dynamic head losses for lump k  $\dot{w}$  = the flow rate  $g_c$  = the gravitational constant  $\rho_k$  = the fluid density for lump k A = the flow area

The flow resistance is then given by

I

T

E

$$R_{k} = \left(f_{k} \text{ ffc } \frac{L_{k}}{D_{k}} + K\right) \frac{\tilde{w}}{2g_{c} \rho_{k}A^{2}}$$
(31)

Two options are available for obtaining the friction factor,  $f_k$ . These are (1) internal calculations for all flow regimes and (2) internal calculation for laminar flow and obtained from a table of f vs Re (where Re is the Reynold's number) for transition and turbulent flow. For the first option the internal calculations for the three flow regimes are:

Laminar Regime: Rek < 2000.

$$f_{k} = \frac{64}{Re_{k}}$$
(32)  
Where  $f_{k}$  = friction factor for lump k  
Re\_{k} = Reynolds number for lump k  
Transition Regime: 2000 < Re\_{k} < 4000  

$$f_{k} = .2086082052 - .1868265324 \left[\frac{Re_{k}}{1000}\right]$$
(33)  

$$+ .06236703785 \left[\frac{Re_{k}}{1000}\right]^{2} - .0065545818 \left[\frac{Re_{k}}{1000}\right]^{3}$$

and the second second

Contraction of the second

Turbulent Regime: Rep24000

$$f_k = \frac{.316}{\left(\text{Re}_k\right)}.25$$

(34)

Equation (33) for the transition regime is a curve fit between the laminar and turbulent regimes which was derived to match the two curves in a continuous manner. It is merely an arbitrary curve in this undefined region. A curve of the friction factor vs Reynold's number given by the above relations is shown in Figure 3.

The second option for friction factor uses equation (32) for the laminar regime and a user input curve of  $f_k$  ve Re for the other regimes. The options available for input of the dynamic head loss,  $\mathbf{k}$ , include (1) an input constant or (2) a tabulated curve of  $\mathbf{k}$  vs Re.

To obtain the conductance for each tube, the flow resistances for all the lumps in the tube are added and then inverted, giving

$${}^{GF}_{ij} = \frac{1}{\sum_{k} R_{k}}$$
(35)

#### 2.2.3 Valve Analysis

ΔP

Two methods have been included in the FLOSOL subroutine for modeling valves. These are (1) pressure drop through the valve is included in the system flow balance and (2) valve position is used as a fraction for splitting the flow. The first method uses the following equation to characterize the pressure drop through each side of the valve:

$$\Delta P = E \left[\frac{\dot{w}}{X}\right]^2$$

where

= valve pressure drop

E = valve pressure drop factor (user input)

w = flow rate through the side of the valve under consideration

X = the fraction of the valve opening

The second method for modeling valves uses the valve position as a fraction for splitting the flow into the valve according to the following equation:
2 3 5 6 8 7 10 9 EQ 34 8 EQ 32 EQ 33 7 6 ł 5 Friction Factor x10<sup>2</sup> CURVE 1 ----CURVE 2 EQ 34 \$ + 2 1 -----18 1 --ф. I i 2 3 5 6 8 4 7 9 Re x  $10^{-3}$  (curve 1) Re x  $10^{-4}$  (curve 2)

FIGURE 3 FRICTION FACTOR VS REYNOLDS NUMBER

where

w<sub>i</sub> = flow rate out side i of the valve X<sub>i</sub> = valve position of side i

 $\dot{w}_{in}$  = flow rate into the value

The pressure drop through the valve is not included in the system flow balance.

The valve pressure drop factor controls which method is used. The first method is used when the valve pressure drop factor is greater than 0. To specify the second method the user must input a ? for the valve pressure drop factor. For either method the value of X must be greater than 0 and less than 1.

Three basic types of values are available in FLOSOL for either the pressure drop or the flow splitting formulations which give different characteristics for the dynamics of the value position X. These types are: (1) Rate Limited; (2) Polynomial, and (3) Shut-off.

A number of variations are available for each value type. For instance, each of the above may be either one sided or two sided. If a value is two sided, the value position of side 2,  $X_2$ , is related to that of side one by

$$x_2 = 1.0 - X_1$$

If the valve is one sided, either side one or side two may be used. Provisions are included for a valve time constant to be included with the polynomial valve.

The methods used to obtain the valve positions for each of the three types are described below.

## 2.2.3.1 Rate Limited Valve

The valve position for the rate limited valve is obtained by an approximate integration of the valve rate of movement,  $\dot{X}$ .  $\dot{X}$  depends on the temperature difference between the valve control set point temperature and the sensor temperature as shown in Figure 4. With this characteristic, the valve has no movement as long as the valve temperature error,  $\Delta T$ , is within the dead band. Outside the dead band, the velocity of the valve increases linerarly as the error increases to a maximum rate,  $\dot{X}$  max. The dead band, rate of velocity increase,  $d\dot{X}/d(\Delta T)$ , and the maximum velocity are controlled by user input.

The relations used to obtain the valve positions are as follows:

$$x^{i+1} = x^{i} + (\dot{x}^{i+1}) (\Delta \tau)$$
 (36)

Where 
$$X^{i+1} =$$
 valve position at iteration i+1  
 $X^{i} =$  valve position at iteration i  
 $\dot{X}^{i+1} =$  valve velocity at iteration i+1  
 $\Delta r =$  the problem time increment



with the will that the take

FIGURE 4 RATE LIMITED VALVE OPERATION

 $\omega_{\rm s}$ 

The valve position is limited by

Xmin ≼ X<sup>i+1</sup>≼ Xmax

Where X min and X max are input limits on the value position. The value velocity,  $\dot{X}^{x+1}$ , in equation (36) is given by:

 $\dot{x}^{i+1} = 0 \qquad \text{if } \left| \text{Tsen - Tset} \right| \leq \text{Tdb}$ where:  $\dot{x}^{i+1} = \frac{d\dot{x}}{d(\Delta T)} \text{ [Tsen-Tset-Tdb]} \text{ if } \text{Tsen > Tset + Tdb}$   $\dot{x}^{i+1} = \frac{d\dot{x}}{d(\Delta T)} \text{ [Tsen-Tset+Tdb]} \text{ if } \text{Tsen < Tset - Tdb}$  Tsen = sensor lump temperature Tset = set point temperature

Tdb = valve dead band temperature

The valve velocity is limited by

ẳmin ≼ ẳ<sup>i+l</sup> ≼ ẳmax

After the valve position for side 1 is obtained from equation (3F), the side 2 position is obtained from  $\chi_2 = 1.0 - \chi_1$ 

2.2.3.2 Polynomial Valve

The polynomial value determines the steady state value position as a 4th degree polynomial function of the temperature error between the sensor lump and the set point. A value time constant is then applied to determine how far between the previous position and the new steady state position the value will move. The steady state position,  $X_{ss}$ , is given by

$$X_{ss} = A_0 + A_1 \Delta T + A_2 \Delta T^2 + A_3 \Delta T^3 + A_4 \Delta T^4$$

Where  $\Delta T = Tsen - Tset$ 

Tsen = the sensor lump temperature Tset = the set point temperature  $A_0, A_1, A_2, A_3, A_4$  = input constants The valve position,  $X^{i+1}$  is then determined by

$$X^{i+1} = X_{ss} + (X^{i} - X_{ss}) e^{-\Delta r / r_{c}}$$

an a course and the plant of the second s

(37)

1999 A.

Where  $X^{i+1} =$  value positon at iteration i+1  $X^{i} =$  value position at iteration i  $\Delta r =$  problem time increment  $r_{c} =$  value time constant

The valve position for side 2 is given by

$$X_2 = 1.0 - X_1$$

where  $X_1$  is given by equation (37)

If one desires to eliminate the effect of the time constant (and thus, give the value an instantaneous response), a value for  $\tau_c$  should be input which is small compared to the time increment,  $\Delta \tau$ . Also, either a constant value or a temperature lump number may be specified for the set point to permit use of the value for proportioning between two sides.

## 2.2.3.3 Shut-off Valve

For side 1 of a shut-off valve the valve position decreases from  $X_{max}$  to  $X_{min}$  when the temperature of the sensor lump drops below the specified "off" temperature,  $T_{off}$ , and increased from  $X_{min}$  to  $X_{max}$  when the sensor lump exceeds a second specified temperature,  $T_{on}$ .  $T_{on}$  must be greater than  $T_{off}$ . Side 2 works in reverse of side 1. The valve position increased from  $X_{min}$  to  $X_{max}$  when the sensor temperature drops below the specified  $T_{on}$  and decreases from  $X_{max}$  to  $X_{min}$  when the sensor lump increases above the off temperature,  $T_{off}$ . For side 2,  $T_{off}$  must be greater than  $T_{on}$ . Note that, if the shut-off valve is a two sided valve with both sides active, the valve is a switching valve.

### 2.2.3.4 Valve Flow Resistance Calculations

The valve pressure drop on side one is assumed to be given by:

$$\Delta P = E \left[\frac{\dot{w}}{\chi}\right]^2$$
(38)

Since flow resistance is  $\Delta P/\dot{w}$ , the valve flow resistance is given by

$$R_v = \frac{E\dot{w}}{\chi^2}$$
 (39)

This value of flow resistance is calculated and added to the other flow resistances of the tube prior to performing the operation in equation (35) to find the value of the flow conductor for the tube.

Valves may be either one way or two way, i.e., be one tube or two tubes at the outlet. If only one tube exists on the valve outlet the flow resistance is calculated using equation (39) above. If a second tube exists, the resistance on side 2 is given by

$$R_{v2} = \frac{E_2 \dot{w}_2}{(1-\chi)^2}$$
 (40)

2.2.4 Pressure-Flow Network Solution

As previously stated, the user may subdivide a system flow network into a main network and subnetwork elements. The elements which are subnetworks to the main network may also contain subnetwork elements but the subdivision can go no lower than two levels.

After the flow conductor values have been obtained by the methods described in Sections 2.2.2 and 2.2.3 a set of simultaneous equations are set up and solved for the main system and for each subnetwork. The subnetwork elements are all solved first and then, their equivalent flow conductor value is calculated. The value is inserted in the main system network and the system solution is obtained. The procedure is repeated until the problem is balanced.

A set of simultaneous equations are obtained by conservation of mass at each pressure node for each network and subnetwork. For any node i the conservation equation can be written as follows:

$$\sum_{i=1}^{\infty} \tilde{w}_{in} = 0 \qquad (41)$$

Let

ы. 1 ļ

Ţ

I

Ţ

Ī

Ţ

\*

Î

Ţ

Ţ

I

I

Ţ

Let 
$$\hat{w} = W$$
  
and  $\sum \hat{w}_{out} = \sum_{J=1}^{ric} GF_{ij} [P_j - P_i]$ 

i

Then equation (41) becomes

$$\sum_{j=1}^{n} GF_{ij} [P_j - P_i] - w_i = 0 \quad i=1, n \quad (42)$$

| Where | GFij | • = | flow conductor between pressure nodes i and j |
|-------|------|-----|-----------------------------------------------|
|       | P    | =   | pressure at node i                            |
|       | Ρ,   | =   | pressure at node j                            |
|       | พื่  | н   | flow rate added at node i                     |
|       | 'n   | =   | number of pressure nodes in the subnetwork    |

The above equation is a set of n simultaneous equations for P array. Pressure in the system or subsystem may be set at a specified level but the last (outlet) node must be specified. Equation (42) may be written in matrix form as:

$$GP = C \tag{43}$$

Where



 $P_n$  is the specified pressure. The above equations are solved for pressures at each point in the system and flow rates are then calculated for each tube by:

 $\dot{w}_i = GF_{ij}(P_i - P_j)$ 

Since the coefficient matrix given by equation (43) is symetric and positive definite the efficient square root or Symmetric Cholesky method was programmed to obtain the solution. This method is more accurate and faster than any other methods studied for this application.

Since the flow conductors are functions of the flow rate, the set of equations given by (43) are solved numerous times on each temperature iteration with a new set of  $GF_{i,j}$  values for each solution. The iteration

process continues until the change in the flowrates is within some user specified tolerance before proceeding to the next iteration.

- 2.2.5
  - 5 Pump and System Pressure Flow Matching

Concurrent with iterating the system flow equation to solution on each temperature iteration, the overall system pressure drop and flowrate must be matched to a pump characteristic. Several types of pump characteristics are available to the user as options. These are (1) system flow rate specified as a constant, (2) system flowrate specified as a known function of time, (3) pressure drop specified as a function of the flowrate in a tabulated form and (4) pressure drop specified as a function of flowrate with a fourth degree polynomial curve.

The first two options require no balancing of the pump with the system. Balancing is required for options (3) and (4) and iterative procedures have been devised to obtain the solution of the pump curve to the system characteristics with as few passes as possible through the system pressure/flow balancing locp for these options. The procedures used for these options are described below.

2.2.5.1 Tabulated Pump Curve Solution

The matching of a tabulated pump pressure rise/flow characteristic to the system pressure drop/flow characteristic is accomplished by the following procedure. See Figure 5 to aid in understanding the procedure.

- Step 1 : The initial flowrate, w<sub>1</sub>, at the system inlet is established either from user input on the first iteration or the system flow of the previous iteration for subsequent iterations.
- Step 2 : Using  $\dot{w}_1$ , a solution to the flow network is obtained using the methods described in Sections 2.2.2, 2.2.3 and 2.2.4. Following this solution,  $\Delta P_1$  is available establishing point 1 on the true system characteristic curve shown in Figure 5.
- Step 3 : Obtain an equation for the straight line approximation
   of the system characteristic (line 0, 1 for the first
   pass, line 1, 2 for the second pass, etc.)

 $\Delta P_s = C \dot{W}_s + D$ 



FIGURE 5 SYSTEM/PUMP CURVE SOLUTION

t

where 
$$C = \frac{\Delta P_1 - \Delta P_0}{\hat{w}_1 - \hat{w}_0}$$
  
 $D = \Delta P_0 - \frac{\Delta P_1 - \Delta P_0}{\hat{w}_1 - \hat{w}_0} \hat{w}_0$   
 $\Delta P_s, \hat{w}_s$  are the system pressure drop and flowrate values given by the approximate equation  $\Delta P_1, \hat{w}_1$  are the latest values for system pressure drop and corresponding system flowrate  $\Delta P_0, \hat{w}_0$  are the values for system pressure drop and corresponding system flowrate for the previous pass (These values are zero for the first pass)  
Obtain the equation of the line connecting points and and bn which is an approximation of the pump characteristic.  
(1) Two points are determined on the pump characteristic curve:  
(a) interpolate the tabulated characteristic at  $\hat{w}_1$  to obtain  $\Delta P_{a1}$  (See Figure 5) to locate point and at  $\hat{w}_1, \Delta P_{a1}$ . If  $\hat{w}_1$  is greater than  $\hat{w}_{max}$ , set  $\hat{w}_1$  equal to  $\hat{w}_{max}$  and  $\Delta P_{a1}$  equal to zero.

6° 125

(b) reverse interpolate the tabulated characteristic at  $\Delta P_1$  to obtain  $\dot{w}_{b1}$  to locate point by on the curve. If  $\Delta P_1$  is greater than  $\Delta P_{max}$ ,  $\Delta P_1$  is set to  $\Delta P_{max}$  and  $\dot{w}_{b1}$  is set to zero.



$$\Delta P_p = A \dot{w}_p + B$$

where A = 
$$\frac{\Delta P_1 - \Delta P_{a1}}{\dot{W}_{b1} - \dot{W}_1}$$

Step 4 :

I

ļ

I

Ĩ

$$B = \Delta P_{al} - \frac{\Delta P_{l} - \Delta P_{al}}{\dot{w}_{bl} - \dot{w}_{l}}$$

 $\Delta P_p$ ,  $\dot{w}_p$  are the pump pressure rise and flowrate as given by the approximation.

í

Step 5 : Solve the approximate equations obtained in Steps 3 and 4 to obtain an approximate solution to the system characteristic and the pump characteristic (Point N) as follows:

$$\dot{W}_{N} = \frac{D - B}{A - C}$$

$$\Delta P_N = A\dot{w}_3 + B$$

Step 6 : Check the tolerance below where  $w_{n-1}$  is the previous  $w_N$  ( $w_1$  for the first time through)

Is  $\frac{\dot{w}_{N} - \dot{w}_{N-1}}{\dot{w}_{N-1}} < .001$ 

- (1) If the above inequality equation is not satisfied repeat steps 4 through 6 substituting  $\dot{w}_N$  for  $\dot{w}_1$  and  $\Delta P_N$  for  $\Delta P_1$
- (2) If the inequality is satisfied the point S1 (Figure 5) has been located. Continue with step 7. The final flowrate is w2

Step 7 : Check the following tolerence

Is 
$$\frac{\dot{w}_2 - \dot{w}_1}{\bar{w}_1} < TOL^*$$

- (1) If the above inequality equation is not satisfied, repeat steps 2 through 7 using the value of  $w_2$ for  $w_1$ .
- (2) If the inequality is satisfied,  $w_2$  is the solution flowrate.

TOL is the input pressure solution tolerance

2.2.5.2 Polynomial Pump Curve Solution

守 に い

舞儀

When the user describes the pump curve with a polynomial curve fit, the pump characteristic is described by the relation

$$\Delta P_{p} = A_{0} + A_{1} \dot{w} + A_{2} \dot{w}^{2} + A_{3} \dot{w}^{3} + A_{4} \dot{w}^{4}$$

When this option is used, the procedure for matching the pump characteristic to the system characteristic is identical to that described in Section 2.2.5.1 for the tabulated pump characteristic except Steps 4 and 5 are replaced with the following:

> Step 4 : Obtain the coefficients of the 4th order equation to be solved Since:  $\Delta P_p - \Delta P_s = 0$

> > $\Delta P_s = C \hat{w}_s + D$  (C and D are obtained from Step 3)

$$\Delta P_{p} = A_{0} + A_{1}\dot{w}_{p} + A_{2}\dot{w}_{p}^{2} + A_{3}\dot{w}_{p}^{3} + A_{4}\dot{w}_{p}^{4}$$

The solution occurs when

Then the equation for  $\dot{\textbf{w}}_N$  is

$$(A_0 - D) + (A_1 - C) \dot{w}_N + A_2 \dot{w}_N^2 + A_3 \dot{w}_N^3 + A_4 \dot{w}_N^4 = 0$$

Step 5 : Solve the equation for  $\dot{w}_N$  using the Newton-Raphson Method of solution for a fourth order polynomial

The remaining steps are identical to that given in Section 2.2.5.1.

### 3.0 SINDA ROUTINE MODIFICATIONS AND ADDITIONS

I,

Ŧ

T

1.2.3

This section describes the actual modifications and additions to the SINDA program. Preprocessor changes are discussed in Section 3.1. Processor changes are discussed in Section 3.2. The specific changes can be seen in the listings in Appendix C.

## 3.1 Preprocessor Modifications and Additions

The preprocessor required four interface points to include the FLOW DATA block. The first point was in subroutine CODERD prior to the processing of the CONSTANTS DATA where a call is made to subroutine FLOWI which reads and interprets the FLOW DATA cards. The second point is also in subroutine CODERD immediately following the processing of the ARRAY DATA where subroutine FLOW2 is called to process the FLOW DATA. The last two interface points involve setting up arrays in labelled common blocks. Subroutine FLOCOM does this when called from subroutine GENLNK and subroutine PRESUB.

Subroutine PSEUDO was modified to allow a node to not have any connections in the BCD 3CONDUCTOR DATA block. This was necessary since the tube lump to fluid lump connections are internally generated and not defined in the BCD 3CONDUCTOR DATA block. 3.2 Execution Routine Modifications

The requirements for integration of the Fluid Hybrid Temperature solution subroutine, FLUID, with the SINDA temperature solution subroutines were minimized at the interface point. A labelled common block which contains a code for flow problems was added to each of the temperature routines. When the code is tested for a flow problem, subroutine FLUID is called to calculate the fluid lump temperatures. In the explicit routines the tube lump temperatures are also calculated. In the implicit routines the convection conductance and adjacent fluid lump number are stored for the tube lump and after returning to the mainline temperature routines, the convection conductance is included in the calculation of the tube lump temperature. The SINDA routines were modified so that the node with the minimum natural time increment would not be a tube lump which does not have any connections from the conductor data block.

## 4.0 FLOW DATA BLOCK INPUT FORMAT

መግ<u>ት አ</u>ይምሮያ ነት

.

J,

I

Ĵ,

I

Ţ

This section describes the input format for the SINFLO input data. The lumps referenced in this section must have been entered in the NODE DATA block. The fluid lumps must be entered as boundary nodes and the tube lumps must be entered as diffusion nodes.

A CONTRACTOR OF A CONTRACTOR

The SINFLO input data for the fluid systems are supplied by the new data block headed by "BCD 3FLOW DATA" and five new subordinate blocks contained within the FLOW DATA block which will be headed by:

| BCD | <b>3NETWORK "Name</b> "  |            |
|-----|--------------------------|------------|
| BCD | 3SUBNETWORK "Name"       | (Optional) |
| BCD | 3FLUID LUMP DATA         |            |
| BCD | <b>3VALVE DATA</b>       | (Optional) |
| BCD | <b>3FLOW SOURCE DATA</b> |            |

Table 1 shows the overall organization of the input data blocks<sup>\*</sup> including the new FLOW DATA block. The five subordinate flow blocks may be input in an arbitrary order within the FLOW DATA block. That is, the FLUID LUMP DATA block may be input first if desired instead of the order shown. The FLOW DATA block is optional. Thus, if the problem being analyzed contains no fluid flow or the fluid flow is being handled by another means, there will be no FLOW DATA block. As shown in Table 1, the FLOW DATA block will be added between the CONDUCTOR DATA and CONSTANTS DATA SINDA input blocks. The flow data input is initiated by the card (starting in column 8)

BCD 3FLOW DATA

and is terminated by the card

BCD 3END FLOW DATA

The NETWORK blocks and SUBNETWORK blocks may be supplied a multiple number of times. Each must reference a unique four character name. The user would normally supply one NETWORK block for each flow system being analyzed. At least one NETWORK block is required if a BCD 3FLOW DATA card exists. The NETWORK blocks may or may not reference SUBNETWORK blocks, but if one is referenced the data must be supplied in the block referenced by name in the NETWORK data. Division of a network into subnetwork elements is sometimes desirable to permit more efficient analysis on some problems. The NETWORK DATA, FLUID LUMP DATA, FLOW SOURCE DATA blocks are all required when a BCD 3FLOW DATA card exists. Each of these four blocks contain the required information for the entire flow problem.

Each of the subordinate flow blocks are discussed in the following sections.

See Reference 7 for input other than FLOW DATA block

| TABLE | 1 |
|-------|---|
|-------|---|

1

•

1

# SINFLO INPUT BLOCKS

water i

Ŧ



Unique four character name for each NETWORK or SUBNETWORK

## 4.1 NETWORK and SUBNETWORK Formats

33

I

2

1999

10 - Jul

or

The fluid flow tubes, pressure nodes connected by the tubes, and fluid lump/tube lump pairs contained in each tube are input in the NETWORK or SUBNETWORK data blocks. In addition to this connections data, the fluid thermophysical property data, network solution parameters, the value of acceleration of gravity and specified pressure nodes and values are input in the NETWORK data block. One NETWORK data block must be supplied for each fluid system or loop. Connections data for any subnetwork elements are supplied in the SUBNETWORK blocks. As many NETWORK and SUBNETWORK data blocks as required are supplied.

The input formats for the NETWORK and SUBNETWORK blocks are shown in Table II. Each network or subnetwork block is headed by

BCD 3NETWORK Name

BCD 3SUBNETWORK Name

where the BCD starts in Column 8 and Name is any Alpha/Numeric word up to four characters which is different from the name of any other network or Each network or subnetwork block is terminated by an END starting subnetwork. in Column 8. The data values between the heading and the END card may be input free field between columns 12 and 72 consistent with the standard SINDA format. Each NETWORK block is a main network for a system. Thus, there are as many NET-WORK blocks as there are systems in the problem. The NETWORK block contains (1) system data including information referencing fluid property data, system solution parameters and specified pressure nodes for the network (the SUB-NETWORK blocks do not contain any of this information) and (2) the tube/pressure node connections and the fluid and tube temperature lumps in each tube. As shown in Table II, the systems data including the property data, solution parameters and specified pressure nodes for the network are input immediately following the heading card. These items may be input in any order and may be supplied one to a line or several to a line. The property values are identified by mnemonic names: CP for specific heat, RO for density, MU for viscosity, KT for thermal conductivity, and H for enthalpy. The property names are followed by an equal sign which is followed by a reference to the property value. For example, the property values could be supplied by:

> CP = 0.25, MU = A25 RO = A37, KT = .073, H = A8

### TABLE 2

INPUT FORMAT FOR THE NETWORK AND SUBNETWORK DATA BLOCKS

```
BCD 3NETWORK Name 1
            CP = AXX, RO = AXX, MU = AXX, KT = AXX, GC = XX.XXX, H = AXX
           MPASS = XX, TOL = XX, MXPASS = XX, FRDF = 0.XX, KOP = X
           P(N) = XX.X, END
           NT<sub>1</sub>, NPF<sub>1</sub>, NPT<sub>1</sub> = FL<sub>11</sub>, TL<sub>11</sub>, FL<sub>12</sub>, T<sub>12</sub>, --- F<sub>1n</sub>, TL<sub>1n</sub>, END
NT<sub>2</sub>, NPF<sub>2</sub>, NPT<sub>2</sub> = FL<sub>21</sub>, TL<sub>21</sub>, (F<sub>22</sub>, TL<sub>22</sub>, FL<sub>2n</sub>, TL<sub>2n</sub>), END
NT<sub>3</sub>, NPF<sub>3</sub>, NPT<sub>3</sub> = (FL<sub>31</sub>, TL<sub>31</sub>, FL<sub>3n</sub>, TL<sub>3n</sub>, IFL, ITL), END
            NT<sub>n</sub>, NPF<sub>n</sub>, NPT<sub>n</sub> = FL_{n1}, TL_{n1} --- FL_{nn}, TL_{nn}, END
END
BCD 3SUBNETWORK Name 2
           NT1, NPF1, NPT2 = -----, END
                      1
                      ŧ
                                 ı.
              .
            NT_n, NPF_n, NPT_2 = -----, END
END
BCD 3NETWORK Name 3
            CP = \dots P(N) = XX.X, END
            NT, NPF, NPT = -----, END
              I.
              ı.
END
BCD 3SUBNETWORK Name 4
END
 The following definitions apply to the above:
```

Name i - any unique four character name CP - indicates specific heat value RO - indicates density value MU - indicates viscosity value TABLE 2 (CONT'D)

1.1.1

1. 28.670

T B

Ĩ,

| кт               | - | indicates thermal conductivity value                                                                                                        |
|------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------|
| Н                | - | enthalpy value                                                                                                                              |
| AXX              | - | array in the ARRAY DATA with actual value of XX                                                                                             |
| GC               | - | acceleration of gravity in the desired units.<br>Default value = 416962080.                                                                 |
| MPASS            | - | a pressure/flow solution is performed every MPASS                                                                                           |
| MXPASS           | - | maximum number of passes permitted in the balancing<br>loop to obtain a pressure/flow solution or any given<br>network. Default value = 100 |
| TOL              | - | the solution tolerance on the fraction of change of<br>flow rates from one pass in the flow solution to the                                 |
| FRDF             | - | flow rate damping factor which is a value between 0.5<br>and 1.0 to aid the convergence of the flow solution.<br>Default value = 0.5        |
| P(N)             | - | references the value of the specified pressure for pressure pode N                                                                          |
| NTi              | - | tube number i which connects pressure nodes NPF; and NPT.                                                                                   |
| NPF <del>i</del> | ⊷ | from pressure node number for tube no. i                                                                                                    |
| NPT              |   | to pressure node number for tube no. i                                                                                                      |
| FLii             | - | ith fluid lump in ith tube                                                                                                                  |
| TLii             | - | ith tube lump in ith tube                                                                                                                   |
| IFL              | - | increment for generating fluid lump numbers                                                                                                 |
| ITL              | - | increment for generating tube lump numbers                                                                                                  |
| КОР              | - | checkout print code (Default value = 0)                                                                                                     |
|                  | - | 0 : no checkout print is obtained for the network                                                                                           |

- 1 : a checkout print is obtained for the network

And the second second

and the second second

The value to the right of the equal may either be constant or reference an array in the ARRAY DATA. In the above example, the specific heat and thermal conductivity reference constant values of 0.25 and 0.073 while the viscosity and density reference arrays 25 and 37 in the array data. The enthalpy curve is supplied by array 8. The arrays referenced must be temperature dependent. The solution parameters which may be input in the systems data are MPASS, MXPASS, KOP, TOL, and FRDF (these are defined in Table II). These items are input by the same format as the property data except only integers are permitted for MPASS, KOP and MXPASS and only real numbers are permitted for TOL and FRDF. Any or all of the five solution parameters may be omitted and default values will be supplied. The default values are MPASS = 1, MXPASS = 100, KOP = 0, TOL = .01, FRDF = 0.5, when omitted. The acceleration of gravity. GC, is supplied in the systems data. This permits the user to analyze the flow problem in any desired units. The default value of GC is 416962080. ft/hr<sup>2</sup>. Values of GC for various problem units are given in Table III.

The specified pressure nodes and their pressure values are also supplied in the systems data. For example, if pressure node 34 is set at 14.7, the input would read

P(34) = 14.7

The system data input is terminated by an END similar to ARRAY DATA input. An example of the systems data input is

BCD 3NETWORK SYSTM1

CP = 0.25, MU = A25, RO = 37, KT = 0.073, H = A8TOL = 0.01, FRDF = 0.55, MPASS = 2, MXPASS = 120 GC = 32.173, P(34) = 14.7, END

SUBNETWORK input blocks contain no systems data.

Tube to pressure node connections are supplied in the NETWORK blocks following the systems data described above and in the SUBNETWORK blocks. The format for the input of the tube cards is:

NT, NPF, NPT =  $FL_1$ ,  $TL_1$ ,  $FL_2$ ,  $TL_2$ , ---

where NT, NPF, NPT are the tube number, "from" pressure node and "to" nodes respectively. FL, TL are the fluid lumps/tube lumps pairs contained in the tube.

A variation of the above format is available for the input of groups of fluid and tube lumps with a fixed interval between their numbers. The format for this option is:

|             | Ui     | VITS       |      | GC                     |
|-------------|--------|------------|------|------------------------|
| MASS        | FORCE  | LENGTH     | TIME |                        |
| LB          | LBf    | In.        | Sec  | 386.1                  |
|             |        |            | Min  | 1.390X10 <sup>6</sup>  |
|             |        | V          | Hr   | 5.004x10 <sup>9</sup>  |
|             |        | Ft.        | Sec  | 32.174                 |
|             |        |            | Min  | 1.1583X10 <sup>5</sup> |
|             |        | Y          | Hr   | 4.1696X10 <sup>8</sup> |
|             |        | Yd.        | Sec  | 10.725                 |
|             |        |            | Min  | 3.861X10 <sup>4</sup>  |
|             |        | V          | Hr   | 1.3399X10 <sup>8</sup> |
| GRAM        | dyne   | Centimeter | Sec  | 1.0                    |
|             |        |            | Min  | 3600.                  |
|             | V      | ¥          | Hr   | 1.296X10 <sup>7</sup>  |
| KILOGRAM    | Newton | Centimeter | Sec  | $1 \times 10^{-2}$     |
|             |        |            | Min  | 36                     |
|             |        | ¥          | Hr   | 1.296X10 <sup>5</sup>  |
|             |        | Meter      | Sec  | 1.0                    |
|             |        |            | Min  | 3600.                  |
| 2- <b>9</b> | V      | V          | Hr   | 1.296x10 <sup>7</sup>  |

# TABLE 3 VALUE OF GC FOR VARIOUS PROBLEM UNITS

nan energy af an anno 11 an

Ī

Ţ

Ţ

4

T

I

Ĵ

3.12

and the second second

NT, NPF, NPT =  $FL_1$ ,  $TL_1$ , ---( $FL_1$ ,  $TL_1$ ,  $FL_j$ ,  $TL_j$ , IF, IT),--- $FL_n$ ,  $TL_n$ , END

Where the lumps within the parenthesis are being incremented

FL, is the first fluid lump number of the interval

FL<sub>i</sub> is the last fluid lump number of the interval

IF is the increment between the lump numbers in the interval

TL, is the first tube lump number of the interval

 $TL_{i}$  is the last tube lump number of the interval

IT is the increment between tube lump numbers

The values of  $FL_i - FL_j$  must be a multiple of IF and  $TL_i - TL_j$  must be a multiple of IT. If IF and IT are both the integer 1, they may be omitted.

An example of the input of a tube in the NETWORK block or SUBNETWORK is

8, 3, 5 = (1, 201, 10, 210), END

This statement indicates that tube No. 8 connects pressure nodes 3 and 5 and contains temperature fluid lumps 1 thru 10 with adjacent tube temperature lumps 201 thru 210. A tube card is supplied for each tube in the network.

Special tube cards are supplied when a subnetwork is referenced from a main network. This card consists of a dummy tube number and the first and last pressure nodes of the subnetwork on the left of the equal sign and the subnetwork name on the right of the equal sign. For example, an input in the main network of

46, 10, 21 = SUB1, END references the block with the heading card of

BCD 3SUBNETWORK SUB1

for that portion of the network between pressure nodes 10 and 21. The dummy tube number is 46. Subnetwork elements may be referenced from "first level" subnetwork elements as well as network elements.

The input of negative fluid temperature lump numbers on the tube cards will indicate that no pressure drop calculations will be made for that fluid lump. Negative tube lump numbers indicate no temperature calculations will be made on the fluid lumps and tube lumps. This capability is useful for closed loop systems. For example, the input for the first tube in a closed system would be

1, 1, 2 = -200, -297, 97, 297, END where fluid lump 200 is the last lump in the system.

Each tube must have at least one fluid lump. This requirement is necessary to provide thermal continuity in the network.

4.2

1

ł

FLUID LUMP DATA Block Format

The FLUID LUMP DATA block contains the type data for all fluid lumps in all systems. The block is headed by BCD 3FLUID LUMP DATA and is terminated by END Where the BCD and END are each in columns 8, 9 and 10 consistent with SINDA input convention. The format for this block is the type data for each fluid lump type followed by an equal and the fluid lump numbers. The format is CSA, WP, FLL, AHT, NHL, MFF, FFC, F1, F2 = FL1, FL2, --- FLn, END = (FL<sub>1</sub>, FL<sub>n</sub>, INC), END or =  $(FL_1, FL_n)$ , END or = FL1, FL2, ---, (FL1, FL1, INC),---,FLn, END or = cross sectional area to flow CSA where WΡ = wetted perimeter FLL = fluid lump length area for convection heat transfer AHT a real constant : NHL is the number of head losses = NHL = AXX : XX is an array number of head losses vs Reynolds number method for friction factor calculation MFF = 0 : internal calculations used for friction factor = AXX : XX is an array number of an array of friction factor vs Reynolds for Reynolds numbers greater than 2000. FFC constant to be multiplied times the friction factor = F1 & F2 : F1 is a code to determine the method to be used for calculating heat transfer If Fl = real number : Fl is the convection laminar flow fully developed coefficient; F2 is the entry length coefficient

If F] = 1 : F2 is AXX where XX is an array of Stanton number versus Reynolds number from which the convection heat transfer coefficient will be obtained Ĺ If F1 = 2 : F2 is AXX where XX is an array of heat transfer coefficient versus flow rate = ith fluid lump number in the tube FLi the increment between lump numbers generated using INC = the parenthesis option. If INC is 1 it may be ommited. The parenthesis option may be inserted anywhere in the group of fluid nodes on the right of the equal sign. That is, lump numbers separated by commas may or may not be input before or after the lump generated by the paraenthesis option. Also, any number of parenthesis options may be used on one type card. The values for MFF, FFC, F1, and F2 may be left off the type cards if the default values are desired for <u>all</u> these items. The default values are MFF = 0 and FFC, F1 and F2 = 1.0. The input would then be: CSA, WP, FLL, AHT, NHL = FL1, FL2, --- (FL1, FL1, INC), --- FLn, END VALVE DATA Input Block (Optional) 4.3 The VALVE DATA input block contains the valve data for all valves in all flow systems. (That is, there is only one VALVE DATA block in the problem.) The block is headed by the card BCD 3VALVE DATA and is terminated by END Where the BCD and the END cards are each in columns 8, 9, and 10. Three types of valves are available to the user: rate limited, polynomial, and switching (see Section 2.2.3). The input required for these valves is: Rate Limited NV, NTS1, NTS2 = XI, MODE, XMIN1, XMAX1, E, TSEN1, TSEN2, DB, RF, RL, END Polynomial NV, NTS1, NTS2 = XI, MODE, XMIN1, XMAX1, E, TSEN1, TSEN2, CO, C1, C2, C3, C5, VTC, END Switching L'united NV, NTS1, NTS2 = XI, MODE, XMIN1, XMAX1, E, NSEN, T1, T2, END

54

Charles a

The second

|            | The   | following definitions apply in the above formats:                                                                                                  |
|------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| NV         |       | Valve number                                                                                                                                       |
| NTSI       | _     | Tube number connected to side 1 of the valve                                                                                                       |
| NTC2       | _     | Tube number connected to side 2 of the valve                                                                                                       |
| N1J2<br>VT | _     | Initial value position                                                                                                                             |
| MUDE       | _     | Operating mode : $1 - operating: 0 - pot operating$                                                                                                |
| VMINI      | _     | Side 1 minimum position: side 2 maximum position is                                                                                                |
| APIINI     | _     | (1.0 - XMIN1)                                                                                                                                      |
| XMAX ]     |       | Side 1 maximum position; side 2 minimum position is                                                                                                |
|            |       | (1.0 - XMAX1)                                                                                                                                      |
| E          | -     | The valve geometric factor relating pressure drop through                                                                                          |
|            |       | the valve by                                                                                                                                       |
|            |       | <pre>ΔP = E (flowrate/valve position)<sup>2</sup></pre>                                                                                            |
| TSEN1      | -     | Sensor lump for side l or set point for side 2; if TSEN1                                                                                           |
|            |       | is an integer, it identifies the side I sensor lump to                                                                                             |
|            |       | be controlled to (a) the set point for side 1 or (b) the                                                                                           |
|            |       | sensor lump for side 2 (TSEN2). If the variable is input                                                                                           |
|            |       | as a floating point number it represents a set point to                                                                                            |
|            |       | which the side 2 sensor lump will be controlled.                                                                                                   |
| TSEN2      | -     | Sensor lump for side 2 or set point for side 1; if TSEN2                                                                                           |
|            |       | is an integer, it identifies the side 2 sensor lump to be                                                                                          |
|            |       | controlled to (a) the set point for side 2 or (b) the sensor                                                                                       |
|            |       | lump for side 1 (TSEN1). If the variable is input as a float-                                                                                      |
|            |       | ing point number it represents a set point to which the side                                                                                       |
|            |       | l sensor lump will be controlled.                                                                                                                  |
| CO,C1,C2,  | C3,C4 | ,C5 - Polynomial curve fit coefficients for a curve fit of                                                                                         |
|            |       | the steady state valve position vs sensed temperature error                                                                                        |
|            |       | for side l:                                                                                                                                        |
|            |       | XISS = CO + CI· $\Delta$ T + C2· $\Delta$ T <sup>2</sup> + C3· $\Delta$ T <sup>3</sup> + C4· $\Delta$ T <sup>4</sup> + C5· $\Delta$ T <sup>5</sup> |
| DB         | -     | Dead band for the rate limited valve, degrees of temperature                                                                                       |
|            |       | (Figure 4)                                                                                                                                         |
| RF         | -     | Rate factor, the rate of change of valve velocity to sensed                                                                                        |
|            |       | temperature error (dx/d(LT)) as shown on Figure 4                                                                                                  |
| RL         | -     | Rate limit, the maximum valve velocity, Xmax (see Figure 4)                                                                                        |

- <u>- -</u>

(jacond)

ļ

Ţ

Ţ

₿---₽

- 4

-10

Ţ

Ţ

Ĵ

1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -

アンド

| VTC                                   | _     | Valve ti  | me constant as described in Section 2.2.3.2.            |
|---------------------------------------|-------|-----------|---------------------------------------------------------|
|                                       |       | If a val  | ve is desired with no time lag, a time constant         |
|                                       |       | which is  | verv small compared to the problem time increment       |
|                                       |       | should b  | e input. (VTC must be greater than zero).               |
| JSEN                                  | -     | Sensor 1  | ump for switching valve                                 |
| т]                                    | _     | Side 1 o  | tf temperature or side 2 on temperature for switching   |
|                                       | _     | valve     |                                                         |
| T2                                    | -     | Side 2 o  | ff temperature or side 1 on temperature for switching   |
|                                       |       | valve     |                                                         |
| 4.4                                   | FLOW  | SOURCE D  | ata Block                                               |
|                                       | The   | FLOW SOUR | CE data block contains specification of flow rate for   |
| all the sy                            | stems | in the p  | problem. The heading card for this block is             |
|                                       | BCD   | 3FLOW SOL | IRCE DATA                                               |
| and is ter                            | minat | ed by     |                                                         |
|                                       | END   |           |                                                         |
|                                       | Thre  | e types o | of flow specifications are available. These are:        |
| (1) flow r                            | ate a | s a funct | tion of time; (2) pressure rise as a function of flow   |
| rate speci                            | fied  | by a tabı | lated curve; and (3) pressure rise as a polynomial      |
| function o                            | f flo | w rate.   | The input for each of these is given below.             |
| Flow as A                             | Funct | ion of Ti | ime                                                     |
| <u></u>                               | NPI,  | AW, END   | —                                                       |
| Pressure R                            | ise a | s A Tabul | ated Function of System Flow Rate                       |
| · · · · · · · · · · · · · · · · · · · | NPI.  | NPO, ADF  |                                                         |
| Pressure R                            | ise a | s A Polvi | nomial Function of Flow Rate                            |
|                                       | NPI.  | NPO, CO.  | . C1. C2. C3. C4. END                                   |
| where:                                |       |           |                                                         |
|                                       | NPI   | Ξ         | system inlet pressure node                              |
|                                       | AW    | •         | W is an array number of an array which gives tabulated  |
|                                       |       | •         | flow rate vs time if input as AXX                       |
|                                       |       |           | AW is constant imposed flowrate for node NPI if AW      |
|                                       |       | •         | is a floating point number.                             |
|                                       | ΝΡΟ   | =         | system outlet pressure node                             |
|                                       |       | -         | DD is an array number of an array which gives tabulated |
|                                       | η D Γ | •         | numn pressure rise as a function of flow rate           |
|                                       |       |           |                                                         |

1--

.

~

18°,04° -04

:

ł

.

•

. .

C0,C1,C2,C3,C4 = polynomial curve fit constants for pressure rise as a function of flowrate, i.e.,

 $\Delta P = C0 + C1 \cdot \dot{w} + C2 \cdot \dot{w}^2 + C3 \cdot \dot{w}^3 + C4 \cdot \dot{w}^4$ 

The value of AW may be input as a floating point number if a constant system flow rate is desired.

4.5 Example of Flow Input

I

I

I

An example of the flow input described in Sections 4.1 and 4.4 is given in Table IV. This table gives the flow input for the sample problem given in Section 6.0.

#### TABLE 4

•

#### FLOW DATA INPUT FOR SAMPLE PROBLEM

```
BCD SFIDW DATA
BCD 3NETWORK MAIN
    GC=4.17312EB, CP=A1, RO#A2, MU=A5, KT=A6, MPA55=1, H#A8
    TOL=+01+MXPASS=100+FRDF=+7+P(24)=0++END
                                    . END
    37. 23. 24 =
                   117,317
                                    . FND
              3 =
                    98,29A
     2.
         2.
                    99.299
                                    • END
             4 =
     з,
         3.
         4. 17 = SUB1
                                      END
    38.
                                    .
                                     FND
                  106,306
    26, 17, 18 =
                   107.307
                                    • END
         3.
             9 ≖
    11.
         9, 22 = SUB2
                                     END
    39.
                                    .
                                      END
    34 • 22 • 18 *
                   114+314
                                    ٠
                                    . END
    35, 18, 23 = 115,315
         2 \cdot 23 = 116 \cdot 316
                                    . END
    36 .
             2 = -280.-297.97.297 . END
     1.
         1.
END
ACD 35URNETWORK SUR1
             6 = 100,300
                                    . END
     4.
          4.
                     7,207, 12,212). END
              7 ≃ (
     5.
          6.
                             6,206), FND
              7 ≈ {
                     1.201.
     6.
          6.
              5 = ( 13,213, 18,218), END
     7,
          4 .
              5 = (19, 219, 24, 224), END
          4.,
     8.
                                     . END
              7 =
                   101.301
     9.
          5.
              8
                   102.302
                                     • FND
    10.
          7.
               푞
                                     . END
                   103,303
            14 =
    19.
          Β.
                 104.304
                                     . END
    20, 14, 16 =
    21, 16, 17 = ( 37,237, 42,242), END
    22, 16, 17 = ( 43,243, 46,248), END
    23, 14, 15 = (31, 231, 36, 236), FND
    24, 14, 15 = ( 25,225, 30,230), END
                                    . END
    25, 15, 17 # 105,305
END
BCD BSUBNETWORK SUBZ
          9, 11 = 108,308
                                     • END
    12.
     13. 11. 12 = ( 61.261. 66.264). END
    14. 11. 12 = ( 67, 267, 72, 272). END
          9. 10 = (55,255, 60,260). END
     15.
          9. 10 = ( 49.249. 54.254). END
     16.
                                     . END
     17. 10. 12 =
                  109,309
     18, 12, 13 =
                                     . END
                   110,310
                                      END
     27, 13, 19 =
                  111,311
                                     .
                                     . END
     28, 19, 21 = 112, 312
     29. 21. 22 = ( 79.279. 84.284). END
     30, 21, 22 = ( 73,2/3, 78,278), FND
     31. 19. 20 = ( 85.285. 90.290). END
     32. 19. 20 # ( 91.291. 96.296), END
     33, 20, 22 = 113, 313
                                     . END
```

FND

TABLE 4 (CONT'D)

ľ

۲È

4 6

-+

-4

a 15

÷

後の時間、大学になっていた。「大学になった」ので、「ない」では、「ない」では、「ない」では、「ない」では、「ない」では、「ない」では、「ない」では、「ない」では、「ない」では、「ない」では、「ない」では、

ų,

the state of the second se

CARGE AND AND A STREET

```
BCD SFLUID LUMP DATA
    n.001008, 0.1125, 12.0 , 1.35 .
                                        0.0 =
                                                            48
                                                     43,
                                        25 .
                                               30 ,
                     6 • 19 • 24 •
                1 +
                                                            96 .END
                                        73 +
                                               78 ;
                                                     91 1
               49 ,
                     54 , 67 , 72 ,
                        3.25, 1.17 , 117.0 m
    n.000938, 0.36
                      5) . ( 8 .
                                               17) . 20 .
                                                            23)
                                  11) ( 14 +
                2 1
             t
                                                            471 . END
                                  35) . ( 38 .
                                               41),( 44 ,
                     29) , ( 32 ,
             ( 26 1
                       5.0 . 0.5625.
                                          ()•() m
    n.001008, 0.1125,
                                                            42
                                                     37 ,
                                         31 .
                     12 , 13 ,
                                  18 .
                                               36 🖡
                7.
                                                            90
                                         79 1
                                               84 ,
                                                     85 ,
                            61
                                  66 .
               55 .
                     60 🔹
                               .
                                                               , END
                     98 , 117
               97 ;
                                          2.49=
    n.853E-4, 0.0328, 0.25, 0.0082;
             ( 50 , 53) . ( 56 ,
                                  59) , ( 62 ) 65) , ( 68 )
                                                            71}
                                 83),(86 + 89),(92 +
                                                            95), END
             1 74 . 771.00.
    0.001008, 0.1125, 20.0 ; 2.25
99 ; 106 ; 107 ; 114
                                          0.0 2
                                     . .
                                                               . END
    0.001008, 0.1125, 2.5 : 0.281 ;
                                         0.0 =
              102 + 103 + 110 + 111
                                                               , END
    0.001008, 0.1125, 50.0 , 5.62
                                          0.0 E
                                      .
                                                               ,END
              115
    0.001008, 0.1125, 7.0 : 0.7875:
                                          0.0 =
              100 + 101 + 104 + 105 + 108 + 109 + 112 + 113 ,END
                        2.0 , 0.225 ,
                                          (]•() =
    0.001008, 0.1125,
                                                               , END
              116
     0+0±0+0+0+0+0+0+0=200+END
END
RCD SVALVE DATA
     3,2,36=,999,1,,001,,999,01,117,35,,,75,,5,5,50,END
     2,3,11=,99,1,.01,.99,.01,115,40,...75..5,5..END
END
ACD SELOW SOURCE DAYA
    1.24.A13,END
FND
RCD SEND FLOW DATA
```

### 5.0 USER SUBROUTINES

Ē.

日に

L

This section describes the user subroutines which have been developed and modified by VSD for SINDA. Table 5 summarizes the subroutines and the page that each description of usage is found.

The subroutine inputs rely upon the ability to convert from actual array, node, and conductor numbers to relative numbers in the array data. To use the capability the user may supply an actual array number, node number, or conductor number by preceding the actual number with \*A, \*T, or \*G respectively. This causes the preprocessor to replace the entry with the relative number. Consider the example for array number 2 shown below

2, \*A14, \*T5, \*G7, END

In this example, following the preprocessor phase, \*Al4 would be replaced by the location in the A array of the array number 14 data, \*T5 would be replaced by the relative node number for actual node number 5, and \*G7 would be replaced by the relative conductor number for actual conductor number 7.

In addition, revisions have been made to some of the temperature solution cubroutines to interface with the Fluid Hybrid solution subroutines. The following subroutines were revised:

| CINDSL | - | Steady State          |
|--------|---|-----------------------|
| CINDSS | - | Steady State          |
| CNBACK | - | Backward Differencing |
| CNFWBK | - | Mid-differencing      |
| CNFRWD | - | Forward Differencing  |
| CNFAST | - | Forward Differencing  |
| FWDBCK | - | Mid-differencing      |
| SNDSNR | - | Steady State          |
| SNFRDL | - | Forward Differencing  |
| SNFRWD | - | Forward Differencing  |
| STDSTL | + | Steadv State          |

# TABLE 5

1

-----

THE PARTY

Sector 1

- APPENDED

Rowspace 6

]

1

1

North State

human

# USER SUBROUTINES

| SUB | ROUTIN | E |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |     | <u>PAGE</u>    |
|-----|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-----|----------------|
| A   | COMB   | • |   |   |   |   |   |   | • |   | • | • | • | • | • | • | • | • |   | • | • |   | • | • |   | •   | 62             |
| C   | ABIN   | • |   | • |   |   | • | • |   |   |   |   |   | • | • | • | • | • |   | • | • | • | • | • |   | •   | 63             |
| C   | RVINT  |   | • |   |   |   | • | • |   |   | • | • |   | • | • | • | • | • | • | • | ٠ | • | • | • |   | •   | 67             |
| C   | YCLE   |   | ٠ | • | • |   |   | • | · |   | • | • | • |   | • | • | • | • | • | • | • |   | • | ٠ | • | •   | 68             |
| F   | LOSOL  | • | • | • | • |   | • | • | • |   | • |   | • |   | • | • | • | • | • | • | • | • | • | • | • | •   | 69             |
| F   | LOTMP  | • | • | • |   |   | • | • | • | • | - | ٠ | • | ٠ | • | ٠ | ٠ | • |   | • | • | • | • | • | • | •   | 73             |
| F   | LPRNT  |   | • | • | • | • | • |   | • |   | • | ٠ | • | • | • | • | • | • | • | • | ٠ | • | • | • | • | •   | 74             |
| F   | LUX    | • | • | • | • | • | • | • | • | • | • | • | • | ٠ | • | • | • | • | • | • | • | • | • | • | • | •   | 75             |
| Ģ   | GENOUT | • | • |   | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | •   | 77             |
| ł   | ISTFL0 | • | • | • |   | • | • | • | • | • | • |   |   | • | • | • | • |   | • | • | • | • | • | • | • | ••• | 78             |
| ł   | IXEFF  | • | ٠ | • | • | • | • | • | • | • | • | ٠ | • | • | • | • | • | • | • | • | • | • |   | • | • |     | 80             |
| ŀ   | IXCNT  | v | • | • | • | , | • | • | • | • | ٠ | • | • | • | • | • | • | • | • | ٠ | • | • | • | • | • | •   | 82             |
| ł   | IXCOND | • | • | • | • | • | • | • | • | • | • | • | ٠ | • | • | • | • | • | • | • | • | • | • | • | • | •   | 84             |
| ŀ   | IXCROS | • | • |   | • | • | • | u | ٠ | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | •   | 86             |
| ł   | HXPAR  | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | ٠ | • | • | • | • | ٠ | • | • | ٠   | 88             |
| ł   | HYBRID | • | • | • | • | • | • | • | • | • | • | • | • | • | ٠ | ٠ | • | • | • | • | • | • | • | • | • | •   | 90             |
| ]   | INVRS  | • | • | • | • | • | • | • | • | • | • | • | ٠ | • | • | • | • | • | • | • | • | • | ٠ | • | • | •   | 92             |
| (   | QCOMB  | • | • | • | • | • | • | • | • |   | • | • | • | • | • | • | • | • | • | • | • | ٠ | • | • | • | •   | 93             |
| I   | RADIR  | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | ٠ | • | • | • | ٠   | 94             |
| F   | RADSOL | • | • | • | ٠ | • | • | • | • | • | • | • | • | • | ٠ | ٠ | • |   | • | • | • | • | • | • | ٠ | •   | 96             |
| I   | REVPOL | • |   | • | ٠ | • | • | • | • | • | ٠ | • | • | • | • | ٠ | • | • | • | • | • | ٠ | • | • | • | •   | <del>9</del> 8 |
| 9   | SINVRS | • |   | • | • | • | • | • | • | ٠ | • | • | • | • | ۰ | ٠ | • | • | • | ٠ | • | • | • | ٠ | ٠ | ٠   | 99             |
| -   | ТІМСНК | • | • | • | • | • | ٠ | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | ٠ | •   | 101            |
| 1   | WPRINT |   |   |   |   |   |   |   |   |   |   |   | _ | _ |   | _ |   |   | _ | - |   |   |   |   |   |     | 102            |

SUBROUTINE NAME:

· •

~

ACOMB

See description for usage of OCOMB.

mi 1

1.62.10

Ţ

Ţ

Ţ

Ţ

Ţ,

ļ

I

#### SUBROUTINE NAME:

CABIN

1-----

Sec. 14 84.84

### PURPOSE:

This subroutine performs a thermal and mass balance on a cabin air system. The cabin air is assumed to be a two component gas mixture with one condensible component and one noncondensible component. The cabin air is assumed to be well mixed so that the temperature and specific humidity are constant throughout. The cabin may contain any number of entering streams each with different temperature and humidity conditions. The cabin air may transfer heat to any number of nodes in its surroundings with the heat transfer coefficient obtained by one of the the three options:

- 1. User input coefficient
- 2. Relations for flow over a flat plot
- 3. Relations for flow over a tube bundle

The relations describing the second and third options are given in Section 2.1.7. The mass transfer coefficient for determining the rate of condensation or evaporation is determined by the Lewis relation which relates the mass transfer coefficient directly to the convection heat transfer coefficient. By the Lewis Relation, if the diffusion coefficient is approximately equal to the thermal diffusivity, the Sherwood number is approximately equal to the Nusselt number, thus giving a direct relation. (See Section 2.1.7 for details). Mass and heat transfer rates are determined at each node that interfaces the cabin gas as well at entering and exiting streams and a new cabin gas temperature and humidity is determined each iteration based upon the heat and mass balance. An account is kept of the condensate on the walls when condensation occurs but the condensate is assumed to remain stationary and not flow to other wall nc. 3.

Limits are applied when necessary to prevent more condensation than the vapor existing under severe transient condition and to prevent evaporation of more liquid than exists at each wall lump.

As many cabins as desired may be analyzed in a given problem, but each must contain separate input information.

RESTRICTIONS:

CABIN must be called in VARIABLES 1.

CALLING SEQUENCE:

CABIN(A(IC) TC, TC, K1, K2)

The following definitions apply to the above calling sequence:

А

is an array containing arrays numbers which contain cabin input information

| TC                    | The cabin gas temperature which must be a boundary node                                                                                                                                                                                              |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| K1,K2                 | Storage locations needed by CABIN                                                                                                                                                                                                                    |
| The A array has the f | following format where the *A procedure is used:                                                                                                                                                                                                     |
| A(IC),IF,PR,CN,H      | I, FP, TB, SP, END                                                                                                                                                                                                                                   |
| Where IF              | Identifies an array containing the entering flow rate information. The format of the array is:                                                                                                                                                       |
|                       | IF(IC),NS,FR <sub>1</sub> ,PSI,TE <sub>1</sub> ,FR <sub>2</sub> ,PSI <sub>2</sub> ,TE <sub>2</sub> FR <sub>ns</sub> ,PSI <sub>ns</sub> ,TE <sub>ns</sub>                                                                                             |
| PR                    | Identifies an array identifying array numbers<br>for property values. The format of the array<br>is:                                                                                                                                                 |
|                       | PR(IC),NFLC,NMUO,NMUV,NCPO,NCPV,NKO,NKV,NLAT                                                                                                                                                                                                         |
| CN                    | Identifes an array containing pertinent constants.<br>The format of the array is:                                                                                                                                                                    |
|                       | CN(IC),RA,RV,VC,PC,XC,WV,PSIC,PO,TO,CONV                                                                                                                                                                                                             |
| Н                     | Identifies an array containing node numbers<br>and convection heat transfer coefficient<br>values for nodes surrounding the cabin gas.<br>The format of the array is:                                                                                |
|                       | H(IC),LN;, HA1, LN2, HA2, LN <sub>n1</sub> , HA <sub>n1</sub>                                                                                                                                                                                        |
| FP                    | Identifies an array containing node numbers and information to permit calculation of convection coefficients for flat plates. The format is:                                                                                                         |
|                       | FP(IC),LN <sub>1</sub> ,XX <sub>1</sub> ,XI <sub>1</sub> ,AI <sub>1</sub> ,VIWØ <sub>1</sub> ,LN <sub>2</sub> ,XX <sub>2</sub> ,XI <sub>2</sub> ,AI <sub>2</sub> ,                                                                                   |
|                       | VINØ <sub>2</sub> ,LN <sub>n2</sub> ,XX <sub>n2</sub> ,XI <sub>n2</sub> ,AI <sub>n2</sub> ,VIWØ <sub>n2</sub>                                                                                                                                        |
| ТВ                    | 'Identifies an array containing node numbers and<br>information to permit calculation of convection<br>coefficients for tube bundles. The format is:                                                                                                 |
|                       | TB(IC),LN1,DI1,AI1,VIWØ1,LN2,DI2,AI2,VIWØ2,LNn3,                                                                                                                                                                                                     |
|                       | DI <sub>n3</sub> ,AI <sub>n3</sub> ,VIWO <sub>n3</sub>                                                                                                                                                                                               |
| SP                    | Identifies an array which contains working space<br>equal to or greater than three times the sum<br>of the number of nodes with input heat transfer<br>coefficients plus the number using flat plot<br>relations plus the number using tube bundles. |
|                       | definitions apply in the above:                                                                                                                                                                                                                      |

مراد 40 € مراد (مراد ما 10 مسلم 10 م€ 10 € 10 مرد مرد 10 € 10 مرد مراو وارد مرد مسلم مرد مرد وارد . . 4. (مرد . . . 4

The following symbol definitions apply in the above:

X . 1 1

I

1

I

T ...

ļ

Ŧ

(janima)

I

. .

-

| NS              | Number of incoming streams                                             |
|-----------------|------------------------------------------------------------------------|
| FR <sub>i</sub> | Entering flow rate for stream i                                        |
| PSI i           | Specific humidity for entering stream i                                |
| ΤΕ <sub>i</sub> | Temperature of entering stream i                                       |
| NFLC            | Curve number for circulation flow rate vs time                         |
| NMUO            | Curve number for noncondensible viscosity vs<br>temperature            |
| NMUV            | Curve number for condensible viscosity vs<br>temperature               |
| NCPO            | Curve number for noncondensible specific heat vs temperature           |
| NCPV            | Curve number for condensible specific heat vs<br>temperature           |
| NKO             | Curve number for noncondensible thermal conduc-<br>tion vs temperature |
| NKV             | Curve number for condensible thermal conduction vs temperature         |
| NLAT            | Curve number for latent heat of condensible vs temperature             |
| RA              | Gas constant for non-condensible component                             |
| RV              | Gas constant for condensible component                                 |
| VC              | Cabin volume                                                           |
| PC              | Cabin Pressure                                                         |
| XC              | Molecular weight ratio, Mv/Mo                                          |
| WV              | Initial vapor weight in cabin                                          |
| PSIC            | Initial specific humidity for cabin                                    |
| LN <sub>1</sub> | Cabin wall lump                                                        |
| НА              | Heat transfer coefficient times area                                   |
| nl              | Number of wall lumps which have input HA values                        |
| n2              | Number of wall lumps which have HA calculated by flat plate relations  |
| n3              | Number of wall lumps which have KA calculated                          |

.

| ××i             | Distance from leading edge for flat plate heating for ith flat plate node                                                                                                                                                     |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| XI <sub>i</sub> | Length of flat plate in flow direction for ith flat plate node                                                                                                                                                                |
| AI <sub>i</sub> | Heat transfer area for flat plate or tube node                                                                                                                                                                                |
| DI i            | Tube outside diameter for tubes in the bundle for ith tube node                                                                                                                                                               |
| ОМІ Л           | Ratio of velocity at the lump to the circulation flow rate                                                                                                                                                                    |
| То              | The reference temperature to be used for esti-<br>mating the saturation pressure of the condensi-<br>ble component. Should be near the range of<br>saturation temperature expected                                            |
| Ро              | The saturation pressure at To for the condensible component                                                                                                                                                                   |
| CONV            | Conversion factor to make the quantity XLAM/Rv/To<br>dimensionless where XLAM is the latent heat of<br>vaporization and Rv is the gas constant for the<br>vapor. If XLAM is BTU/1b, Rv is FT-LB/°R and<br>To is °R. CONV=778. |

ŝ,

I

I

Ì

Į

Į

Į

t
## SUBROUTINE NAME: CRVINT

## PURPOSE:

This subroutine performs an integration of the doublet array, A, and stores the results in doublet array B. The independent variables (the odd data valves) of the A array are transferred directly to the B array. The dependent variables of the B array are calculated by

$$B(2) = 0.0$$
  

$$B(2*N) = B(2*(N-1)) + 0.5*[A(2*N) + A(2*(N-1)]]$$
  

$$*[A(2*N-1)-A(2*(N-1)-1]]$$
  

$$N = 2, NP$$
  
where NP = number of points in the A array  
(half the integer count)

ŧ.

This subroutine was written primarily for integration of specific heat arrays to obtain enthalpy arrays but could be used for integration of any dependent variable over the independent variable range.

## **RESTRICTIONS:**

Space in B array must be exactly equal to the space in the A array. Must be at least two points in A array (i.e., the integer count must be greater than or equal to 4).

CALLING\_SEQUENCE: CRVINT(A(IC), B(IC))

# SUBROUTINE NAME: CYCLE

# PURPOSE:

**Manual** 

Ĩ

Ť.

Ĵ

ļ

Ŀ

L

Subroutine CYCLE will automatically extend the range of independent variables in either direction for cyclic curves by adding (or subtracting) the cycle period to each independent variable when the curve range is exceeded. The total input range of the independent variables is assumed to be one period. CYCLE should be called prior to interpolation so that the necessary changes may be performed to the independent variables.

## **RESTRICTIONS:**

None

А

CALLING SEQUENCE: CYCLE(X,A,NAME)

doublet array assumed to be cyclic

NAME - one word Hollerith identifier

, As

## SUBROUTINE NAME: FLOSOL

#### PURPOSE:

Subroutine FLOSOL determines the flow distribution in a set of general parallel/series fluid flow tubes so that the pressure drop values between any parallel flow paths are equal and flow is conserved. The following effects are included in the pressure drop calculations:

- (1) pipe flow friction
- (2) orifices and fittings
- (3) valves

The effect of temperature dependent properties are included in the calculations. The properties are evaluated at the temperature of each fluid lump in each tube in evaluating the flow resistance when setting up the equations to be solved. A balance is made between the flow/pressure drop characteristics of the system and the flow/pressure rise of a pump for each system concurrent with the system pressure flow solution to obtain the incoming system flowrate. A detailed discussion of the equations and techniques used are described in Section 2.1. General flow charts of FLOSOL and supporting subroutines are shown in Figures 6,7, and 8.

1

#### **RESTRICTIONS:**

FLOSOL should be called from EXECUTION prior to temperature solution call and from VARIABLES 2 for transient problems. For steady state solutions FLOSOL should be called from VARIABLES 1 and DTIMEU should be set in the CONSTANTS DATA if valve operation is required. The system of units used for the thermal and flow problem should be consistent.

CALLING SEQUENCE: FLOSOL

## DYNAMIC STORAGE REQUIREMENTS:

Dynamic storage required for FLOSOL is  $1/2(NPRN^2 + 7*NPRN + 12)$ , where NPRN is the maximum of the number of pressure nodes in any network.



NO

>

В

А



А

В

FIGURE 6 FLOW CHARTS OF FLOSOL AND NTSOL



1

æ

الليسية ا

a contract of

Berry Changel

Berline R

1 Constant

( And the second se

Constant of

٢

FIGURE 7 FLOW CHARTS OF NTSOL 1 AND NTSOLN



T

ţ,

Į

Ĵ

Ţ



FIGURE 8 FLOW CHAP" OF FLBAL

72

# SUBROUTINE NAME: FLOTMP PURPOSE:

Subroutine FLOTMP will read the node temperatures, flowrates, pressures and valve positions at time TMPTIM from the history tape assigned to Unit U generated by subroutine HSTFLO for a previous run on Unit T to initiate a problem at these conditions. The time to read the tape, TMPTIM is the argument. The subroutine should be called in the execution block prior to the call to the temperature solution subroutine.

## **RESTRICTIONS:**

Must be called in the EXECUTION block prior to the call to the appropriate temperature solution subroutine. The history tape must be assigned on Unit U.

Ĺ

## CALLING SEQUENCE:

FLOTMP(TMPTIM)

## SUBROUTINE NAME: FLPRNT

## PURPOSE :

Ĭ

Ţ

Ĩ

Subroutine FLPRNT will write the values of the DATA array of real numbers at 10 to a line. The array is labeled by the variable input HEAD which contains 9 six character alpha numeric words. The array location of every tenth value in the array is identified to the right of the appropriate line.

## **RESTRICTIONS:**

Should be called from OUTPUT. The array must be real.

#### CALLING SEQUENCE:

FLPRNT(DATA(IC), HEAD(DV))

CONTRACTOR AND ADDRESS AND

#### SUBROUTINE NAME: FLUX

#### PURPOSE:

1 7

Subroutine FLUX permits doublet time variant curve values stored on magnetic tape unit NFLXTP to be read into NCRV arrays starting at array DATA when the mission time exceeds DQTIME. The flux tape must be generated prior to the run using a GE routine LTVFTP. This routine generates the flux tape in the following format:

<u>Record No. 1</u> First Read Time

Record No. 2

Number of points on first curve (Integer), first curve independent variables, first curve dependent variables, number of points on second curve, second curve independent variables, second curve dependent variables, etc. for all curves.

Record No. 3 Second Read Time

Record No. 4 Same as Record No. 2 except with new values

<u>Record No. 5</u> Third Read Time

Etc. until all blocks of data are on tape.

Subroutine FLUX writes the values from the appropriate NFLXTP record into the arrays defined by DATA and NCRV in the proper doublet array format. Flux values should be input into the heat flux arrays ( $DATA_1$ ---DATA<sub>NCRV</sub>) initially if the user doesn't want the values to be read from the tape at the start of the problem. The value of QTIME should initially be the value of the time the first read is desired.

#### **RESTRICTIONS:**

The following restrictions apply:

(1) The initial block of curve data must be input on cards or data

- Figure 26 6 reduct ends are star baum sevence netications employed available reading as were back to act of the sevence o
- 3. Each curve may have a connected pumper of occurs.
- The first point on each curve in each plock of outal will be the same as the last point on that curve in the provides block of data
- (5) All incident heat curves must be in a single block by themselves.

CALLING SEQUENCE:

FLUX(NFLXTP, DATA, NCRV, DQTIME, Q11ME)

## where

**Name** 

I

ļ

Į

l

H

F

I

Ĩ

**THE REAL** 

| NFLXTP | ÷ | logical unit to which the flux tape is assigned | Must to |
|--------|---|-------------------------------------------------|---------|
|        |   | supplied by a user constant.                    |         |

- DATA starting location (IC) for thus curves
- NCRV number of flux curves to be updated from the flux tape
- DQTIME time scale shift for flux curves DQ11ML is added to each independent value for each flux curve read from NE4710
- QTIME the last point on the latest set of flux curves read from NFLXTP. (QTIME = FLXTIM + DOTIME, where fl/flM is the flux read from the flux tape) must be supplied by user constant

# SUBROUTINE NAMES: GENOUT, GENI OR GENR

# PURPOSE:

These subroutines print out arrays of numbers 10 to a line. GENOUT prints either real numbers, integer or both. GENI and GENR print integers and real number arrays respectively. The integers are written in an I9 format and the real numbers in an E12.4 format.

1.

# **RESTRICTIONS:**

GENI writes arrays of integers only. GENR writes arrays of real numbers only.

# CALLING SEQUENCE:

|         | GENOUT (A | , ISTRT, ISTP, 'NAME')                         |
|---------|-----------|------------------------------------------------|
|         | GENI (A   | , ISTRT, ISTP, 'NAME')                         |
|         | GENR (A   | , ISTRT, ISTP, 'NAME')                         |
| where A | - ist     | he array location                              |
| ISTRT   | - is t    | he first value in A being written              |
| ISTP    | - is t    | he last value in A being written               |
| 'NAME'  | - isa     | title of 22 Hollerith words for identification |

## HSTFLO

## PURPOSE:

Subroutine HSTFLO stores the problem time, the pressures of all pressure nodes, the valve positions for all valves, the flowrates for all tubes, and the temperatures of all temperature nodes at an input interval on a magnetic tape (the history tape) mounted on Unit T. The number of records written on the history tape is the number of history intervals plus two. The first record contains a title, an integer count of the number of items to be written for each of the five categories (pressure drops, pressures, valve positions, flowrates, and temperatures), the actual tube numbers, actual pressure node numbers, actual valve numbers, and the actual node numbers in order of relative numbers. The second through the next-to-last records contain the history records with one for each time point and the last record is the same as the next-to-last except the time is negative. The argument to HSTFLO is the history tape writing interval, TINC.

The format for the history tape is as follows:

## Record No. 1

5

....

÷

Tital (written internally) is 12A6 format 0,0,0,0,0, number of tubes, number of pressure nodes, number of valve positions, 0,0,0, number of tubes, 0,0, number of nodes, actual tube numbers in increasing order, actual pressure node numbers in increasing order, actual valve numbers in increasing order, and actual node numbers in increasing order of relative node numbers.

## Record No. 2

Initial problem time, pressure drops, pressures, valve positions, flowrates, node temperatures

#### Record No. 3

Second history time, pressure drops, pressures, valve positions, flowrates, node temperatures

<u>Record No. N+1</u> (Where N = number of history time slices to be written) Last history time, pressure drops, pressures, valve positions, flowrates, node temperatures

Record No. N+2 Same as last record except time is negative **RESTRICTIONS:** 

64 **e** 

Should be called in VARIABLES 2. An output history tape should be mounted on Unit T. Subroutine TMCHK must be in VARIABLES 2 prior to the call to Subroutine HSTFLO if TIMCHK is called in the problem.

If the backup feature is used in VARIABLES 2, the call to subroutine HSTFLO should not be made until the last pass to avoid nonincreasing time records or invalid data. For example:

1-

- Paranta

BCD 3VARIABLES 2

F IF (T(16) .LT. TMAX) BACKUP = 1. . F IF (BACKUP .GT. C., GO TO 10 HSTFLO (.01) F 10 CONTINUE END

CALLING SEQUENCE:

HSTFLO(TINC)

## SUBROUTINE NAME: HXEFF

#### PURPOSE:

This subroutine obtains the neat exchanger effectiveness either from a user constant or from a bivariant curve of effectiveness versus the flow rates on the two sides. The effectiveness thus obtained is used with the supplied flow rates, inlet temperatures and fluid properties to calculate the outlet temperatures using the methods described in Section 2.1.6.4. The user may specify a constant effectiveness by supplying a real number or may reference an array number to specify the effectiveness as a bivariant function of the two flow rates. The user supplies flow rates, specific heat values, inlet temperatures and a location for the outlet temperatures for each of the two sides. The flow rate array may be referenced to obtain flow rates and the temperature array may be used for temperatures. The specific heat values may be supplied as a temperature dependent curve or a constant value may be supplied. The user also identifies enthalpy curves for each side which may be generated from the specific heat curve with user subroutine CRVINT.

1

#### **RESTRICTIONS:**

t

HXEFF should be called in the VARIABLES 1 block. The value for EFF, the first argument must never be zero.  $T_{out1}$  and  $T_{out2}$  must be boundary nodes.

CALLING SEQUENC HXEFF(EFF,W1,W2,CP1,CP2,TIN1,TIN2,TOUT1,TOUT2,H1,H2)

- where EFF is (1) the effectiveness if real, (2) a curve number of a bivariant curve of effectiveness versus W1 and W2 if an array
  - W1,W2 are the flow rates for side 1 and 2 respectively. May reference the flow rate array, W (I)where I is the tube number

8Ù

- CP1,CP2 are the specific heat value for side 1 and side 2 fluid respectively. Constant values may be input or arrays may be used for temperature dependent properties.
- TIN1,TIN2 are inlet lump temperatures Usually T(IN1) and T(IN2) where IN1 and IN2 are the inlet lumps on side 1 and side 2
- TOUT1,TOUT2 are the outlet lump temperature locations sides 1 and 2 where the calculated values will be stored. Must be boundary nodes.
  - H1,H2 are arrays which give enthalpy vs temperature for sides 1 and 2 respectively.

-----

#### HXCNT

#### PURPOSE:

This subroutine calculates the heat exchanger effectiveness using the relation described in Section 2.1.6.1, for a counter flow type exchanger. The value of UA used in the calculations may be specified as a constant by supplying a real number or it may be specified as a bivariant function of the two flow rates by referencing an array number. The user supplies flow rates, specific heat values, inlet temperatures and a location for the outlet temperatures for each of the two sides. The flow rate array may be referenced to obtain flow rates and the temperature array may be used for temperatures. The specific heat values may be supplied as a temperature dependent curve or a constant value may be supplied. The user also identifies enthalpy curves for each side which may be generated from the specific heat curve with user subroutine CRVINT.

#### **RESTRICTIONS:**

HXCNT should be called in the VARIABLES 1 block. The value of UA, the first argument, must never be zero.  $T_{out1}$  and  $T_{out2}$  must be boundary nodes.

CALLING SEQUENCE: HXCNT(UA,W1,W2,CP1,CP2,TIN1,TIN2,TOUT1,TOUT2,H1,H2)

- where UA is (1) the heat exchanger conductance if real, (2) a curve number of a bivariant curve of conductance versus W1 and W2 if an array
  - W1,W2 are the flowrates for side 1 and side 2 respectively. May reference the flowrate array,W (I) where is the tube number.
  - CP1,CP2 are the specific heat values for side 1 and 2 fluid respectively. Constant values may be input or arrays

may be used for temporature dependent properties.

- TOUTI-TOUT2 are the outlet lump temperature locations (sides 1 and 2) where the calculated values will be stored. Must be boundary nodes.
- H1,H2 are arrays which give enthalpy vs temperature for sides 1 and 2 respectively.

# SUBROUTINE NAME: HXCOND

# PURPOSE:

J,

Į.

ł

This subroutine performs thermal analysis on a condensing heat exchanger using relations described in section 2.1.6.5. The effectiveness may either be supplied as a constant or as a trivariant function of humidity, flow rate of the gas, and flow rate of the coolant. CRVINT may be used to integrate the specific heat curves to produce the enthalpy curves. RESTRICTIONS:

ELOCATIVE COMPANY

HXCOND should be called in the VARIABLES 1 block. The value for EFF, the first argument, must never be zero. TGOUT, and TCONI must be boundary nodes.

| CALLING SEQUENCE: | HXCOND(EFF,WG,WC,NHG,NHC,TGIN,TCIN,PSIIN,P,XLAM,XMIMO, |  |  |
|-------------------|--------------------------------------------------------|--|--|
|                   | PSIOUT,WL,TGOUT,TCOUT)                                 |  |  |

| where | EFF    | is (1) the effectiveness if real, (2) a curve number of a  |
|-------|--------|------------------------------------------------------------|
|       |        | trivariant curve of effectiveness versus PSIIN, WG, and WC |
|       | WG     | is the flow rate of the gas                                |
|       | WC     | is the flow rate of the coolant                            |
|       | NHG    | is the enthalpy curve for the gas                          |
|       | NHC    | is the enthalpy curve for the coolant                      |
|       | TGIN   | is the temperature of the incoming gas                     |
|       | TCIN   | is the temperature of the incoming coolant                 |
|       | PSIIN  | is the humidity of the incoming gas                        |
|       | Р      | is the total gas pressure                                  |
|       | XLAM   | is the latent heat of vaporization                         |
|       | XMDMD  | is the molecular weight ration $M_v/M_o$                   |
|       | PSIOUT | is the outlet humidity                                     |

WL is the flow rate of the liquid

٩

1

TGOUT is the temperature of the outgoing gas

TCOUT is the temperature of the outgoing coolant

#### HXCROS

## PURPOSE:

Contraction of the second

£

This subroutine calculates the heat exchanger effectiveness using the relations described in Section 2.1.6.3, for a cross flow type exchanger. The value of UA used in the calculations may be specified as a constant by supplying a real number or it may be specified as a bivariant function of the two flow rates by referencing an array number. Any one of the following four types of cross flow exchangers may be analyzed.

- 1) Both streams unmixed
- 2) Both streams mixed
- 3) Stream with smallest MCp product unmixed
- 4) Stream with largest MCp product unmixed

The type is specified by the last argument in the call statement. The user supplies flow rates, specific heat values, inlet temperatures and a location for the outlet temperatures for both sides. The flow rate array may be referenced to obtain flow rates and the temperature array may be used for temperatures. The specific heat values may be supplied as a temperature dependent curve or a constant value may be supplied. The user also identifies enthalpy curves for each side which may be generated from the specific heat curve with user subroutine CRVINT.

#### **RESTRICTIONS:**

HXCROS should be called in the VARIABLES 1 block. The value for UA, the first argument, must never be zero.  $T_{out1}$  and  $T_{out2}$  must be boundary modes.

CALLING SEQUENCE:

HXCROS(UA,W1,W2,CP1,CP2,TIN1,TIN2,TOUT1,TOUT2,K,H1,H2)

where UA

is (1) the heat exchanger conductance if real, (2) a curve number of a bivariant curve of conductance versus W1 and W2 if an array.

- W1,W2 are the flow rates for side 1 and 2 respectively. May reference the flow rate array, W (I)where I is the tube number.
- CP1,CP2 are the specific heat values for side 1 and side 2 fluid respectively. Constant values may be input or arrays may be used for temperature dependent properties
- TIN1,TIN2 are inlet lump temperatures Usually T(IN1) and T(IN2) where IN1 and IN2 are the inlet lumps on side 1 and side 2
- TOUT1,TOUT2 are the outlet lump temperature locations (sides 1 and 2) where the calculated values will be stored. Must be boundary nodes

K is the code specifying type of cross flow exchanger:

Both streams unmixed : K = 1

Both streams mixed : K = 2

Stream with small WCp unmixed : K = 3

Stream with large WCp unmixed : K = 4

H1,H2 are arrays which give enthalpy vs temperature for sides 1 and 2 respectively

#### HXPAR

#### PURPOSE:

ļ

Į.

ł

This subroutine calculates the heat exchanger effectiveness using the relations described in Section 2.1.6.2, for a parallel flow type exchanger. The value of UA used in the calculations may be specified as a constant by supplying a real number or it may be specified as a bivariant function of the two flow rates by referencing an array. The user supplies flow rates, specific heat values, inlet temperatures and a location for the outlet temperatures for each of the two sides. The flow rate array may be referenced to obtain flow rates and the temperature array may be used for temperatures. The specific heat values may be supplied as a temperature dependent curve or a constant value may be supplied. The user also identifies enthalpy curves for each side which may be generated from the specific heat curve with user subroutine CRVINT.

## **RESTRICTIONS:**

HXPAR should be called in the VARIABLES 1 block. The value for UA, the first argument, must never be zero.  $T_{outl}$  and  $T_{out2}$  must be boundary temperatures. CALLING SEQUENCE: HXPAR(UA,W1,W2,CP1,CP2,TIN1,TIN2,TOUT1,TOUT2,H,H2)

- where UA is (1) the heat exchanger conductance if real, (2) a curve number of a bivariant curve of conductance versus W1 and W2 if an array.
  - W1,W2 are the flow rates for side 1 and 2 respectively. May reference the flow rate array, W (I)where I is the tube number
  - CP1,CP2 are the specific heat values for side 1 and side 2 fluid respectively. Constant values may be input or arrays way be used for temperatures dependent curves.

TIN1,TIN2 are inlet lump temperatures - Usually T(IN1) and T(IN2) where IN1 and IN2 are the inlet lumps on side 1 and side 2 TOUT1,TOUT2 are the outlet lump temperature locations (sides 1 and 2) where the calculated values will be stored (should be boundary temperatures)

Ţ

75%

ť

H1,H2 are arrays which give enthalpy vs temperature for sides 1 and 2 respectively

#### HYBRID

## PURPOSE:

5

T

This subroutine calculates transient temperatures using an optimum mix between implicit and explicit methods of solution. The explicit stability criteria of each diffusion node, CSG, is calculated on each temperature iteration as the capacitance divided by the sum of the conductors. This criteria is then checked against the user supplied time increment, DTIMEL. The temperature of these nodes with CSG less than DTIMEL are calculated using the implicit method of solution. For these nodes with CSG greater than DTIMEL, the explicit method of solution is used.

The order of calculations is arranged such that energy is conserved in conductors between the implicit and explicit nodes. Calculations are made on the explicit nodes first. Next, the temperatures of implicit and arithmetic nodes are calculated using the latest explicit temperatures in the calculations.

The implicit calculations are made using the methods described in Ref. 1. Using this method, temperatures of each node are made using the latest calculated adjacent temperatures. "Passes" are made repeatedly through the temperature calculations until all temperature changes (between passes) have satisfied the user input tolerances DRLXCA and ARLXCA which must be supplied by the user. When the tolerance is satisfied for a node, the calculations of its temperature are temporarily suspended in the pass loop until all node tolerances are met. The calculation on all nodes are then resumed and the procedure is repeated until all node temperatures meet the tolerances on two

successive passes. The calculations may be over-relaxed or damped using user constants DAMPD and DAMPA. The default values for these variables are 1.0 for each. The maximum number of passes allowed through the temperature calculation loop is supplied by the user constant NLOOP. Typical values for this variable are 500 to 1000.

The second s

The implicit calculations for diffusion nodes may be backward difference, mid difference, or anywhere between backward and mid-difference. The first argument of HYBRID, ALPHA, determines the point in the iteration for evaluating the heat flux. If ALPHA = 1.0 or 0.0 (with a default value of 1.0) backward difference results. If  $0. < \alpha \le 0.5$ , ALPHA is set equal to 0.5 and mid-difference results. If ALPHA is between 0.5 and 1.0, the heat rate is ALPHA times that at the end of the iteration plus (1-ALPHA) times that at the start of the iteration. A second argument, KOP, will give a checkout print if  $\neq 0$ . Be prepared for a considerable amount of output if KOP  $\neq 0$ .

The problem output is supplied at OUTPUT interval where OUTPUT is supplied as a user constant. The user may also supply a maximum allowable temperature change for the diffusion and arithematic nodes by supplying values for DTMPCA and ATMPCA. If  $t^{-}$  e changes are exceeded, the problem will be terminated. Default values for these are 1. x 10<sup>8</sup>.

## RESTRICTIONS:

The LPCS option is required and control constants TIMEND, OUTPUT, DTIMEL, NLOOP, DRLXCA, and ARLXCA must be specified. Other control constants used or activated are: TIMEN, TIMEØ, TIMEM, CSGMIN, DTIMEU, DTMPCA, DTMPCC, ATMPCA, ATMPCC, DAMPD, DAMPA, DRLXCC, ARLXCC, LOOPCT, BACKUP, OPEITR, LINECT, PAGECT.

CALLING SEQUENCE : HYBRID(ALPHA, KOP)

## DYNAMIC STORAGE REQUIREMENTS:

This routine utilizes two dynamic storage core locations for each temperature node for non-flow problems or three dynamic storage locations for each temperature node for fluid flow problems.

<u>0</u>]

الالتعادية والمستعدية والمستعدية والمستعدية والمستعدية والمستعدية والمستعدية والمستعدية والمستعدية والمستعد المستعدية

I

ŀ

Ţ

Ţ

Ŧ

577 -10 h

₫1.4

Ĩ

Ī

() and (

INVRS

CONST. CONTROL OF

See description for usage of SINVRS.

QCOMB or ACOMB

#### PURPOSE:

QCOMB and ACOMB sum the interpolated value of the dependent variables of two arrays, Al and A2, after multiplying Al by  $\alpha_1$  and A2 by  $\alpha_2$  to form a third array, A3. For QCOMB, A3 contains all the independent variable values of both Al and A2 except where these values are equal. For ACOMB, the combined array will contain the independent variables of the Al array only.

## **RESTRICTIONS:**

Adequate space must be set aside in A3 but the space isn't required to be the exact amount needed by A3.

<u>CALLING SEQUENCE</u>: QCOMB(A3,α1,A1,α2,A2) or ACOMB(A3,α1,A1,α2,A2) where A3 is a doublet array with dependent variable values given by A3(i) = α1\*A1(i) + α2\*A2(i) αl and α2 are constants to be multiplied times values of A1 and A2 are doublet arrays

2-2

#### RADIR

#### PURPOSE:

æ

10

Ś

15

a ta

ŝ,

RADIR calculates the script-F values for infrared radiation heat transfer within an enclosure and uses these values to obtain the heat transfer during the problem. Several temperature nodes may be combined on a single surface for radiation heat transfer purposes. Also, the user may analyze problems with specular, diffuse or combinations of specular and diffuse radiation. See Section 2.1.8.1 for definitions and detailed description of methods.

RADIR calculates the script-F values on the initial call. This is performed by the procedure outlined in Section 2.1.8.1. These values replace the EFT values in the SC array for future use. The heat flux values are then calculated on all iterations by:

- (1) Calculating the temperature of each surface
- (2) Calculating the absorbed heat for each node

The value given by equation 38 is added to the conductor sum for each node so that the proper convergence time increment may be obtained. As many enclosures as desired may be analyzed by each enclosure but each enclosure requires a different call to RADIR. RADIR must be called in VARIABLES 1.

#### **RESTRICTIONS:**

Must be called from VARIABLES 1 Surface nodes must be boundary nodes

CALLING SEQUENCE:

RADIR (A(IC) , SIGMA, TZERO)

Where A is of the following format:

A(IC), SN, SE, SR, SC, NA, SP, END

SN,SE,SR,SC,NA, and SP are actual array numbers input using the \*A procedure and are of the following formats

SN(IC),n,SN1,SA1,NN1,SN2,SA2,NN2,.....SNn,SAn,NNn,END SE(IC),SE1,SE2----SEn,END SR(IC),SR1,SR2----SRn,END SC(IC),SNF1,SNT1,EFT1,SNF2,SNT2,EFT2,---SNFm,SNTm,EFTm,END NA(IC),NNO(1,1),AN(1,1),NNO(1,2),AN(1,2)--NNO(1,NN1),AN(1,NN1) NNO(2,1),AN(2,1),NNO(2,2),AN(2,2)--NNO(2,NN2),AN(2,NN2) NNO(n,1),AN(n,1),NNO(n,2),AN(n,2)--NNO(n,NNn),AN(n,NNn),END SP(IC),SPACE,NSPACE,END The following definitions apply in the above calling sequence:

1

1.1

.

1

. .

÷ •

.

| A                 | Array idenitifcation for the array which identi-<br>fies the other arrays containing the data                                                  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| SN                | Array number for the array containing surface<br>numbers and areas                                                                             |
| SE                | Array number for the array containing the surface emis-<br>sivities (may not be used in more than one call to RADIR)                           |
| SR .              | Array number for the array containing the sur-<br>face reflectivities                                                                          |
| SC                | Array number for the array containing the sur-<br>face connections data                                                                        |
| NA                | Array number for the array containing the tempera-<br>ture node numbers and areas                                                              |
| SP .              | Array number for the array containing the space<br>which is used for obtaining script FA values and<br>for subsequent temperature calculations |
| n                 | The number of surfaces                                                                                                                         |
| SN1,SN2,SNn       | Node number for surfaces - must be boundary nodes                                                                                              |
| SA1,SA2,SAn       | Total area for each surface                                                                                                                    |
| NN1,NN2,NNn       | Number of temperature nodes on each surface                                                                                                    |
| SE1,SE2,SEn       | Emissivity values for each surface                                                                                                             |
| SR1,SR2,SRn       | Diffuse reflectivity values for each surface                                                                                                   |
| SNF1,SNT1,EFT1    | Connections data: Surface number from, surface number<br>to, E value from SNF1 to SNT1, etc.(SNF1 ≠ SNT1)                                      |
| NNO(X,Y)          | Temperature node numbers on surfaces; Node                                                                                                     |
| AN(X,Y)<br>NSPACE | Area of node Y on surface X<br>Number of spaces needed to store script-FA<br>values - NSPACE must be an integer values<br>of n *n(n+1)/2       |
| n                 | The number of surfaces                                                                                                                         |
| SIGMA             | Stefan-Boltzmann constant                                                                                                                      |
| TZERO             | Temperature of absolute zero in problem units                                                                                                  |
|                   |                                                                                                                                                |

#### RADSOL

#### PURPOSE:

Ċ

RADSOL calculates a pseudo script-F for radiation from an external source entering an enclosure and uses these values to calculate the net heat transfer to each node due to the entering source. A number of temperature nodes may be combined on a single surface for radiation purposes. Also, problems with specular, diffuse, or combinations of specular and diffuse radiation may be analyzed. Section 2.1.8.2 should be consulted for definitions and descriptions of methods.

RADSOL calculates the pseudo script-F values on the initial call, as described in Section 2.1.8.2. The values are stored in the EFT values of the SC array supplied by the user. The heat flux values are then calculated on each iteration.

The user may analyze as many enclosures as desired by supplying a call statement for each enclosure. Also, a user may analyze several wave length bands by supplying a call to RADSOL for each wave length band.

#### **RESTRICTIONS:**

Must be called from VARIABLES I; Surface nodes must be boundray nodes

#### CALLING SEQUENCE:

RADSOL (A(IC))

Where the A array is of the following format:

A(IC), SN, SE, SR, HT, SC, NA, SP, END

SN,SE,SR,HT,SC,NA, and SP are actual array numbers input using the \*A procedure and are of the following formats:

```
SN(IC), n,SN1,SA1,NN1,SN2,SA2,NN2,-----Snn,SAn,NNn,END
SE(IC),SE1,SE2,-----SEn,END
SR(IC),SR1,SR2,--,---SRn,END
HT(IC),SHT1,SHT2----SHTn,END
SC(IC),SNF1,SNT1,EFT1,SNF2,SNT2,EFT2,---SNFm,SNTm,EFTm,END
NA(IC),NNO(1,1),AN(1,1),NNO(1,2),AN(1,2)---NNO(1,NN1),AN(1,NN1),
NNO(2,1),AN(2,1),NNO(2,2),AN(2,2)---NNO(2,NN2),AN(2,NN2),
NNO(n,1),AN(n,1),NNO(n,2),AN(n,2)---NNO(n,NNn),AN(n,NNn),END
SP(IC),SPACE,NSPACE,END
```

The following definitions apply in the above calling sequence

| A                             | Array identification for the array which<br>identifies the other arrays containing the<br>data                                                                                                               |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SN                            | Array number for the array containing surface<br>numbers and areas                                                                                                                                           |
| SE                            | Array number for the array containing the surface emis-<br>sivities (may not be used in more than one call to RADSOL)                                                                                        |
| SR                            | Array number for the array containing the surface reflectivities                                                                                                                                             |
| HT                            | Array number for the array containing the incident heat curves or constant heat flux values                                                                                                                  |
| SC                            | Array number for the array containing the surface connections data                                                                                                                                           |
| NA                            | Array number for the array containing the temperature node numbers and areas                                                                                                                                 |
| SP                            | Array number for the array containing the space which is used for obtaining script values and for subsequent temperature calculations                                                                        |
| SN1,SN2,SNn                   | Node number for surfaces; <u>must be boundary</u><br><u>nodes</u>                                                                                                                                            |
| SA1,SA2,SAn                   | Total area for each surface                                                                                                                                                                                  |
| NN1,NN2,NNn                   | Number of temperature nodes on each surface                                                                                                                                                                  |
| SE1,SE2,SEn                   | Émissivity values for each surface                                                                                                                                                                           |
| SR1,SR2,SRn                   | Diffuse reflectivity values for each surface                                                                                                                                                                 |
| SHT1,SHT2,SHTn                | Incident heat flow on surfaces; may identify curves containing incident values vs time                                                                                                                       |
| SNF1,SNT1,EFT1                | Connections data: Surface number from surface number to,<br>E value from SNF1 to SNT1, etc.(must include SNF1=SNT1)                                                                                          |
| NNO(X,Y)<br>AN(X,Y)<br>NSPACE | Temperature node numbers on surfaces: Node<br>number Y on surface X<br>Area of node Y on surface X<br>Number of spaces needed to store script-FA<br>values - NSPACE must be an integer values of<br>n(n+1)/2 |
| n                             | Number of surfaces                                                                                                                                                                                           |

. .

Ì

REVPOL

## PURPOSE:

dÞ

-

Ċ

l

l

619 4 -

.

1

Ł

•

|

This subroutine performs single variable linear interpolation on a doublet array of X,Y pairs in the same manner as DIDEG1 except in reverse order. The array is interpolated in reverse order to obtain the value of independent variable, X, which corresponds to the input dependent variable, Y.

1

## **RESTRICTIONS:**

All values must be floating point numbers.

## CALLING SEQUENCE:

| REVPOL (Y,A(IC),X) |                                      |  |
|--------------------|--------------------------------------|--|
| -                  | input value of dependent variable    |  |
| -                  | Doublet array of X,Y pairs           |  |
| -                  | output value of independent variable |  |
|                    | REVP(<br>-<br>-<br>-                 |  |

#### SUBROUTINE NAME: SINVRS or INVRS

#### PURPOSE:

These subroutines perform matrix inversion for symmetric, positive definite matrices using the efficient Square-Root or Symmetric Cholesky method. This method requires approximately half the computer time to obtain an inverse using the Gauss Elimination and Gauss-Jordan methods. Also, a significant increase in the accuracy has been observed. The symmetric matrix may be stored in half the square matrix space if desired. The inverse is returned in its original space of the A-matrix.

For SINVRS, the A matrix may be either a full square matrix or the upper triangular half of a square matrix. A check on the integer count relative to the matrix size is used to determine whether 1/2 matrix or full matrix is stored. INVRS assumes only the upper traingle of the symmetric matrix is stored. The (1,1) element is stored in the third data value of A for SINVRS and in the first data value of INVRS. The first data value of A contains the matrix size for SINVRS. RESTRICTIONS:

The half symmetric matrix must be stored as shown below for INVRS and for the half symmetric matrix option of SINVRS. Subroutine INVRS contains no error checks and should be used with extreme caution.

CALLING SEQUENCE: SINVRS(A(IC),D) or INVRS(A(DV),N,D)

where

A is the matrix to be inverted and also, the inverse upon return

- D is the determinant of the original matrix to be inverted
- N is the matrix size

The formats for A are as follows for SINVRS:

(A) Full symetric matrix

IC,N,BLANK,A(1,1),A(1,2), - - - A(1,N)  
A(2,1),A(2,2), - - - A(2,N)  
$$A(N,1),A(N,2) - - - A(N,N)$$

(B) Half symmetric matrix  
IC,N,BLANK,A(1,1),A(1,2),A(1,3), - - - A(1,N)  
$$A(2,2),A(2,3), - - - A(2,N)$$

The format for A is as follows for INVRS

1

ł

2

I

Ţ

Ţ

The second

;

: :

$$A(1,1),A(1,2),A(1,3), - - - A(1,N)$$
  
 $A(2,2),A(2,3), - - - A(2,N)$   
 $A(N,N)$ 

#### SUBROUTINE NAME: TIMCHK

#### PURPOSE:

Subroutine TIMCHK compares the elapsed computer time against the requested computer time, RTIME, and terminates the run if RTIME is exceeded by the elapsed time. If the second argument, KODE, is non-zero an output of computer time used will be printed out on each call to TIMCHK. Thus, a call to TIMCHK in VARIABLES 2 should normally be with KODE=0. If the output of computer time used is desired, TIMCHK should be called from OUTPUT with KODE  $\neq$  0. The most desirable procedure is to supply two calls to TIMCHK : (1) a call in VARIABLES 2 with KODE = 0 and (2) a call in OUTPUT with KODE  $\neq$  0.

## **RESTRICTIONS:**

KODE should zero when called from VARIABLES 1 or 2.

#### CALLING SEQUENCE:

TIMCHK (RTIME, KODE) where RTIME = maximum computer time requested KODE = print code: = 0, computer time used is not printed out \$\neq 0\$, computer time used is printed out on each call to TIMCHK

#### SUBROUTINE NAME: WPRINT

PURPOSE:

÷.

• •

- -

40

-

. .

- -

. .

. .

. .

,

...

••

Q pr

5

20

 Subroutine WPRINT will write all the values of the flowrates, pressure drops, pressures and valve positions. All values are printed out versus the actual numbers for which they occur.

#### **RESTRICTIONS:**

Should be called from OUTCAL WPRINT (K1,K2,K3,K4)

CALLING SEQUENCE:

Kl = 0, no flowrates will be printed = 1, flowrates will be printed

- K2 = 0, no pressure drops will be printed 1, pressure drops will be printed
- K3 = 0, no pressures will be printed 1, pressures will be printed
- K4 = 0, no valve positions will be printed
   l, valve positions will be printed

#### DYNAMIC STORAGE REQUIREMENTS:

where:

Dynamic storage required by WPRINT is NW + NPR + NV where NW is the number of tubes, NPR is the number of pressure nodes, and NV is the number of valves.
## 6.0 SAMPLE PROBLEM

. .

and a second sec

à

Ь

A sample problem was prepared for the SINFLO routine to demonstrate the input and output for a typical thermal/flow analysis problem. A schematic of the problem is shown in Figure 9. The problem consists of 8 two dimensional radiator panels, each modeled by two flow paths (one for the main panel of 11 tubes and one for the prime bypass tube). Contained in the system are a pump, a bypass valve (valve No. 1) and a stagnation valve between the two flow paths. The heat load to the radiator system comes through a counter flow heat exchanger which has a controlled inlet temperature of 40°F. The fluid is Freon 21 in the radiator system and water on the cooled side of the heat exchanger. The nodal subdivision for the fluid system is shown in Figure 9. The structural nodal subdivision is shown in Figure 10.

The sample problem was analyzed using the SNFRWD solution routine. The input for the problem is listed in Table 6 and the printed output is listed in Table 7. A few selected items were plotted using the plot package described in Appendix C. The plots of these items are presented in Figures 11 thru 17. The same sample problem was analyzed using the other temperature solution methods: CNFWBK, CNFWRD, CNFAST, HYBRID, CINDSS, SNFRWD FWDBCK, SNFRDL, CINDSL, and STDSTL.



丹

X

 $(\mathbf{x})$ 



. -

xx - Structure Lumps

FIGURE 1C STRUCTURE MODEL FOR THE SAMPLE PROBLEM

コンパ

<u>9</u>

### SINDA/SINFLO PREPROCESSOR

BCD STHERMAL SPCS BCD ASAMPLE PROBLEM / SNFRWD END BCD SHORE DATA REN NODE NUM. INC . TI HALTIN CONST GEN -1+117. 1. 70. + 1+0 5 FLUID LUMPS +198 +100+ 1.3 . . -199 . 40. 1+0 \$ . -200 100. FLUID LUMPS 1+0 5 . . 514 201, 8. 70+ TUBE LUMPS 6. A4. .720 5 . 70+ 514 202. 8. 6. A9.10.3 - 5 ٠ 514 203 -8, ٤, 70. A4+10+3 . **N12** 204+ 8. 6. 70. A4+10+3 . 70+ 51 M 205+ 8. 6. A4+10+3 2 . SIM 206. 8. 70. 6, A9. .720 s . SIH 2491 8. 6. 70. .720 A4. 5 . STH 250+ 8. 6, 70+ Δ4, .0718 5 . 51H 251+ 8. 6. 70+ A4. .0718 5 SiH 2521 8. 6. 70+ A4. .0718 5 8. **S1**M 253. 6. 70+ ..... +0718 -5 51H 254+ 8, 6. 70+ .720 .... - 5 . 51V 297 78+ A4. .299 . 511 276 70. Δ4, .299 \$ . 51v 299 78+ A9. 1.20 s ٠ . SIV 300 70. .419 A4. 5 ٠ SLV 301 79. Ar. .419 5 519 302 70. Aq. +150 5 . . SIV 303 70+ A4. .190 - 5 . . SIV 304 70. .419 A4. \$ . . SIV 305 .419 70. A4. 5 ę. . 51 V 306 70+ Α4. .720 . 51 V 307 70. A4. 1.200 5 . 398 SIV 77. . . A-1 . .770 s SIV 309 73+ A4. .720 s . 4 SIV 310 70. A9. +150 5 SIV 311 70. A9. .150 5 . SIV 312 70+ A4. •720 5 . SIV 313 70. A4. ,720 \$ SIV 314 70. A4. 1.200 8 .299 SIV 315 79+ A4. 5 . . SIV 316 70. A9. .012 5 ٠ . SIV 317 70. s • A4+ 2+99 . s -400 + +459+69 +1+0 END

#### RELATIVE NODE NUMBERS

#### ACTUAL NODE NUMBERS

٠

.

| 1  | THRU | 10 | 201 | 207 | 213 | 219 | 225 | 231 | 237 | 293 | 202 | 20/   |
|----|------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|
| 11 | THRU | 20 | 214 | 220 | 226 | 232 | 238 | 244 | 203 | 209 | 215 | 22    |
| 21 | THRU | 30 | 227 | 233 | 239 | 295 | 204 | 210 | 216 | 222 | 226 | 23    |
| 31 | THRU | 40 | 240 | 246 | 205 | 211 | 217 | 223 | 229 | 235 | 241 | 24    |
| 41 | THRU | 50 | 216 | 212 | 218 | 224 | 230 | 236 | 242 | 248 | 249 | 25    |
| 51 | THRU | 60 | 261 | 267 | 273 | 279 | 285 | 291 | 250 | 256 | 26Z | Z 6 I |
| 61 | 1440 | 73 | 274 | 290 | 286 | 292 | 251 | 257 | 263 | 269 | 275 | 2 P   |

LISTING ទុ SAMPLE PROBLEM INPUT

TABLE

σ

ORIGINALI PAGE IS OF POOR QUALITY

ALLEN BE THE PARTY OF A LOCAL STREET

ý

2 . ..... 

Bear and a state

ŝ

| SINDA, SINFLO | PREPROCI | LSSOR |     |
|---------------|----------|-------|-----|
| 71            | THRU     | 80    | 287 |

ß ()خديدية-

|       | 71         | I THRU  | 80             |           | 287  | 293    | 252    | 258 | 264        | 270  | 276     | 282 | 288 | 294 |
|-------|------------|---------|----------------|-----------|------|--------|--------|-----|------------|------|---------|-----|-----|-----|
|       | <b>8</b> 1 | THRU    | <b>*</b> a     |           | 253  | 259    | 265    | 271 | 277        | 263  | 289     | 295 | 254 | 260 |
|       |            | THRU    | 100            |           | 260  | 272    | 278    | 284 | 290        | 296  | 297     | 298 | 299 | 300 |
|       | - ·- 10(   | THRU    | 110            |           | 301  | 302    | 303    | 304 | 305        | 306  | 307     | 300 | 309 | 310 |
|       | 111        | THRU    | 120            |           | 311  | 312    | 313    | 314 | 315        | 316  | 317     |     | 2   |     |
|       |            | THRU    | - 130 -        |           | 4    | 5      | 6 °    | 7   |            | 9    | 10      | 11  | 12  | 13  |
|       | 131        | THRU    | 140            |           | 19   | 15     | 16     | 17  | 18         | 19   | 20      | 21  | 22  | 23  |
|       | 191        | THRU    | 150            | -         | 29   | 25     | 26     | 27  | 28         | 29   | 30      | 31  | 32  | 33  |
| •     | 151        | THRU    | 160            |           | 34   | 35     | 34     | 37  | 38         | 39   | 40      | 91  | 42  | 43  |
|       | 191        | , THRU  | 178            |           | 44   | 45     | 96     | 47  | 48         | 49   | 50      | 51  | 52  | 53  |
|       | 171        | THRU    | 180            |           | 54   | 55     | 56     | 57  | 58         | 59   | 60      | 61  | 62  | 63  |
|       | 181        | THRU    | 190            |           | 69   | 65     | 66     | 67  | 68         | 69   | 70      | 71  | 72  | 73  |
|       | 191        | THRU    | 200            |           | 74   | 75     | 76     | 77  | 78         | 79   | 30      | 81  | 82  | 83  |
|       | 201        | THRU    | 210            |           | 84   | 85     | 66     | 87  | 66         | 89   | 90      | 91  | 92  | 93  |
|       | 211        | THRU    | 220            |           | 94   | 95     | 96     | 97  | 98         | 99   | 100     | 101 | 102 | 103 |
| ••••• | 22;        | THRU    | 230            |           | 104  | 105    | 106    | 107 | 108        | 109  | 110     | iii | 112 | 113 |
|       | 231        | THRU    | 238            |           | 114  | 115    | 116    | 117 | 198        | 199  | 200     | 400 |     | ••- |
|       | 300N       | ANALYSI | <u>5+++ 01</u> | FFUSION = | 117+ | ARITHH | ETIC = | 0.  | BOUNDARY # | 121. | TOTAL . | 238 |     |     |

. ....

.....

293

+ - ---BCD SSOURCE DATA

|      | REH   | NODE . | ATTHEI  | CONST  | 5   |
|------|-------|--------|---------|--------|-----|
|      | \$17  | 202,   | A15+    | 16.270 | 5   |
|      | 517   | 203,   | A15+    | 16.270 | S   |
|      | S11   | 204,   | A15+    | 16.270 | 5   |
|      | 517   | 205,   | A151    | 16.270 | 5   |
|      | SIT   | 208,   | A15+    | 16.270 | 5   |
|      | SIT   | 209,   | A15+    | 16.270 | 5   |
| ੱਛੋਂ | SIT   | 210,   | A15+    | 16.270 | 5   |
| *    | 5 1 T | 211,   | A15+    | 16.270 | 5   |
|      | 517   | 214.   | A15+    | 16.270 | 5   |
|      | SIT   | 215,   | A15+    | 16.270 | \$  |
| -• • | S;T   | 216,   | A15.    | 16.270 | 5   |
|      | SIT   | 217,   | A15.    | 16.270 | 5   |
| -    | 511   | 220,   | A15+    | 16.270 | 5   |
|      | 517   | 221.   | A15+    | 16.270 | 5   |
|      | SIT   | 222,   | A15 /   | 14+270 | 5   |
|      | SIT   | 223,   | A15+    | 16.270 | s'  |
|      | 51T   | 224    | A15+    | 16.270 | s   |
|      | SIT   | 227,   | A15.    | 16.270 | 5   |
|      | SIT   | 228,   | A15.    | 16.270 | 5   |
|      | 517   | 229,   | A151    | 16.270 | 5   |
| -1   | SIT   | 7232,  | A15 _ 1 | 16+270 | 5   |
|      | SIT   | 233,   | A15+    | 16-270 | \$  |
|      | SIT   | × 234, | A15+    | 16.270 | 5   |
|      | SIT   | 235,   | A15.    | 16.270 | 5   |
|      | SIT   | 230,   | A15.    | 16.270 | 5 - |
|      | SIT   | 239,   | A15,    | 16.270 | 5   |
|      | SIT   | 290,   | Alsı    | 16+270 | S   |
|      | SIT   | 241,   | A15.    | 16+270 | 5   |
|      | SIT   | 244,   | A15.    | 16.270 | 5   |
|      | SIT   | 295,   | A15.    | 16.270 | 5   |
|      | SIT   | 246.   | A15.    | 16.270 | 5   |
|      | SIT   | 247    | A15,    | 16.270 | 5   |
|      | SIT   | 250.   | A15+    | 6.431  | 5   |
|      | SIT   | 251    | A15.    | 0.431  | 5   |
|      | SIT   | 252,   | A15+    | 0.431  | \$  |
|      | SIT   | 253    | AISE    | 0.431  | 5   |

ORIGINALI PAGE IS OF POOR QUALITY

đ ..... ;

TABLE 6

(CONTINUED)

Ā

8.000 C 4

#### SINDA/SINFLO PREPROCESSOR

| 51    | T.    | 256. | ALS  |       | . 4                  | 31 5         |            |        |     |             |      |      |        |       |
|-------|-------|------|------|-------|----------------------|--------------|------------|--------|-----|-------------|------|------|--------|-------|
| S 1   | T     | 257  | A15  | 6 E   | 3 • 4                | 31.5         |            |        |     |             |      |      |        |       |
| 51    | T.    | 258. | A15  | • (   | •4                   | 3   5        |            |        |     |             |      |      |        |       |
| - 51  | T     | 259+ | A15  | • 0   | 1.4                  | 31 5         |            |        |     |             |      |      |        |       |
| - 51  | C T 🗌 | 262. | A15  | • 0   | ) e 4                | 3: 5         |            |        |     |             |      |      |        |       |
| - 51  | T     | 263+ | A15  | • 0   | •4                   | 3  5         |            |        |     |             |      |      |        |       |
| - S L | T     | 264. | 15   | + 0   | +4                   | 31 5         |            |        |     |             |      |      |        |       |
| 51    | T     | 265+ | A15  | • 0   | ) <del>a</del> 4     | ) [ S        |            |        |     |             |      |      |        |       |
| 51    | T     | 268. | AL5  | • •   | . 4                  | 31 5         |            |        |     |             |      |      |        |       |
| 51    | 4     | 269. | A15  | • •   | 6 a 41.              | 31 \$        |            |        |     |             |      |      |        |       |
| 51    | T     | 2701 | A15  | • 0   | • 4                  | 31 5         |            |        |     |             |      |      |        |       |
| 51    | T     | 2714 | A15  | • 5   |                      | 31 5         |            |        |     |             |      |      |        |       |
| 50    | T.    | 2744 | A15  | • 0   |                      | 31 5         |            |        |     |             |      |      |        |       |
| 21    | 1     | 2/34 |      | • •   |                      | 31 3         |            |        |     |             |      |      |        |       |
| 51    |       | 2701 | A15  | • 1   | 1 10 17 1<br>1 1 1 1 | 31 3         |            |        |     |             |      |      |        |       |
| 21    | ÷     | 200. | A15  | • ·   |                      | 31 3<br>31 6 |            |        |     |             |      |      |        |       |
|       | ÷     | 201  | A 15 |       |                      | 11 6         |            |        |     |             |      |      |        |       |
|       | ÷     | 287. | A16  |       |                      | 11 6         |            |        |     |             |      |      |        |       |
| - ci  | ÷     | 283. | 416  |       | - 4                  | 11 5         |            |        |     |             |      |      |        | •••   |
| c i   | ÷     | 704. |      |       |                      | 3, -<br>11 6 |            |        |     |             |      |      |        |       |
| 51    | ÷     | 2001 | A15  |       |                      | 11 6         |            |        |     |             |      |      |        | -     |
| ŝi    | ÷     | 288. | ALS  |       |                      | 11 5         |            |        |     |             |      |      |        |       |
| ŝi    | ÷.    | 289. | AIS  |       | 4                    | 31 5         |            |        |     |             |      |      |        |       |
| 51    | ÷     | 297. | A15  |       | . 6.                 | 31.5         |            |        |     |             |      |      |        |       |
| 51    |       | 201. | 416  |       |                      | 11 6         |            |        |     |             |      |      |        |       |
| si    | ÷     | 204  | A15  | . 0   |                      | 115          |            |        |     |             |      |      |        |       |
| 51    | Ŧ     | 295. | A15  |       | 4                    | 31.5         |            |        |     |             |      |      |        |       |
| ĒN    | Ó.    |      | • -  |       |                      |              |            |        |     |             |      |      |        |       |
| 80    | 0 3   | COND | UCTO | R DAT | 4                    |              |            |        |     |             |      |      |        |       |
| RE    | 料     | NG   | N 0  | ធ 1   | 6                    | NA           | 1NA        | NB     | INB | G           |      |      |        |       |
| GE    | 친 =   | 401+ |      | 8.    | 1.                   | 202.         | 6.         | 40.0 . | 0.  | 2.5         | 9E-B | - 5  | HADLAT | I O N |
| GĘ    | N =   | 909. |      | ê ,   | 1.                   | 203,         | <b>é</b> • | 400.   | 0.  | 2.5         | 9E-0 | 5    |        |       |
| GE    | N I   | 417. |      | 8.    | 1+                   | 204.         | 6.         | 400.   | 0.  | 2.5         | 96-8 | - \$ |        |       |
| GE    | Ν -   | 425. |      | 6,    | 1.                   | 205,         | ÷.         | 400.   | 0.  | 2.5         | 9E=0 | 5    |        |       |
| 30    | N -   | 433. |      | 6,    | L.                   | 250.         | <b>é</b> • | 409.   | Ο.  | 0.6         | 8E=9 | - \$ |        |       |
| GE    | Ŋ =   | 441. | 1    | 8.    | 1.                   | 251.         | 6.         | 400.   | 0.  | 0.6         | 8E-9 | - \$ |        |       |
| GE    | N =   | 449. |      | 8.    | ۱.                   | 252.         |            | 400.   | 0+  | 0.4         | 8E-9 | 5    |        |       |
| GE    | N *   | 457. |      | 8.    | L.                   | 251,         | <b>é</b> • | 403.   | 0.  | 0.6         | 8E=¶ | 5    |        |       |
| EN    | ņ     |      |      |       |                      |              |            |        |     |             |      |      |        |       |
| RE    |       | IVE  | COND | UCTOR | нI                   | JHOER        | 5          |        |     |             |      |      | ACTUAL |       |
|       |       | Тн   | สม   | 10    |                      |              |            | 901    | 41  | <b>52</b> ' | 403  |      | 404    | 4     |
|       |       | TH   | RU   | 20    |                      |              |            | 411    | 4   | 12          | 413  |      | 414    | 9     |
|       | 21    | TH   | RU   | 30    |                      |              |            | 421    | 42  | 22          | 423  |      | 424    | 4     |
|       |       |      |      | _     |                      |              |            |        |     |             |      |      |        |       |

ACTUAL CONDUCTOR NUMBERS

24 у 20 ч = Феллон Калылия с — м

| 1      | THRU     | 10    | 901      | 402      | 403     | 404 | 405     | 404 | 407      | 408   | 409 | 410 |
|--------|----------|-------|----------|----------|---------|-----|---------|-----|----------|-------|-----|-----|
| 11     | THRU     | 20    | 411      | 412      | 413     | 414 | 915     | 419 | 417      | 418   | 419 | 420 |
| 21     | THRU     | 30    | 421      | 422      | 423     | 424 | 425     | 426 | 427      | 428   | 429 | 430 |
| 21     | THRU     | 40    | 431      | 432      | 433     | 434 | 435     | 436 | 437      | 438   | 439 | 440 |
| 41     | THRU     | 50    | 441      | 442      | 443     | 444 | 445     | 446 | 447      | 448   | 449 | 450 |
| 51     | THRU     | 60    | . 451    | 452      | 453     | 454 | 455     | 456 | 457      | 458   | 459 | 460 |
| 61     | THQU     | 64    | 461      | 462      | 963     | 464 |         |     |          |       |     |     |
| CONDUC | TOR ANAL | LYSIS | LINEAR . | 0. RADI. | ATION . | 64, | TOTAL A | 44. | CONNECTI | ONS . | 64  |     |

0 Q

RCD 3FLO# OATA RCD 3NETHORK MAIN GC#4+1694E8+ C#4A1+ RJ#A2+ HU#A6+ KT#A4+ HPAS5#1+ H#A8 Tol#+1694E8+ C#4A1+ RJ#A2+ HU#A6+ KT#A4+ HPAS5#1+ H#A8 Tol#+1694E8+ C#4A1+ RJ#A2+ HU#A6+ KT#A4+ HPAS5#1+ H#A8 Tol#+1694E8+ C#4A1+ RJ#A2+ HU#A6+ KT#A4+ HPAS5#1+ H#A8 Tol#+24+ HU#A6+ KT#A4+ HU#A6+ KT#A4+ HPAS5#1+ H#A8 Tol#+1694E8+ C#4A1+ RJ#A2+ HU#A6+ KT#A4+ HPAS5#1+ H#A8 Tol#+1694E8+ C#4A1+ RJ#A2+ HU#A6+ KT#A4+ HPAS5#1+ H#A8 Tol#+1694E8+ C#4A1+ RJ#A2+ HU#A6+ KT#A4+ HPAS5#1+ H#A8 Tol#+24+ HU#A6+ RJ#A2+ HU#A6+ KT#A4+ HPAS5#1+ H#A8

108 ;

<u>\_\_\_</u>

TABLE 6 (CONT'D)

÷

.

Sec. - 4 + - + 4

- 1

.

0N3\*156 \* 26 1\*168 \* 99 3\*108 \* 08 3\*122 \* 62 3 112 4 89 14159 4 29 14165 4 95 14155 4 05 1 =6%\*2 \*2000\*0 \*5Z\*0 \*92C0\*0 \*H+3C58\*0 ON34 211 + 86 + 26 19 109 155 60 1 58 **1** 68 4 66 94 1 9 C + 1 C + 9 C + C + 2 C + 2 C + 24 + 25 \*5295\*0 \* 0+5 \*S211\*0 \*800100\*0 a 0°0 4 50 \* 5611 35 \* 321\*4 38 \* 411\*4 44 \* ON3\*126 122 + 02 1+121 + 61 1+11 + 0 1+15 + 2 1 0N3 . ... + 16 94 + 54 + 24 + 49 + 46 . 4 66 1 4 9 16 58 168 168 19 11 0h . = 0 0 SC+1 \* 0+21 \*S211\*0 \*e00100\*0 ATA0 9405 010346 058 ang. ON3 . 32\*. S0\*. 55.= ... 13\*313 351 14 50 # ( 61+561+ 69+569) END 0H3 \*(062\*06 \*582\*58 ) = 02 \*61 \*10 30' S1' SS = ( 33'S13' 18'S181' ENO 361 511 55 = ( 16+516+ 8#\*58#1\* END dN3 4 28+ 10+ 21 = 112+315 四 QUALITY 0N3 ' -11C+111 = 61 +£1 +22 PAGE 010-011 = 01 -21 -91 UN3 ' QN3 \* 50C+6D1 = Z1 \*01 \*21 (CONTINUED) 191 6 10 = ( #8+548+ 24+524) END 12\*\_ 4\*\_10 = ( 22\*522\* 90\*590)\* END 14\* 11\* 15 = ( 91+591+ 15+5151+ END ORIGINAL POOR 13\* 11\* 15 = 1 91+591+ 99+5991\* END . 121 811 = 1081308 ON3 BCD JENBAETHORK SUBS 5 0H3 0N3 \* 500'SD1 # 21 'S1 'S2 6 ø 54\* 14\* 12 = ( 52\*552\* 30\*530)\* END 33\*\_18\* 12 = ( 31\*531\* 38\*5391\* END TABLE 32\* 10\* 11 = 1 43\*543\* 48\*5481\* END SI+\_10+ 11 = 1 31+531+ 45\*5451\* END GN3 + 800°°601 = 91 °61°402 ON3 \* 16+ B+ 14 = 103+303 . ON3 71 8 = 105+305 +01 ang 4 1054101 #.2. 4 ج 46 2 = ( 10\*510\* 54\*5541\* END • • 18 2 = ( 13+513+ 18+518)\* END • 2 4. 4\* 1 = 1 1+201+ 9+2001+ END .... 2' 0' 1 a ( 1'501' 15'515' END . ON 3 DOC1001 = 9 14 4 5 1802.380#13N8050.028 0N3 GN3 · 1\* 5 = -500\*-561\*44\*564 • 1 0N3 4 34+ 2+ 23 # 114+319 GN3 4 32\* 19\* 52 # 112\*312 END . htc+h11 = 91 +22 +bc ON3 .\* 11+ 3+ 6 = 101+301 0N3 \* dN3 \* 70E+901 # 01 \*21. \*72. ON3 . 1005 - 21 46 400 GN3 4 662166 QN3 " 49+349 \* 2 42 + 2 . 902232099389 0.14412,40412 . . . . . . . .

SINDA SINFLO PREPROCESSOR 0.001008, 0.1125, 20.0 : 2.25 0.0 0 . 99 + 106 + 107 + 114 0 END 0,001008, 0,1125, 2.5 . 0.281 . 0.0 \* 102 , 103 ; 110 , 111 END 0.001008, 0.1125, 50.0 1 5.62 . 0.0 # · 115 ENÒ 0,001006, 0.1125, 7.0 , 0.7875, 0.0 # 100 + 101 + 104 + 105 + 108 + 104 + 112 + 113 +END 0,001008, 0.1125, 2.0 , 0.225 , 0.0 = 116 +END 0+0,0+0,0+0+0+0+0+0=200,END DIVIDE CHECK AT 023407 END BCD BYALVE DATA 3,2,36\*. 99999,1,.0011.99999,0,0,117,35...75.5.5.END 2,3,11=,9999,1,,01,,9999,0.0,115,40,,074,555,,END END BCD JFLOW SOURCE DATA 1:2500+1END END BCD JEND FLOW DATA H ----AB BCD JCONSTANTS DATA ×. 5 TIMEND-1.05 . Ē DTINEL:.0015 OTIMEH..015 s, NLOOP ,100 DRLXCA+0.01 5 (CONTINUED) ARLXCA.0.01 5 110 007207+1+0 1:10:0 5 2.D#243E \$ END CONSTANTS ANALYSIS+++ USER -2. ADDED = 31 0 64. TOTAL a BCD BARRAY DATA 1 1 S FREON-ZI SPECIFIC HEAT -400. , +223 . -218. + +223 . -217+ +3+723 . -211. -160--212, ,3+723 + +223 1 .224 -110-, +228 . -60. + +237 + + 231 0. . 40. . . 244 e 90e 1 +254 120+ 1 .264 +279 140. . .280 150. , 180+ + +275 • °, °+316 296. END \$ FREDN-21 DENSITY 2 , -218. +400 . . I10. . -217+ . 110. . 110. -212+ , 110. , -211+ . 110. , +140+ . 104. -110+ 99.25 . -60. . 96. 0. . 91.5 . 90. 88.5 90. 120+ . . 84.2 . 81.8 • 140. , 80,1 . 150. 180+ 1 79.9 . 76. • 246. 69. . END S FREON-21 DENSITY TIMES SPECIFIC HEAT 3 -400. . 24.53 . -218. + 24+53 + -217+ + 409+53 24.53 -140+ -212. **, 909.53 , -2**11. 23.30 . -110. , 22.63 , -60. 22.18 Ú.+ . 21.69 . . 40. 21.59 90. 21.39 120+ . 21.60 . . . 140. . 21.95 . 150. 22.37 , 180+ . 22.42 ٠

والاحتجاب كالتجور بالمحال التمرز والا Carl Set. p. 4 B Laure et al. SINDA, SINFLO PREPROCESSOR 246. . 21.73 ËND S ALUMINUM SPECIFIC HEAT . -400. . .092 . -360. . .124 . -200. . .152 -100 • • 175 • 0 • • • 192 • 100 • • • 204 200 • • 214 END ···· ---. . s FREQNO21 VISCOSITY 5 . -211+ 17+1 -400. , 19.1 , -212. 19.1 . , -203+ 14.75 -207. , 18.5 . -206. 16.55 . . -191+ . -194. 11.5 10.8 -200. 13.7 . . 10.08 . -184. . -178+ 18+1 9.25 -188. . 1 -160+ 5.72 6.36 -172. ; 7.12 + =166+ -148 4,75 , +1421 4+32 5.21 -154. . . =124. 3.96 . +130+ 3.68 3+42 -136+ + . 2+02 3,16 , -112+ -76+ -118. 2.81 . . +994 -49. . 1.62 . 0. 1.17 30+ . . 60. . 160+ .541 .870 . 100. .726 ٠ 260. . +396 END TABLE S FREON-21 THERMAL CONDUCTIVITY ORIGINALI PAGEI IS OF POOR QUALITY 6 . 0,035 -400, . 0+14 , 0,0 . 0+075 , 250, END 7 S CHISSIVITY , 2ôD. , 0.92 .END -400. . .92 σ 6, SPACE + 32 . END & ENTHALPY CURVE ñ 11 S INLET TEMPERATURE VS TIME ONT н .END 0, , 60, , 20, , 60, S INLEY FLOW RATE VS TIME 12 INUE 0, , 2500, , 20. . END , 2500• S PUMP CURVE 12 1000.0. 175000.0 D 2000.0. 155660.0 3000.0. 100000.0 4000.0, 25000.0, END S PANEL HEAT FLUX VS TIME 15 .END 0. , 40. , 20. , 40. 16.-460...I..1000...I..END \$ 17.SPACE, 4.END . .... END ---- ACTUAL ARRAY NUHBERS VRS FORTRAN ADDRESSES 5 # A( 115) . 3 = AC 473 + A 4 \* AC 1001 • A 2 = A1 34) • A A 1 1 = AC  $11 \rightarrow A$ 12 " AL 2281 . 6 = AL 190) + A 11 = AL 223) + A 7 m AC 1857 + A 6 = A( 178) y A . 13 # A1 233) + A 15 # A1 242) + A 16 # A1 247) + A 17 # A1 252) + A . ARRAY ANALYSIS+++ NUMBER OF ARHAYS = 14 TOTAL LENGTH = 256 TUBE NUMBER LIST 10 10 • 7 4 5 6 ρ 2 3 1 19 20 20 18 17 15 16 12 13 14 11 30 29 30 27 26 25 26 24 23 22 21 39 39 37 38 33 34 35 36 32 31 PRESQURE NODE LIST 10 10 7 8 5 6 4 2 3 1

| 21                           | 12<br>22                 | 13<br>23   | 14<br>24     | 15           | 16           | 17 | 18 | 19 | 20 | 20  |
|------------------------------|--------------------------|------------|--------------|--------------|--------------|----|----|----|----|-----|
| VALVE NUHBER LI              | ST                       |            |              |              |              |    |    |    |    | • 1 |
| • • •                        | · · · · · ·              |            |              |              |              |    |    |    |    | 2   |
| INITIAL VALVE P<br>9.9990-01 | 051710N5<br>9.9999=01    |            |              |              |              |    |    |    |    |     |
| BCD SEXEC                    | UTION                    |            |              |              |              |    |    |    |    | 2   |
| DIHENSION<br>NDIM # 200      | X(2000)<br>n             |            |              |              |              | F  |    |    |    |     |
| . NTH # 0                    |                          |            |              |              | • ·          | F  |    |    |    |     |
| RESET                        |                          |            |              |              |              | •  |    |    |    |     |
| CRVIN                        | T(A16.A17)               |            |              |              |              |    |    |    |    |     |
| TOPLI                        | N                        | _          |              |              |              |    |    |    |    |     |
| GENOU<br>FLOSO               | *{A8+L:I+A8;3            | T BADHE    |              |              |              |    |    |    |    |     |
| SNEKA                        | 5                        |            |              |              |              |    |    |    |    |     |
| STORE                        | P(K2)                    |            |              |              |              |    |    |    |    |     |
| END FILE 2                   | 2<br>3                   |            |              |              |              | F  |    |    |    |     |
| END                          |                          |            |              |              |              | r  |    |    |    |     |
| SCD JVARI<br>Dideg           | NGLES I<br>Litthfirati.1 | 196)       |              |              | -            |    |    |    |    | 1   |
| CALL HXEFF                   | 10.9,500. WI             | 371+1+0+A1 | 1T198.T117.T | 199.7200.417 | ABJ          | A  |    |    |    |     |
| END<br>BCD DUART             | 0165 3                   |            | · · ·        |              |              |    |    |    |    | 1   |
| FLOSO                        |                          |            |              |              |              |    |    | •  |    |     |
| ТІНСН                        | (IK1+0)                  | • •        |              | •            | ·· <b>··</b> |    |    |    |    |     |
| - FND                        | 01.017                   |            |              |              |              |    |    |    |    |     |
| BCD JOUTP                    | T CALLS                  |            |              |              |              |    |    |    |    | į   |
| TPRNT                        |                          |            |              |              |              |    |    |    |    | 2   |
|                              | (K1+1)                   | <b></b>    |              | -            |              |    |    |    |    |     |
|                              |                          |            |              |              |              |    |    |    |    |     |

OPHD + E

. .

. ..

OFREE DATA.

----

WADD.P STNFLO.PROC

|   |                           |                    |                        |                             |              |              |                 |                 |                      |         |              |                |          | -              |                        |        |                    |        |        |
|---|---------------------------|--------------------|------------------------|-----------------------------|--------------|--------------|-----------------|-----------------|----------------------|---------|--------------|----------------|----------|----------------|------------------------|--------|--------------------|--------|--------|
|   | 5751                      | rems               | [ "PRO                 | VED NUME                    | RICAL DI     | FFEREN       | CING ANA        | LYZER           |                      | SINDA   |              | - (INTV        | AC=110   | B FORTRA       | N-V VENSIO             | H      | PAG                | sE I   | -      |
|   | SAHP                      | PLE                | PROBLE                 | H / SNFR                    | ŧD           |              |                 |                 |                      |         |              |                |          |                |                        |        |                    | -      |        |
|   | A8                        |                    | 7                      | a                           | -2-180       | 1+02         | 4.1586+0        | 1 -2.1          | 706+02               | 4.2559  | +01 -        | -7.1200+02     | 6.11     | 74+01 -        | 2+1108*02              | 6.     | 1147+01            | 1      | 10     |
|   | =1.600                    | 0000               | 2 7.1                  | 4645+01                     | +1+100       | 0+02<br>0+02 | 8,5845+0        | l =6+0<br>2  +4 | 000+01<br>000+02     | 9.7320  | +02<br>+02   | 0<br>1•5000*02 | 1+11     | 36+02<br>35+02 | 4+0000*01<br>1+4000*02 | 1      | 2098+02<br>5798+02 | 3      | 30     |
| e | 2,460<br>DIVIDE<br>DIVIDE | 00+0<br>Che<br>Che | 2  -<br>CK AT<br>CK AT | 7811+02<br>023224<br>023224 |              |              |                 |                 |                      |         |              |                |          |                |                        |        |                    |        | 12     |
|   |                           |                    |                        |                             |              |              |                 |                 | 1 4208-              | -01 464 |              | 250)s 0.       | 00000    | RELIX          | rt 59}=                | 1.     | 97618+0            | 1      |        |
|   | TIHE#                     |                    | ,00000                 | DTIHEU                      | 0.000        | 00 C         | SGHINI          | 2507-           | 70.000               | T 100   | 49           | 70.000         | 1        | 5=             | 20.000                 | τ      | 6=                 | 70.0-0 | _      |
|   | T 1*                      |                    | 70.000                 | I<br>T                      | 2-<br>8-     | 70.000       | , ,<br>, ,      | 9 a             | 70.000               | Ť       | 10.0         | 70.000         | Ť        | 114            | 70,000                 | Ť      | 12+                | 70.000 | -      |
|   |                           | -                  | 70.000                 | ÷                           | 140          | 70,000       | , i             | 15=             | 70.000               | ì       | 16=          | 70.000         | T        | 17#            | 70.000                 | Ŧ      | 8=                 | 70.000 |        |
|   | 1 190                     |                    | 70.000                 | ÷                           | 26*          | 70,000       | ρ, <del>Υ</del> | 21=             | 70.000               | Ť       | 22=          | 70.340         | T        | Z3=            | 70.000                 | T      | 24#                | 70.000 |        |
|   | T 25                      |                    | 70.000                 | î                           | 26=          | 70.000       | 3 1             | 27=             | 70.000               | ۴       | 28=          | 70.000         | Ţ        | 29*            | 70,000                 | 1      | 304                | 70.000 |        |
|   | T 319                     |                    | 70.000                 | Ŧ                           | 32=          | 70.000       | ः र             | 33•             | 70.000               | Ţ       | 34#          | 70.000         | ŗ        | 12=            | 70,000                 | 1      | 42=                | 70.000 | ស      |
|   | 1 37                      |                    | 70,000                 | T                           | 38=          | 70.000       |                 | 392             | 70.000               | Ţ       | 400          | 70.000         | +        | 474            | 70,000                 | Ť      | 48=                | 70.000 | 2      |
|   | T 43                      | =                  | 70.000                 | T                           | 44=          | 70.000       |                 | 450             | 70.000               | ŗ       | 5.28         | 70.000         | Ť        | 534            | 70.000                 | Ť      | 54*                | 70.000 | Ť      |
|   | 1 491                     | 8                  | 70.000                 |                             | 50#          | 70,000       |                 | 57s             | 70.000               |         | 589          | 70,000         | Ť        | 59*            | 70.000                 | Ť      | 60=                | 70.000 | Ľ.     |
|   | T 55                      | •                  | 70.000                 |                             | 500          | 70,000       |                 | 635             | 70.000               | ÷       | 64=          | 70.000         | Ť        | 65=            | 70.000                 | Ť      | 66*                | 70.000 |        |
|   | T 61                      | -                  | 20.000                 |                             | 62.4<br>68.8 | 20.000       | n T             | 69=             | 70.000               | Ť       | 70=          | 70.000         | т        | 71=            | 70.000                 | T      | 72#                | 76.000 | ¥      |
|   | 1 0/                      | -                  | 70.000                 | , i                         | 74=          | 70.000       | n r             | 75=             | 70.000               | Ť       | 76=          | 70.000         | T        | 77=            | 70.000                 | Ţ      | 76=                | 70.000 |        |
|   | T 79                      |                    | 70.000                 | Ť                           | 80=          | 70.000       | n İ             | 81=             | 70.000               | Ť       | 82*          | 70.000         | r        | 83=            | 70.000                 | T      | 84.                | 70.000 | 문      |
|   | 1 85                      | •                  | 70.000                 | Ť                           | 86=          | 70.000       | D 1             | 87=             | 70.000               | ۳       | 88=          | 70.000         | r        | 89#            | 70.030                 | Ť      | V0=                | 70.000 | - E 2  |
|   | 1 91                      | -                  | 70.000                 | Ť                           | 92=          | 70.00        | D <b>T</b>      | 93=             | 70.000               | T       | 94=          | 70.000         | 1        | 950            | 70,000                 | Ţ      | 70-                | 704000 | - X H  |
| _ | 1 97                      | R                  | 70.000                 | I T                         | 96=          | 70.00        | 0 <b>T</b>      | 89 <b>e</b>     | 70.000               | т       | រេប្ប•       | 70.000         | T        | 101            | 70.000                 | т<br>- | 102-               | 70.000 | E      |
|   | T 103                     | =                  | 70.000                 | Т                           | 104=         | 70.000       | 0 <b>T</b>      | 105=            | 70.000               | T       | 106=         | 70.000         | <u> </u> | 10/4           | 70,000                 | ÷      | 1148               | 70.000 | Ĩ,     |
|   | T 109                     |                    | 70.000                 | T                           | 110=         | 70,000       | T               | 111=            | 70.000               | I       | 100-         | 100.000        | Ţ        | 100=           | 40.000                 | ÷      | 200*               | 100.00 | 2<br>H |
|   | T 115                     |                    | 70.000                 | T                           | 116=         | 70.000       |                 | 11/-            | 70.000               | Ţ       | 204          | 20.000         | , i      | 2058           | 70.000                 | Ť      | 206=               | 70.000 | 1      |
|   | T 201                     |                    | 70.000                 | T                           | 202=         | 70,000       |                 | 203             | 70.000               | Ţ       | 2109-        | 70,000         | ÷        | 211=           | 70.000                 | Ť      | 212=               | 70.000 | 0      |
|   | T 207                     |                    | 70.000                 | Ţ                           | 208#         | 70,000       |                 | 2158            | 70.000               | ÷       | 216          | 70.000         | ż        | 217-           | 70.000                 | T      | 218*               | 70.000 | g      |
|   | T 213                     | •                  | 70.000                 |                             | 217-         | 70,00        |                 | 2218            | 70.000               | ÷       | 222=         | 70.000         | Ť        | 223            | 70.000                 | T      | 224=               | 70.000 | 크      |
|   | 1 219                     | -                  | 70:000                 | · ·                         | 2264         | 70.00        | o t             | 227=            | 70.300               | Ť       | 2284         | 70.000         | Ť        | 229=           | 70.000                 | т      | 230=               | 70.000 | 14     |
|   | 1 225                     | -                  | 70.000                 | <del>.</del>                | 232=         | 70.00        | o Ť             | 233=            | 70.000               | Ť       | 234#         | 70.000         | Ŧ        | 235#           | 70.000                 | T      | 236=               | 70.000 | F      |
|   | 1 237                     |                    | 70.000                 | Ť                           | 238=         | 70.00        | 0 1             | 239=            | 70.000               | T       | 240=         | 70.000         | ſ        | 241*           | 70,000                 | Ţ      | 242=               | 70.000 |        |
|   | 7 293                     | =                  | 70.000                 | ) Ť                         | 244=         | 70,00        | 0 T             | 245*            | 70.000               | T       | 246=         | 70.000         | Ţ        | 247=           | /0.000                 | T<br>T | 2544               | 70.000 |        |
|   | 1 299                     |                    | 70.000                 | ) <b>T</b>                  | 250-         | 70,00        | 0 T             | 251=            | 70.000               | T       | 2524         | 70.000         |          | 2034<br>2698   | 70,000                 | ÷      | 260=               | 76.000 |        |
|   | T 255                     |                    | 70.000                 | ) <u>T</u>                  | 256*         | 70.00        | 0 1             | 2578            | 70.000               | Ţ       | 204=<br>264= | 70.000         | Ť        | 265*           | 70.000                 | ÷      | 246=               | 70.000 |        |
|   | 1 261                     | •                  | 70,000                 | <u>, T</u>                  | 262=         | 70.00        |                 | 203-            | 70.000               | · · ·   | 2708         | 70.000         | ÷        | 271=           | 70.000                 | Ť      | 272=               | 76.000 |        |
|   | T 267                     |                    | 70.000                 |                             | 2009         | 70.00        |                 | 2758            | 70.000               | 1<br>7  | 276=         | 70.000         | Ť        | 277.           | 70.000                 | T      | 278=               | 70.000 |        |
|   | T 273                     |                    | 70.000                 | 」 [<br>┐ ♥                  | 2244         | 70.04        | u r<br>n ¥      | 281*            | 70.000               | ŕ       | 282=         | 70.000         | Ť        | 283*           | 70.000                 | T      | 284=               | 76.000 |        |
|   | 1 279                     | - 44<br>- 14       | 70.000                 | , ,<br>, ,                  | 284          | 70.00        | ο T             | 287=            | 70.000               | Ť       | 288=         | 70.000         | T        | 2899           | 70.000                 | T      | 290                | 70.000 |        |
|   | 1 200                     |                    | 70.000                 |                             | 292=         | 70.00        | ο T             | 293=            | 70+000               | Ť       | 294=         | 70,000         | T        | 295*           | 70,000                 | Ţ      | 296=               | 76.000 |        |
|   | 7 297                     |                    | 70.000                 | ,<br>T                      | 298 -        | 70.00        | ο τ             | 299=            | 70.000               | ۲       | 300-         | 70,000         | T        | 301*           | 76.000                 | Ţ      | 3(14=<br>30A=      | 70.000 |        |
|   | T 303                     | 5 <b>m</b>         | 70.000                 | 0 T                         | 304=         | 70.00        | 0 T             | 305=            | 70.000               | T       | 306*         | 70,000         | ī        | 30/=           | /0.000                 | т<br>• | 1140               | 70.000 |        |
|   | 1 309                     | ) #                | 70.000                 | 0 T                         | 310*         | 70,00        | 0 T             | 311*            | 70.000               | 1       | 3124         | 70.000         | T        | 717-           | 10,000                 | 1      |                    | ,01000 |        |
|   | T 315                     |                    | 70.000                 | ד מ                         | 316=         | 70.00        | 0 T             | 317=            | 70,000               | T       | 400#         | -434.04        |          |                |                        |        |                    |        |        |
|   |                           |                    |                        |                             |              |              | ~ <del>-</del>  |                 | - 2000."             |         |              | H- 1249.4      |          | 5 <b>-</b>     | 627.25                 |        |                    |        |        |
|   |                           | 3 =                | 2500.0                 |                             | 2*           | 2500.        | U 17<br>6 44    | L<br>4          | = 677789<br>= 632.11 |         |              | 9= 1249.4      |          | 10.            | 2498.7                 |        |                    |        |        |
|   |                           | - 6#               | - 955+11               | 1 14                        | 7•           | • 627•2      | 5 A             | 0               |                      |         |              |                |          | . •            |                        |        |                    |        |        |

5113

and the second 
posisional 1 1

**0-**

.

-1

45

# ORIGINAL PAGE IS OF POOR QUALITY

: 1

.

---

đ

.

ŧ

р Ц

1

•---

•--

-

| -<br>■ 11= .24931 # 12= .12418 #<br>₩ 16= .59395=61 # 17= .12410 # | 13= +64781_D: W  4= +59395+01 #<br>18= +24835 W 19= 2498+7 # | 15= .64781=01<br>20= 1249.4 |
|--------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------|
|                                                                    |                                                              | · · · · · · · ·             |
|                                                                    |                                                              | ···· ·                      |
| ~·                                                                 | · .                                                          |                             |
| · · · · ·                                                          | e e e e e e e e e e e e e e e e e e e                        |                             |
|                                                                    |                                                              |                             |
|                                                                    |                                                              |                             |
|                                                                    | · · · · · · · · · · · · · · · · · · ·                        |                             |
|                                                                    |                                                              |                             |
|                                                                    | ·····                                                        | • •                         |
|                                                                    |                                                              |                             |
| • • •                                                              |                                                              | · · · ·                     |
|                                                                    |                                                              | •••                         |
| ••••••••••••••••••••••••••••••••••••••                             |                                                              |                             |
| ·                                                                  |                                                              |                             |
|                                                                    |                                                              |                             |

1

· · · ·

and the second terms to the second terms 
.

TABLE 7

(CONTINUED)

•

|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12                                                                                                             |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |            |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                | 27.                                                                                                                                                                                                                                                                                                         | +24035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17                                                                                                     | 28                                                                                                                                                                            | - 12918                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 19                                                                                | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ≠ "64781=u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 *                                                                                         | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .59395+n1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |            |
|   | m 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 104/91+D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 4                                                                                                            | 32.                                                                                                                                                                                                                                                                                                         | • .57375-Di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19                                                                                                     | 33                                                                                                                                                                            | = +12416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | W                                                                                   | 34:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 24850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | # 2499.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |            |
|   | <b>#</b> 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 23166-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 4                                                                                                            | 374                                                                                                                                                                                                                                                                                                         | 2999.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | W                                                                                                      | 38                                                                                                                                                                            | 2499.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19                                                                                  | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | # .24912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |            |
|   | • · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • = • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |            |
|   | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • 157.79 ····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Db                                                                                                             | 21                                                                                                                                                                                                                                                                                                          | * 191+39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DP                                                                                                     | 3                                                                                                                                                                             | = 836.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0p                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 86.981°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ייעט '                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a 1210.0 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | -          |
|   | 0P &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 3210+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DP                                                                                                             | 71                                                                                                                                                                                                                                                                                                          | 3210.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DP                                                                                                     | 6                                                                                                                                                                             | <ul> <li>3210.0</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.e                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | # 84.9A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |            |
|   | D#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ¥ 8478.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DP                                                                                                             | 12*                                                                                                                                                                                                                                                                                                         | • .51880-ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A DP                                                                                                   | 13                                                                                                                                                                            | # AGA741 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 104.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |            |
|   | DP 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>.56763=n1</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 0.0                                                                                                          | 17                                                                                                                                                                                                                                                                                                          | E 61886-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                        | 1.0                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UP                                                                                  | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a *satore()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 QP                                                                                        | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .54763-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |            |
|   | 00 - 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a 3210 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - D-                                                                                                           |                                                                                                                                                                                                                                                                                                             | . 191000403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 08                                                                                                   | 10                                                                                                                                                                            | = 133264±03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0P                                                                                  | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | # 104.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | υP                                                                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | # 86,981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | •          |
|   | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 321010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UP                                                                                                             | 64                                                                                                                                                                                                                                                                                                          | 3210.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6P                                                                                                     | 23                                                                                                                                                                            | ■ ⇒210.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0P                                                                                  | 24:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≠ 321U.O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ٥P                                                                                          | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 86,981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 03         |
|   | CP 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 636.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0p                                                                                                             | 27=                                                                                                                                                                                                                                                                                                         | .36621-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DP                                                                                                     | 28                                                                                                                                                                            | •51890+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 P                                                                                 | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>\$6458;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 10                                                                                        | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | <b>M M</b> |
|   | DP 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • •20243-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 DP "                                                                                                         | 32                                                                                                                                                                                                                                                                                                          | .56763-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 OP                                                                                                   | 33                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                 | 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 .12                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -               | i C.       |
|   | DP 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P 10762+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DP                                                                                                             | 37=                                                                                                                                                                                                                                                                                                         | 209.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00                                                                                                     | 18                                                                                                                                                                            | - AnnE 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 12/00/000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * 2092.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | N 72       |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 01                                                                                                     | 30                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 014                                                                                 | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = •13123+U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 04         |
|   | e 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 11129.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P                                                                                                              | 2 8                                                                                                                                                                                                                                                                                                         | 10077.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                        | •                                                                                                                                                                             | - 10700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | O.V.       |
| • | B 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                | ÷                                                                                                                                                                                                                                                                                                           | 107761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                                                                                               |                                                                                                                                                                               | . 101909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Р                                                                                   | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • 9943.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 6729.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 2015       |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |                                                                                                                                                                                                                                                                                                             | 0042+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                        | 84                                                                                                                                                                            | 537.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P                                                                                   | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 2301.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                                                                                           | ែ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2299.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | <b>*</b>   |
|   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 2277.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                | 12"                                                                                                                                                                                                                                                                                                         | 2299.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e                                                                                                      | 131                                                                                                                                                                           | = 2299.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Р                                                                                   | 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 6933.l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ρ                                                                                           | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | # 3223.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 2.12       |
|   | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 6346.J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P                                                                                                              | 174                                                                                                                                                                                                                                                                                                         | 3138.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                      | 18                                                                                                                                                                            | = 2301.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ρ                                                                                   | - 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 2299.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P                                                                                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 7200.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                                                                                                                                                                                                                                                                  | - ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -               | 20         |
|   | P 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2299.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P                                                                                                              | 22*                                                                                                                                                                                                                                                                                                         | 2301.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P                                                                                                      | 23                                                                                                                                                                            | = Zn9.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P                                                                                   | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .0unon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r.                                                                                          | •0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 267787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 17 63      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •••                                                                                                            |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                      |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>.</b> .                                                                          | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - ••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | KØ         |
|   | ¥P 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V P                                                                                                            | 3.                                                                                                                                                                                                                                                                                                          | .99999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                        |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ы               | B A        |
|   | *· ·••·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                | -                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N               | 24         |
|   | COMPLITER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TIME .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • 000 -                                                                                                        | INNTES                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3               |            |
| • | DIVINE C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FCK AT ONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1238                                                                                                           | 1.0010-                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                        |                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |            |
| ĩ | ALLING C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9666 AT U22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2427                                                                                                           |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 | -                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 141           |            |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HEFE AT 1191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |            |
|   | alling a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3667                                                                                                           |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7               |            |
| Ī |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3227                                                                                                           |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.              |            |
|   | ********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7. (0           |            |
| - | **********<br>71HE=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00000 p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 [MEU=                                                                                                        | 5.000                                                                                                                                                                                                                                                                                                       | 08-03 CSGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ក្រទា                                                                                                  | 262}=                                                                                                                                                                         | 1.45333+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TEM                                                                                 | PCCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 262]= 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 206174                                                                                      | ont pf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A .                                                                             |                                                                                                                                                                                                                                                                  | o.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 (C(           |            |
| - | *********<br>71HE=<br>7 1=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00000 01<br>68.830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TIMEU=<br>T                                                                                                    | 5.000<br>2=                                                                                                                                                                                                                                                                                                 | 08+03 CSGH<br>50,458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T NI                                                                                                   | 262)=                                                                                                                                                                         | 1,45333+01<br>35,292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TEN                                                                                 | 1PCC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 262]= 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20617+                                                                                      | ni REL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XCC1 69]=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8,                                                                              | 21785+                                                                                                                                                                                                                                                           | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 (CÓN          |            |
| - | **********<br>TIME=<br>T1=<br>T7=-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00000 01<br>68.830<br>68.829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TIMEU=<br>T                                                                                                    | 5.000<br>2=<br>8=                                                                                                                                                                                                                                                                                           | 08=03 CSGH<br>50,458<br>50,577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ក<br>ក<br>ក្រ                                                                                          | 262)=<br>3=<br>9=                                                                                                                                                             | 1.45333+01<br>35.292<br>36.490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TEN<br>T                                                                            | 1PCC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 262]= 1+2<br>22+513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 206174<br>T                                                                                 | ni REL<br>S=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | XCC1 691=<br>11,890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • 8.<br>T                                                                       | 21785+<br>6=                                                                                                                                                                                                                                                     | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 (CÓNT         |            |
|   | **********<br>TIME=<br>T<br>T<br>T<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00000 01<br>68.830<br>68.829<br>68.829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T [MEU=<br>T<br>T<br>T                                                                                         | 5.000<br>2=<br>8=                                                                                                                                                                                                                                                                                           | 08-03 CSGH<br>50,458<br>50,577<br>50,574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T<br>T<br>T                                                                                            | 262}=<br>3#<br>9=                                                                                                                                                             | 1.45 <b>333</b> *0]<br>35.292<br>35.490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TEN<br>T<br>T                                                                       | 1PCC1<br>40<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 262]= 1.2<br>22.513<br>22.751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20617+<br>T<br>T                                                                            | ni R€∟<br>5ª<br>11ª                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | XCC1 69]=<br>11,890<br>12,144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • 8,<br>T<br>T                                                                  | 21785+<br>6=<br>12=                                                                                                                                                                                                                                              | 01<br>11+907<br>12+154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7 (CÓNTI        |            |
|   | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.000000 01<br>68.830<br>68.829<br>68.828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T [MEU=<br>T<br>T<br>T                                                                                         | 5.000<br>2=<br>8=<br>14=                                                                                                                                                                                                                                                                                    | 08-03 CSGH<br>50,458<br>50,577<br>50,574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T<br>T<br>T<br>T                                                                                       | 262}=<br>3*<br>9=<br>15=                                                                                                                                                      | 1,45333+01<br>35,292<br>35,490<br>35,484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TEH<br>T<br>T<br>T                                                                  | 10001<br>40<br>100<br>16=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 262]= 1+2<br>22+513<br>22+751<br>22+744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 206174<br>T<br>T<br>T                                                                       | ni REL<br>S=<br>11"<br>17"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | XCC: 69)<br>11.890<br>12.144<br>12.138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • 8.<br>T<br>T<br>T                                                             | 21785+<br>6=<br>12=<br>18=                                                                                                                                                                                                                                       | 01<br>11.907<br>12.154<br>12.147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 (CONTINU      |            |
|   | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.000000 01<br>66.830<br>66.829<br>66.829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T [MEU=<br>T<br>T<br>T<br>T                                                                                    | 5.000<br>2=<br>8=<br>14=<br>20=                                                                                                                                                                                                                                                                             | 08-03 CSGH<br>50.458<br>50.577<br>50.574<br>50.455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T<br>T<br>T<br>T<br>T                                                                                  | 262}=<br>3*<br>9=<br>15=<br>21=                                                                                                                                               | 1.45333⇒01<br>35.292<br>35.490<br>35.484<br>35.287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TEN<br>T<br>T<br>T<br>T                                                             | 10001<br>40<br>100<br>160<br>220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 262]= 1.2<br>22.513<br>22.751<br>22.744<br>22.507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 206174<br>T<br>T<br>T<br>T                                                                  | ni REL<br>5=<br>11=<br>17=<br>23=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | XCC1 691<br>11,890<br>12,144<br>12,138<br>11,864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • 8.<br>T<br>T<br>T                                                             | 21785+<br>6=<br>12=<br>18=<br>24=                                                                                                                                                                                                                                | 01<br>11.907<br>12.154<br>12.147<br>11.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 (CONTINUE     |            |
|   | ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.000000 01<br>68.830<br>68.829<br>68.828<br>68.828<br>68.829<br>12.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T [HEU=<br>T<br>T<br>T<br>T<br>T                                                                               | 5.000<br>2=<br>8=<br>14=<br>20=<br>26=                                                                                                                                                                                                                                                                      | 08-03 CSGH<br>50+458<br>50+577<br>50+574<br>50+455<br>4+3575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T<br>T<br>T<br>T<br>T<br>T                                                                             | 262}=<br>3*<br>9=<br>15=<br>21=<br>27=                                                                                                                                        | 1.45333+01<br>35.292<br>35.490<br>35.484<br>35.287<br>+3.3729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TEN<br>T<br>T<br>T<br>T<br>T                                                        | 1000 l<br>400<br>100<br>160<br>220<br>280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 262]= 1.2<br>22.513<br>22.751<br>22.744<br>22.507<br>~10.057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 206174<br>T<br>T<br>T<br>T                                                                  | ni REL<br>5#<br>11#<br>17#<br>23#<br>29#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | XCC1 69]<br>11.890<br>12.144<br>12.138<br>11.864<br>~15.837                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • 8.<br>T<br>T<br>T<br>T                                                        | 21785+<br>6=<br>12=<br>18=<br>24=<br>30=                                                                                                                                                                                                                         | 01<br>11.907<br>12.154<br>12.147<br>11.900<br>-15.854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 (CONTINUED    |            |
|   | *********<br>7 1#E=<br>7 7=<br>7 13=<br>7 13=<br>7 13=<br>7 31=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00000 01<br>68.830<br>68.827<br>68.828<br>68.828<br>12.050<br>12.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5227<br>T [MEy=<br>T<br>T<br>T<br>T<br>T                                                                       | 5.000<br>2=<br>8=<br>14=<br>20=<br>26=<br>32=                                                                                                                                                                                                                                                               | 08-03 CSGH<br>50,458<br>50,577<br>50,574<br>50,455<br>4,3575<br>3,1377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                                              | 262}=<br>3*<br>9=<br>15=<br>21=<br>27=<br>33=                                                                                                                                 | 1.45333-01<br>35.292<br>35.490<br>35.484<br>35.287<br>-3.3729<br>-4.0386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TEM<br>T<br>T<br>T<br>T<br>T                                                        | 1PCC1<br>40<br>100<br>160<br>220<br>280<br>340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2623 + 2+2<br>22+513<br>22+751<br>22+751<br>22+744<br>22+507<br>-10+057<br>+10+407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 206174<br>T<br>T<br>T<br>T<br>T                                                             | ni REL<br>5=<br>11=<br>17=<br>23=<br>25=<br>36=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XCC: 691<br>11.890<br>12.144<br>12.138<br>11.864<br>~15.839<br>-16.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • 8.<br>T<br>T<br>T<br>T                                                        | 21785+<br>6=<br>12=<br>18=<br>24=<br>30=                                                                                                                                                                                                                         | 01<br>11.907<br>12.154<br>12.147<br>11.900<br>-15.854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 (CONTINUED)   |            |
|   | **********<br>7 IHE=<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>77=-<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00000 01<br>48.830<br>68.829<br>68.829<br>68.829<br>48.829<br>12.050<br>12.043<br>12.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5227<br>T [MEU=<br>T<br>T<br>T<br>T<br>T<br>T                                                                  | 5.000<br>2=<br>8=<br>14=<br>20=<br>32=<br>38=                                                                                                                                                                                                                                                               | 08-03 CSGH<br>50.458<br>50.577<br>50.574<br>50.455<br>4.3575<br>3.1377<br>3.1448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                                              | 262}=<br>3*<br>9=<br>15=<br>21=<br>27=<br>33=<br>39=                                                                                                                          | 1.45333-01<br>35.292<br>35.490<br>35.484<br>35.287<br>-3.3729<br>-4.0386<br>-4.0238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TEM<br>T<br>T<br>T<br>T<br>T<br>T                                                   | IPCCI<br>40<br>IU#<br>220<br>280<br>340<br>340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 262]= 1.2<br>22.513<br>22.751<br>22.754<br>22.557<br>-10.057<br>+10.407<br>-10.189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 206174<br>T<br>T<br>T<br>T<br>T                                                             | ni REL<br>5=<br>11=<br>17=<br>23=<br>29=<br>36=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XCC1 691<br>11.890<br>32.144<br>12.138<br>11.864<br>~15.839<br>~16.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • 8,<br>T<br>T<br>T<br>T<br>T                                                   | 21785+<br>6=<br>12=<br>18=<br>24=<br>30=<br>36=                                                                                                                                                                                                                  | 01<br>11.907<br>12.154<br>12.154<br>12.147<br>11.900<br>-15.982<br>-15.982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 (CONTINUED)   |            |
|   | T 1HE=<br>T 1HE=<br>T 13=<br>T 13=<br>T 17=<br>T 13=<br>T 31=<br>T 31=<br>T 37=<br>T 43=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00000 01<br>68.830<br>68.829<br>68.829<br>52.050<br>12.043<br>12.048<br>12.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5227<br>T [MEU=<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                                             | 5.000<br>2=<br>8=<br>14=<br>20=<br>26=<br>32=<br>38=<br>44=                                                                                                                                                                                                                                                 | 08-03 CSGH<br>50.458<br>50.577<br>50.574<br>50.455<br>4.3575<br>3.1377<br>3.1448<br>4.924                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1991<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                                                | 262)=<br>3=<br>3=<br>15=<br>21=<br>27=<br>33=<br>45=                                                                                                                          | 1.45333+01<br>35.292<br>35.490<br>35.287<br>-3.3729<br>-4.0386<br>-4.0238<br>-3.3729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TEN<br>T<br>T<br>T<br>T<br>T<br>T                                                   | 1PCC  <br>40<br>  04<br>  60<br>  220<br>  28<br>  28<br>  34<br>  4<br>  00<br>  4<br>  00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2623 = 12<br>22.513<br>22.751<br>22.744<br>22.507<br>=10.057<br>*10.407<br>*10.389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 206174<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                                   | ni REL<br>5ª<br>11ª<br>23ª<br>29ª<br>36ª<br>41ª                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XCC1 691<br>11.890<br>12.144<br>12.138<br>11.864<br>-15.839<br>-14.000<br>-15.981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • 8.<br>T<br>T<br>T<br>T<br>T<br>T                                              | 21785+<br>6=<br>12=<br>18=<br>24=<br>30=<br>36=<br>42=                                                                                                                                                                                                           | 01<br>11.907<br>12.154<br>12.147<br>11.900<br>-15.954<br>-15.952<br>-15.963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 (CONTINUED)   |            |
|   | T (HE=<br>T (HE=<br>T 1=<br>T 13=<br>T 13=<br>T 13=<br>T 31=<br>T 31=<br>T 37=<br>T 43=<br>T 43=<br>T 49=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00000 01<br>66.630<br>66.629<br>66.629<br>12.050<br>12.043<br>12.056<br>12.056<br>48.627                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5227<br>T [HEU=<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                                             | 5.000<br>2=<br>8=<br>14=<br>20=<br>32=<br>38=<br>44=<br>50=                                                                                                                                                                                                                                                 | 08-03 CSGH<br>50.458<br>50.577<br>50.574<br>50.455<br>4.3575<br>3.1377<br>3.1448<br>4.9124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TNI<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                                                 | 262)=<br>3=<br>9=<br>15=<br>21=<br>27=<br>33=<br>39=<br>45=                                                                                                                   | 1.45333-01<br>35.292<br>35.490<br>35.484<br>35.287<br>-3.3729<br>-4.0386<br>-3.3342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TEM<br>T<br>T<br>T<br>T<br>T<br>T                                                   | 1PCCI<br>40<br>104<br>220<br>280<br>344<br>400<br>460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 262) = 1+2<br>22+513<br>22+751<br>22+744<br>22+507<br>-10+057<br>+10+007<br>-10+389<br>=10+032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 206174<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                                   | ni REL<br>54<br>114<br>234<br>234<br>364<br>414<br>474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XCC: 69]<br>11,890<br>12,144<br>12,138<br>11,864<br>~15,839<br>-16,000<br>-15,824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • 8.<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                    | 21785+<br>6=<br>12=<br>18=<br>24=<br>30=<br>30=<br>42=<br>48=                                                                                                                                                                                                    | 01<br>11.907<br>12.154<br>12.154<br>12.147<br>11.900<br>-15.854<br>-15.982<br>-15.983<br>-15.983<br>-15.842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 (CONTINUED)   |            |
|   | T T HE=<br>T - 1=<br>T - 7=<br>T - 13=<br>T - 19=<br>T - 19=<br>T - 31=<br>T - 37=<br>T - 43=<br>T - 49=<br>T - 49=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00000 01<br>48.830<br>68.829<br>68.829<br>48.829<br>12.050<br>12.043<br>12.048<br>12.056<br>68.827<br>48.827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5227<br>T [MEU=<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                                        | 5.000<br>2=<br>8=<br>14=<br>26=<br>32=<br>38=<br>44=<br>56=                                                                                                                                                                                                                                                 | 08-03 CSGH<br>50.458<br>50.577<br>50.574<br>50.455<br>4.3575<br>3.1377<br>3.1348<br>4.4124<br>68.493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                                                   | 262}=<br>3=<br>15=<br>21=<br>27=<br>33=<br>39=<br>45=<br>51=                                                                                                                  | 1.45333-01<br>35.292<br>35.490<br>35.484<br>35.287<br>-3.3729<br>-4.0386<br>-4.0386<br>-3.3342<br>68.160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TEN<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                         | 1PCC  <br>40<br>100<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 262]= 1.2<br>22.513<br>22.751<br>22.744<br>22.567<br>-10.057<br>+10.407<br>-10.389<br>=10.032<br>67.829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 206174<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                              | ni REL<br>5=<br>11=<br>23=<br>25=<br>41=<br>47=<br>53=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XCC1 69)<br>11.890<br>12.138<br>11.864<br>~15.839<br>-16.000<br>~15.824<br>67.898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • 8•<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                    | 21785+<br>6=<br>12=<br>18=<br>30=<br>42=<br>48=<br>54=                                                                                                                                                                                                           | 01<br>11.907<br>12.154<br>12.147<br>11.900<br>-15.854<br>-15.982<br>-15.983<br>-15.842<br>67.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 (CONTINUED)   |            |
|   | T 1HE=<br>T 1HE=<br>T 13=<br>T 13=<br>T 13=<br>T 33=<br>T 31=<br>T 37=<br>T 43=<br>T 49=<br>T 55=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00000 01<br>68.830<br>68.829<br>68.829<br>12.050<br>12.043<br>12.048<br>12.056<br>68.827<br>68.827<br>68.826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5227<br>T [MEU=<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                                        | 5.000<br>2=<br>14=<br>20=<br>30=<br>30=<br>44=<br>50=                                                                                                                                                                                                                                                       | 08-03 CSGH<br>50,458<br>50,577<br>50,574<br>50,455<br>4,3575<br>3,1377<br>3,1448<br>4,448<br>4,4424<br>68,493<br>68,493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1 1 1<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                                        | 262}=<br>3=<br>15=<br>27=<br>39=<br>39=<br>51=<br>57=                                                                                                                         | 1.45333.01<br>35.292<br>35.490<br>35.287<br>-3.3729<br>-4.0386<br>-4.0238<br>-3.3342<br>68.160<br>48.160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TEM<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                               | 1PCCI<br>40<br>10<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2623 = 1.2<br>22.513<br>22.751<br>22.744<br>22.507<br>=10.057<br>=10.389<br>=10.032<br>67.827<br>67.831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 206174<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                         | ni REL<br>5*<br>11*<br>23*<br>29*<br>36*<br>41*<br>47*<br>59*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | XCC1 69]=<br>11.890<br>12.144<br>12.138<br>11.864<br>-15.839<br>-14.000<br>-15.824<br>67.498<br>57.502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • 8•<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                    | 21785+<br>6=<br>12=<br>12=<br>24=<br>30=<br>42=<br>48=<br>54=<br>60=                                                                                                                                                                                             | 01<br>11.907<br>12.154<br>12.154<br>12.147<br>11.900<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 (CONTINUED)   |            |
|   | TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TI | 1.00000 01<br>68.830<br>68.829<br>68.828<br>92.050<br>12.043<br>12.043<br>12.048<br>12.056<br>88.827<br>68.825<br>68.827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5227<br>T [MEU=<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                                        | 5.000<br>2=<br>8=<br>14=<br>26=<br>30=<br>30=<br>56=<br>620                                                                                                                                                                                                                                                 | 08-03 CSGH<br>50,458<br>50,577<br>50,574<br>50,455<br>3,1575<br>3,1377<br>3,1448<br>4,493<br>68,493<br>68,493<br>68,494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1991<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                                           | 262}=<br>3=<br>15=<br>217=<br>339=<br>51=<br>51=<br>63=                                                                                                                       | 1.45333-01<br>35.292<br>35.490<br>35.484<br>35.287<br>-4.0386<br>-4.0238<br>-3.3342<br>68.160<br>68.162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TEH<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                          | 1PCC  <br>104<br>104<br>204<br>204<br>102<br>204<br>102<br>204<br>102<br>204<br>102<br>204<br>102<br>204<br>102<br>204<br>102<br>204<br>102<br>204<br>102<br>204<br>102<br>204<br>104<br>204<br>204<br>204<br>204<br>204<br>204<br>204<br>204<br>204<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2621= 1+2<br>22+513<br>22+751<br>22+744<br>22+507<br>-10+057<br>+10+407<br>+10+389<br>=10+032<br>67+829<br>67+831<br>67+832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 206174<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                         | ni REL<br>5=<br>11*<br>17*<br>23*<br>25*<br>41*<br>47*<br>53*<br>65*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | XCC1 69]<br>11.890<br>12.144<br>12.138<br>11.884<br>~15.839<br>~15.824<br>67.902<br>67.502<br>67.503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • 8.<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                               | 21785+<br>6=<br>12=<br>18=<br>24=<br>30=<br>42=<br>48=<br>54=<br>60=                                                                                                                                                                                             | 01<br>11.907<br>12.154<br>12.147<br>11.900<br>-15.854<br>-15.982<br>-15.943<br>-15.842<br>67.500<br>47.503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 (CONTINUED)   |            |
|   | ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00000000<br>68.830<br>68.829<br>68.829<br>12.050<br>12.048<br>12.054<br>58.827<br>68.827<br>68.825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5227<br>T [HEU=<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                                   | 5.000<br>2=<br>14=<br>20=<br>32=<br>38=<br>44=<br>50=<br>54=<br>620<br>68=                                                                                                                                                                                                                                  | 08-03 CSGH<br>50.458<br>50.577<br>50.574<br>50.455<br>4.3575<br>3.1377<br>3.1448<br>4.4124<br>68.493<br>68.493<br>68.494<br>68.494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                                    | 262<br>30<br>151<br>27<br>39<br>345<br>57<br>51<br>57<br>49<br>50<br>57<br>49<br>50<br>57<br>49<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | $1 \cdot 45333 - 01$ $35 \cdot 292$ $35 \cdot 490$ $35 \cdot 287$ $-3 \cdot 3729$ $-4 \cdot 0386$ $-4 \cdot 0236$ $-3 \cdot 3342$ $-68 \cdot 160$ $68 \cdot 162$ $68 \cdot 161$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TEH<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                     | 1PC 1 4 0 4 0 4 1 0 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 262]= 1.2<br>22.513<br>22.751<br>22.744<br>22.507<br>-10.057<br>+10.407<br>-10.389<br>=10.032<br>67.829<br>67.831<br>67.832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 206174<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                         | ni REL<br>5=<br>11=<br>17=<br>29=<br>41=<br>47=<br>59=<br>47=<br>59=<br>45=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | XCC1 691<br>11.890<br>12.144<br>12.138<br>11.864<br>~15.839<br>-16.000<br>~15.824<br>67.498<br>67.502<br>67.503<br>42.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • 8.<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                               | 21785+<br>6=<br>18=<br>24=<br>30=<br>36=<br>48=<br>54=<br>54=<br>60=<br>60=                                                                                                                                                                                      | 01<br>11.907<br>12.154<br>12.154<br>12.147<br>11.900<br>-15.854<br>-15.982<br>-15.983<br>-15.983<br>-5.00<br>67.500<br>67.503<br>67.504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 (CÓNTINUED)   |            |
|   | T 1HE=<br>T 1=<br>T 13=<br>T 13=<br>T 13=<br>T 33=<br>T 31=<br>T 37=<br>T 43=<br>T 49=<br>T 55=<br>T 61=<br>T 73=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00000 01<br>68.830<br>68.829<br>68.829<br>12.050<br>12.048<br>12.056<br>68.827<br>68.827<br>68.827<br>68.828<br>67.504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5227<br>T [HEU=<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                              | 5.000<br>2=<br>8=<br>14=<br>20=<br>324=<br>324=<br>54=<br>54=<br>54=<br>54=<br>54=<br>54=<br>74=                                                                                                                                                                                                            | 08-03 CSGH<br>50,458<br>50,577<br>50,574<br>50,455<br>3,1377<br>3,1478<br>4,478<br>4,478<br>4,478<br>68,493<br>68,493<br>68,494<br>68,494<br>68,494<br>67,175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 50 C<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                          | 262<br>3=<br>15=<br>27=<br>39=<br>27=<br>39=<br>57=<br>57=<br>57=<br>49=                                                                                                      | 1.45333+01 $35.292$ $35.490$ $35.484$ $35.287$ $-3.3729$ $-4.0386$ $-4.0238$ $-3.3342$ $68.160$ $68.162$ $68.162$ $68.162$ $68.162$ $68.162$ $68.162$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TEH<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                     | 1PCC 400<br>100<br>100<br>200<br>400<br>200<br>400<br>504<br>400<br>504<br>400<br>504<br>400<br>504<br>400<br>504<br>400<br>504<br>400<br>504<br>400<br>504<br>400<br>504<br>400<br>504<br>400<br>504<br>400<br>500<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2623 = 12<br>22.513<br>22.751<br>22.744<br>22.507<br>-10.057<br>-10.389<br>-10.032<br>67.827<br>67.831<br>67.832<br>67.829<br>67.829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 206174<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                              | 011 REL<br>5m<br>110<br>230<br>380<br>410<br>470<br>530<br>590<br>410<br>470<br>530<br>590<br>710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | XCC1 691<br>11.890<br>12.144<br>12.138<br>11.864<br>-15.839<br>-14.000<br>-15.824<br>67.498<br>67.498<br>67.499<br>67.499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • 8.<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                               | 21785+<br>6=<br>12=<br>24=<br>30=<br>30=<br>42=<br>48=<br>54=<br>54=<br>72=                                                                                                                                                                                      | 01<br>11.907<br>12.154<br>12.154<br>12.147<br>1.900<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.982<br>-15.9 | 7 (CONTINUED)   |            |
|   | T HE=<br>T HE=<br>T 13=<br>T 13=<br>T 13=<br>T 31=<br>T 31=<br>T 37=<br>T 43=<br>T 49=<br>T 49=<br>T 61=<br>T 67=<br>T 73=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.000000 01<br>68.830<br>68.829<br>68.829<br>12.050<br>12.043<br>12.048<br>12.056<br>68.827<br>68.827<br>68.826<br>63.627<br>68.826<br>67.504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5227<br>T [HEU=<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                              | 5.000<br>2=<br>142<br>262<br>324<br>504<br>504<br>504<br>504<br>504<br>504<br>504<br>68<br>504<br>79<br>68<br>68<br>79<br>60<br>80                                                                                                                                                                          | 08-03 CSGH<br>50.458<br>50.574<br>50.574<br>50.455<br>3.1377<br>3.1377<br>3.1377<br>3.1377<br>3.1377<br>3.448<br>4.448<br>4.493<br>68.493<br>68.494<br>68.494<br>68.494<br>68.494<br>68.494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 5 1 E<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                               | 262<br>30<br>35<br>1217<br>273<br>35<br>517<br>273<br>35<br>517<br>517<br>517<br>517<br>517<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55     | $1 \cdot 45333 \Rightarrow 01$<br>$35 \cdot 292$<br>$35 \cdot 490$<br>$35 \cdot 484$<br>$35 \cdot 287$<br>$3 \cdot 3729$<br>$-4 \cdot 0386$<br>$-3 \cdot 3342$<br>$68 \cdot 160$<br>$68 \cdot 162$<br>$68 \cdot 161$<br>$66 \cdot 162$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TEH<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T | 1PC 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 262] = 1.2<br>22.513<br>22.751<br>22.754<br>22.507<br>-10.057<br>+10.057<br>+10.0367<br>=10.0369<br>=10.032<br>67.827<br>67.831<br>67.832<br>67.829<br>46.520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 206174<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                    | 011 REL<br>5=<br>11=<br>17=<br>23=<br>29=<br>36=<br>41=<br>47=<br>47=<br>47=<br>47=<br>55=<br>47=<br>55=<br>77=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XCC1 69)<br>11.890<br>32.144<br>12.138<br>11.864<br>~15.839<br>-16.000<br>-15.924<br>67.498<br>67.503<br>67.503<br>67.499<br>66.195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • 8.<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                               | 21785+<br>6=<br>122<br>185+<br>230<br>24=<br>30x<br>428=<br>54x<br>60=<br>72=<br>78=                                                                                                                                                                             | 01<br>11.907<br>12.154<br>12.147<br>11.900<br>-15.854<br>-15.982<br>-15.842<br>67.500<br>67.500<br>67.500<br>60.196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 (CÓNTINUED)   |            |
|   | ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00000 01<br>68.830<br>68.829<br>68.829<br>12.050<br>12.043<br>12.048<br>12.056<br>68.827<br>68.827<br>68.827<br>68.828<br>67.504<br>67.504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5227<br>T [HEU=<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                    | 5.000<br>2=<br>8=<br>202<br>24=<br>202<br>324=<br>304=<br>502=<br>542=<br>244=<br>542=<br>244=<br>542=<br>244=<br>542=<br>244=<br>542=<br>244=<br>244                                                                                                                                                       | 08-03 CSGH<br>50.458<br>50.574<br>50.955<br>4.3575<br>3.1448<br>4.4124<br>68.493<br>68.493<br>68.494<br>68.494<br>68.494<br>68.494<br>67.175<br>67.175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 1 1 1<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                               | 262<br>30<br>1217<br>235<br>517<br>517<br>517<br>517<br>517<br>517<br>510<br>510<br>510<br>510<br>510<br>510<br>510<br>510<br>510<br>510                                      | $1 \cdot 45333 - 01$<br>$35 \cdot 292$<br>$35 \cdot 490$<br>$35 \cdot 884$<br>$35 \cdot 287$<br>$-4 \cdot 0386$<br>$-4 \cdot 0238$<br>$-3 \cdot 3342$<br>$68 \cdot 160$<br>$68 \cdot 162$<br>$68 \cdot 161$<br>$66 \cdot 847$<br>$66 \cdot 97$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TEN<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                | 1PC 1 4 0 4 1 0 4 4 1 0 4 4 4 1 0 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 262]= 1.2<br>22.513<br>22.751<br>22.744<br>22.507<br>-10.057<br>+10.407<br>-10.389<br>=10.032<br>67.827<br>67.831<br>67.832<br>67.832<br>67.829<br>66.523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 206174<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                               | 1 REL<br>5<br>11#<br>17#<br>235=<br>41#<br>47#<br>59=<br>65=<br>71=<br>73=<br>65=<br>71=<br>83#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XCC1 691<br>11.890<br>12.144<br>12.138<br>11.864<br>~15.839<br>-16.000<br>~15.824<br>67.503<br>67.503<br>67.503<br>66.195<br>66.195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • 8.<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                     | - 2   785+<br>6=<br>12=<br>24=<br>24=<br>36=<br>42=<br>54=<br>60=<br>60=<br>60=<br>72=<br>84=                                                                                                                                                                    | $\begin{array}{c} 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 (CONTINUED)   |            |
|   | T 1HE=<br>T 1HE=<br>T 13=<br>T 13=<br>T 13=<br>T 37=<br>T 31=<br>T 37=<br>T 43=<br>T 49=<br>T 55=<br>T 61=<br>T 73=<br>T 79=<br>T 65=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.000000 01<br>68.830<br>68.829<br>68.829<br>12.050<br>12.043<br>12.054<br>68.827<br>68.827<br>68.827<br>68.828<br>67.504<br>67.504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5227<br>T [HEU=<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                    | 5.000<br>2=<br>8=<br>14=<br>20=<br>32=<br>32=<br>54=<br>54=<br>54=<br>79=<br>80=<br>80=                                                                                                                                                                                                                     | 08-03 CSGH<br>50,458<br>50,577<br>50,574<br>50,455<br>3,1377<br>3,1448<br>4,9124<br>68,493<br>68,493<br>68,494<br>68,494<br>68,494<br>67,175<br>67,175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 1 2 2 1<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                             | 2623<br>9=<br>15174<br>273=<br>273=<br>273=<br>39514<br>495=<br>675=<br>815=<br>815=<br>815=<br>815=<br>815=<br>815=<br>815=<br>81                                            | $1 \cdot 45333 + 01$ $35 \cdot 292$ $35 \cdot 490$ $35 \cdot 287$ $-3 \cdot 3729$ $-4 \cdot 0386$ $-4 \cdot 0238$ $-3 \cdot 3342$ $68 \cdot 160$ $68 \cdot 162$ $68 \cdot 162$ $66 \cdot 161$ $66 \cdot 647$ $66 \cdot 649$ $66 \cdot 648$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TEH<br>T T T T T T T T T T T T T T T T T T T                                        | 1PCC400000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2623 = 12<br>22.513<br>22.751<br>22.744<br>22.507<br>-10.057<br>-10.0389<br>-10.032<br>67.827<br>67.831<br>67.831<br>67.832<br>67.829<br>64.523<br>64.523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 206174<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                               | 011 REL<br>5m<br>110<br>230<br>350<br>410<br>470<br>530<br>470<br>530<br>530<br>470<br>530<br>530<br>830<br>830<br>830<br>830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | XCC1 691<br>11.890<br>12.144<br>12.138<br>11.864<br>-15.839<br>-16.000<br>-15.824<br>67.498<br>67.498<br>67.499<br>66.198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • 8.<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                | 7 1 7 85<br>4<br>1 2 =<br>1 8 +<br>2 4 =<br>3 0 x<br>4 2 =<br>3 0 x<br>4 2 =<br>5 4 z<br>5 4 z<br>7 8 =<br>7 8 =<br>7 8 =<br>7 8 =<br>7 0 =                                                                                                                      | $\begin{array}{c} 0 \\ 1 \\ 11.907 \\ 12.154 \\ 12.154 \\ 12.147 \\ -15.054 \\ -15.982 \\ -15.982 \\ -15.984 \\ 07.503 \\ 67.504 \\ 67.503 \\ 67.504 \\ 67.500 \\ 66.199 \\ 66.199 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 (CÓNTINUED)   |            |
|   | T I HE=<br>T I HE=<br>T 13=<br>T 13=<br>T 13=<br>T 35=<br>T 37=<br>T 37=<br>T 43=<br>T 49=<br>T 49=<br>T 61=<br>T 67=<br>T 65=<br>T 65=<br>T 91=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.000000 01<br>68.830<br>68.829<br>68.829<br>12.050<br>12.043<br>12.048<br>12.056<br>68.827<br>68.827<br>68.825<br>63.827<br>68.828<br>67.504<br>67.504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5227<br>T [HEU=<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                    | 5.000<br>2=<br>14=<br>20=<br>38=<br>44=<br>50=<br>44=<br>50=<br>44=<br>50=<br>40=<br>80=<br>80=<br>92=                                                                                                                                                                                                      | 08-03 CSGH<br>50.458<br>50.574<br>50.574<br>50.575<br>3.1377<br>3.1377<br>3.448<br>4.4924<br>68.493<br>68.494<br>68.494<br>68.494<br>68.494<br>68.494<br>67.175<br>67.175<br>67.175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 50 L<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                          | 2623<br>900<br>12233<br>95173<br>95173<br>95173<br>95173<br>95173<br>95173<br>95173<br>95173<br>930<br>930                                                                    | 1 . 45333 - 01 35. 292 35. 490 35. 484 35. 287 -3. 3729 -4. 0386 -4. 0238 -3. 3342 68. 160 68. 162 68. 162 66. 161 66. 847 66. 848 66. 847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TEH<br>T T T T T T T T T T T T T T T T T T T                                        | 1P<br>(400<br>100<br>120<br>100<br>120<br>100<br>100<br>100<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 262]= 1.2<br>22.513<br>22.751<br>22.754<br>22.507<br>-10.057<br>+10.407<br>-10.389<br>=10.032<br>67.829<br>67.831<br>67.832<br>67.829<br>46.520<br>66.523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 206174<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                          | n: RE<br>5.8<br>118<br>235<br>418<br>538<br>418<br>538<br>418<br>538<br>418<br>538<br>418<br>538<br>658<br>658<br>778<br>838<br>8959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | XCC1 691<br>11.890<br>32.144<br>12.138<br>11.864<br>-15.839<br>-16.000<br>-15.824<br>67.998<br>67.503<br>67.503<br>65.198<br>66.198<br>66.198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • 8.<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T | 91785+<br>6=<br>12=<br>18=<br>30=<br>30=<br>30=<br>40=<br>50=<br>40=<br>50=<br>60=<br>78=<br>64=<br>78=<br>64=<br>90=                                                                                                                                            | $\begin{array}{c} 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 (CONTINUED)   |            |
|   | ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00000000<br>6.029<br>6.029<br>6.029<br>12.050<br>12.040<br>12.054<br>58.027<br>68.025<br>68.025<br>67.504<br>67.504<br>67.504<br>67.504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5227<br>T [HEU=<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                     | 5.000<br>2=<br>84=<br>1202<br>328=<br>344=<br>562=<br>745<br>262=<br>745<br>262=<br>745<br>262=<br>745<br>262=<br>745<br>262=<br>745<br>262=<br>745<br>262=<br>745<br>262=<br>745<br>262=<br>745<br>262=<br>745<br>262=<br>745<br>263<br>745<br>745<br>745<br>745<br>745<br>745<br>745<br>745<br>745<br>745 | 08-03 CSGH<br>50+458<br>50+574<br>50+555<br>4+3575<br>3+1377<br>3+1448<br>4+9124<br>68+493<br>68+493<br>68+494<br>68+494<br>67+175<br>67+175<br>67+175<br>67+175<br>68+825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 1 1 1 1<br>T T T T T T T T T T T T T T T                                                             | 262<br>9<br>151<br>273<br>395<br>517<br>395<br>517<br>395<br>517<br>395<br>517<br>875<br>875<br>875<br>875<br>875<br>875<br>875<br>875<br>875<br>87                           | 1 + 45333 + 01 $35 + 292$ $35 + 490$ $35 + 484$ $35 + 287$ $-4 + 0386$ $-4 + 0238$ $-3 + 3342$ $68 + 160$ $46 + 162$ $66 + 162$ $66 + 161$ $66 + 647$ $66 + 647$ $66 + 624$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TEH<br>T T T T T T T T T T T T T T T T T T T                                        | 1PC C  <br>1 0 = 1<br>1 0 = 2<br>2 0 = 2<br>2 0 = 2<br>2 0 = 2<br>2 0 = 2<br>4 0 = 2<br>5 0 = 2<br>5 0 = 2<br>6 0 = 2<br>0 br>0 = 2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2623 = 1.2<br>22.513<br>22.751<br>22.744<br>22.507<br>-10.057<br>-10.387<br>-10.387<br>-10.387<br>67.827<br>67.831<br>67.832<br>47.829<br>46.520<br>46.523<br>46.522<br>46.520<br>68.827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 206174<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                     | 1 REL<br>5<br>11<br>17<br>235<br>41<br>47<br>59<br>41<br>47<br>59<br>41<br>47<br>59<br>65<br>71<br>83<br>89<br>83<br>89<br>101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | XCC1 691<br>11.890<br>12.144<br>12.138<br>12.144<br>12.138<br>44<br>15.839<br>-16.000<br>-15.824<br>67.498<br>67.502<br>67.502<br>67.502<br>66.198<br>66.198<br>12.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • 8.<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T      | 21785<br>427<br>127<br>128<br>230<br>428<br>428<br>428<br>408<br>408<br>408<br>408<br>408<br>408<br>408<br>408<br>408<br>40                                                                                                                                      | $\begin{array}{c} 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 (CÓNTINUED)   |            |
|   | ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.000000 01<br>68.830<br>68.829<br>68.829<br>12.050<br>12.043<br>12.043<br>12.048<br>12.056<br>12.043<br>12.048<br>12.056<br>68.827<br>68.825<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5227<br>T [HEU=<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                    | 5.000<br>2=<br>8=<br>14=<br>20=<br>384<br>565<br>565<br>565<br>565<br>565<br>79=<br>80=<br>80=<br>80=<br>80=<br>80=<br>80=<br>80=<br>80=<br>80=<br>80                                                                                                                                                       | 08-03 CSGH<br>50,458<br>50,577<br>50,574<br>50,455<br>3,1377<br>3,1448<br>4,9124<br>4,9124<br>4,93<br>68,493<br>68,493<br>68,494<br>68,493<br>68,494<br>67,175<br>67,175<br>67,175<br>68,825<br>12,037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 21 1<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7       | 2623<br>9=<br>15174<br>273=<br>273=<br>273=<br>273=<br>273=<br>273=<br>573=<br>573=<br>6395=<br>6395=<br>6395=<br>105=                                                        | $1 \cdot 45333 + 01$ $35 \cdot 292$ $35 \cdot 490$ $35 \cdot 484$ $35 \cdot 287$ $-3 \cdot 3729$ $-4 \cdot 0238$ $-3 \cdot 3342$ $68 \cdot 160$ $68 \cdot 162$ $68 \cdot 162$ $66 \cdot 161$ $66 \cdot 847$ $46 \cdot 847$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TEH<br>T T T T T T T T T T T T T T T T T T T                                        | IPCC {<br>404<br>162<br>284<br>405<br>284<br>405<br>584<br>405<br>584<br>405<br>584<br>405<br>584<br>405<br>584<br>405<br>584<br>405<br>584<br>405<br>584<br>405<br>584<br>405<br>584<br>405<br>584<br>405<br>584<br>405<br>584<br>405<br>584<br>405<br>584<br>584<br>584<br>584<br>584<br>584<br>584<br>584<br>584<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2623 = 12<br>22.513<br>22.751<br>22.744<br>=10.057<br>=10.032<br>67.827<br>67.831<br>67.832<br>67.829<br>64.520<br>66.523<br>64.522<br>68.827<br>=15.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 206174<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                     | 011 REL<br>5m<br>11*<br>23*<br>35*<br>41*<br>47*<br>53*<br>47*<br>53*<br>65*<br>87*<br>87*<br>87*<br>87*<br>107*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | XCC1 691<br>11.890<br>12.144<br>12.138<br>11.864<br>-15.839<br>-16.000<br>-15.824<br>67.498<br>67.498<br>67.499<br>66.198<br>66.198<br>66.194<br>12.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • TTTTTTTTTTTTTTT                                                               | 21785<br>427<br>185<br>27<br>184<br>27<br>29<br>20<br>27<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48                                                                                                                           | $\begin{array}{c} 0 \\ 1 \\ 11.907 \\ 12.154 \\ 12.154 \\ 12.157 \\ 11.900 \\ -15.932 \\ -15.932 \\ -15.942 \\ -7.503 \\ 67.503 \\ 67.504 \\ 67.500 \\ 63.196 \\ 66.199 \\ 66.199 \\ 66.199 \\ 66.196 \\ 12.031 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 · (CÓNTINUED) |            |
|   | TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TIME=<br>TI | 1.000000 01<br>68.830<br>68.829<br>68.829<br>48.829<br>12.050<br>12.043<br>12.048<br>12.056<br>68.827<br>68.827<br>68.827<br>68.827<br>68.827<br>68.828<br>67.504<br>67.503<br>67.502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5227<br>T [HEU=<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                    | 5.000<br>2=<br>8=<br>120=<br>242=<br>38=<br>420=<br>564=<br>564=<br>564=<br>564=<br>794=<br>924=<br>924=<br>924=<br>924=<br>924=<br>924=<br>924=<br>9                                                                                                                                                       | 08-03 CSGH<br>50+458<br>50+574<br>50+574<br>3+1377<br>3+1377<br>3+1377<br>3+1377<br>3+1377<br>3+1377<br>3+1377<br>3+1377<br>68+493<br>68+493<br>68+494<br>67+175<br>67+175<br>67+175<br>67+175<br>67+502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 2 2 1<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 262<br>30<br>12173<br>23395<br>1273<br>2395<br>1273<br>2395<br>1273<br>2395<br>117<br>2395<br>2395<br>2475<br>2475<br>2475<br>2475<br>2475<br>2475<br>2475<br>247             | 1 + 45333 + 01 $35 + 272$ $35 + 470$ $35 + 287$ $-3 + 3727$ $-4 + 0286$ $-4 + 02286$ $-3 + 3342$ $68 + 160$ $68 + 162$ $68 + 162$ $66 + 161$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$ $847$    | TEX<br>T T T T T T T T T T T T T T T T T T T                                        | 1PC   404<br>  6284<br>  2844<br>  28444<br>  28444<br>  28444<br>  28444<br>  28444<br>  28444<br>  28444<br>  2844                                                                                                                                                  | 2623 • 1.2<br>22.513<br>22.751<br>22.744<br>22.507<br>-10.057<br>+10.407<br>-10.389<br>•10.032<br>67.831<br>67.832<br>67.832<br>67.832<br>67.829<br>44.520<br>66.523<br>44.520<br>66.520<br>68.827<br>•15.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 206174<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                | n1       RE         11       17         123       17         29       36         41       17         43       10         65       10         77       10         89       10         107       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | XCC1 691<br>11.890<br>12.144<br>12.138<br>11.864<br>~15.839<br>-16.000<br>-15.824<br>67.498<br>67.502<br>67.502<br>67.502<br>66.198<br>66.198<br>66.194<br>12.029<br>68.825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • 8.<br>T T T T T T T T T T T T T T T T T T T                                   | 21785+<br>6=<br>12=<br>18=<br>24=<br>24=<br>36=<br>48=<br>60=<br>60=<br>64=<br>78=<br>84=<br>90=<br>102=<br>108=                                                                                                                                                 | $\begin{array}{c} 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 (CONTINUED)   |            |
|   | •••••••••••       T     I=       T     1=       T     13=       T     19=       T     31=       T     37=       T     37=       T     43=       T     45=       T     61=       T     73=       T     65=       T     91=       T     03=       T     15=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00000000<br>6.6.029<br>6.6.029<br>6.6.029<br>12.050<br>12.040<br>12.054<br>68.027<br>68.025<br>68.025<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504 | 5227<br>T [HEU=<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                     | 5.000<br>8=<br>14=<br>226=<br>328=<br>344=<br>526=<br>54=<br>68=<br>74=<br>868=<br>74=<br>868=<br>74=<br>868=<br>74=<br>868=<br>164=<br>116=                                                                                                                                                                | 08 - 03 CSGH<br>50 + 458<br>50 + 574<br>50 + 5574<br>4 + 3575<br>3 + 1377<br>3 + 1448<br>4 + 948<br>4 + 948<br>68 + 493<br>68 + 493<br>68 + 494<br>67 + 175<br>67 + 175<br>77 + 175<br>7 | 1 1 1 T T T T T T T T T T T T T T T T T                                                                | 262<br>9<br>151<br>273<br>395<br>51<br>51<br>55<br>53<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55                                                       | 1, 45333+01<br>35, 292<br>35, 490<br>35, 484<br>35, 287<br>-4, 0386<br>-4, 0238<br>-3, 3342<br>68, 160<br>68, 162<br>68, 161<br>66, 161<br>66, 161<br>66, 847<br>66, 847<br>66, 847<br>66, 848<br>66, 848<br>66, 847<br>66, 848<br>66, 847<br>66, 848<br>66, 847<br>66, 848<br>66, 847<br>66, 848<br>66, 847<br>66, 848<br>66, 847<br>66, 847<br>66, 848<br>66, 847<br>66, 847<br>75, 97<br>75, 97<br>75, 97<br>75, 97<br>75, 97 | TEN<br>T T T T T T T T T T T T T T T T T T T                                        | 1PC   404<br>  620<br>  6200 <br>6200 | 2623 = 1.2<br>22.513<br>22.751<br>22.744<br>22.507<br>-10.057<br>+10.389<br>=10.032<br>67.829<br>67.831<br>67.832<br>47.829<br>46.520<br>46.523<br>46.523<br>46.520<br>46.523<br>46.520<br>68.827<br>-15.901<br>67.503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 206174<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                | n I REL<br>5=<br>11=<br>17=<br>29=<br>35=<br>41=<br>47=<br>59=<br>41=<br>47=<br>59=<br>65=<br>83=<br>89=<br>95=<br>107=<br>107=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XCC1 691<br>11.890<br>12.144<br>12.138<br>12.144<br>12.138<br>4.15.837<br>-16.000<br>-15.824<br>67.502<br>67.502<br>67.502<br>67.502<br>66.198<br>66.198<br>66.198<br>12.029<br>66.198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • 8.<br>T T T T T T T T T T T T T T T T T T T                                   | 2         1785         23         183         24         184         36         24         48         60         72         90         90         108         90         108         108         108         108         108         108         108         108 | $\begin{array}{c} 1 \\ 11.907 \\ 12.154 \\ 12.154 \\ 12.154 \\ 12.147 \\ 11.900 \\ -15.856 \\ -15.982 \\ -15.982 \\ -15.942 \\ 67.500 \\ 67.500 \\ 67.500 \\ 67.500 \\ 60.199 \\ 66.199 \\ 66.199 \\ 66.199 \\ 66.198 \\ 12.031 \\ 66.198 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7 (CÓNTINUED)   |            |
|   | •••••••••••       T [HE=       T     1=       T     13=       T     35=       T     37=       T     37=       T     37=       T     49=       T     55=       T     61=       T     65=       T     97=       T     03=       T     15=       T     15=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.000000 01<br>68.830<br>68.827<br>68.828<br>72.050<br>12.043<br>12.043<br>12.048<br>12.056<br>68.827<br>68.825<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>67.504<br>68.825<br>12.032<br>67.502<br>39.617<br>48.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5227<br>T [HEU=<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T           | 5.000<br>2=<br>14=<br>20=<br>14=<br>26=<br>38=<br>74=<br>56=<br>74=<br>86=<br>74=<br>86=<br>704=<br>86=<br>102=<br>102=                                                                                                                                                                                     | 08 - 03 CSGH<br>50 + 458<br>50 + 577<br>50 + 574<br>4 - 3575<br>3 + 1377<br>3 + 14124<br>68 + 493<br>68 + 493<br>68 + 494<br>68 + 494<br>67 + 175<br>67 + 175<br>68 + 825<br>12 + 937<br>67 + 776<br>67 + 776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776<br>776  | 1 2 2 1<br>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                             | 262<br>30<br>95<br>1217<br>375<br>277<br>395<br>455<br>553<br>495<br>495<br>495<br>495<br>40110<br>995<br>10117<br>1177                                                       | 1.45333.01<br>35.292<br>35.490<br>35.484<br>35.287<br>-3.3729<br>-4.0238<br>-3.3342<br>68.160<br>68.162<br>68.162<br>68.162<br>66.161<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.847<br>66.824<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914<br>15.914  | TEN<br>T T T T T T T T T T T T T T T T T T T                                        | IPCC { 404<br>1620<br>1620<br>2844<br>2844<br>5944<br>5944<br>5944<br>5944<br>706<br>9944<br>8284<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>9946<br>100<br>20<br>90<br>100<br>20<br>90<br>100<br>20<br>100<br>100<br>20<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2623 = 12<br>22.513<br>22.751<br>22.744<br>22.507<br>-10.057<br>-10.389<br>-10.032<br>67.827<br>67.831<br>67.832<br>67.829<br>66.523<br>44.522<br>66.827<br>-15.901<br>67.503<br>80.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 206174<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T      | Poli REL<br>5=<br>11=<br>17=<br>236=<br>36=<br>417=<br>536=<br>477=<br>656=<br>477=<br>83*=<br>95=<br>101=<br>107=<br>107=<br>107=<br>107=<br>107=<br>107=<br>107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | XCC1 691<br>11.890<br>12.144<br>12.138<br>11.864<br>-15.824<br>67.498<br>67.498<br>67.499<br>66.198<br>66.198<br>66.198<br>12.029<br>68.198<br>43.662                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • 8.<br>TTTTTTTTTTTTT<br>TTTTTTTTTTTT<br>TTTTTTTTTT                             | 21785+<br>6=<br>123<br>184=<br>30x<br>30x<br>424=<br>30x<br>48=<br>60=<br>72x<br>84=<br>60=<br>72x<br>108=<br>108=<br>108=<br>108=                                                                                                                               | $\begin{array}{c} 01 \\ 11.907 \\ 12.154 \\ 12.147 \\ 11.900 \\ -15.854 \\ -15.982 \\ -15.943 \\ -15.842 \\ 67.500 \\ 47.500 \\ 47.500 \\ 47.500 \\ 46.196 \\ 46.199 \\ 66.199 \\ 66.196 \\ 12.031 \\ 68.825 \\ 68.825 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 · (CÓNTINUED) |            |
| - | •••••••••••       T I HE=       T       1       T       13=       T       13=       T       13=       T       13=       T       13=       T       13=       T       149=       T       49=       T       61=       T       73=       T       10=       T       10=       T       10=       T       10=       T       10=       T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00000000<br>68.830<br>68.829<br>68.829<br>12.050<br>12.043<br>12.048<br>12.056<br>68.827<br>68.827<br>68.827<br>68.827<br>68.827<br>68.828<br>67.504<br>67.503<br>47.504<br>67.502<br>39.617<br>68.831<br>68.831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5227<br>T [MEU=<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T | 5.000<br>2=<br>14=<br>202<br>324=<br>324=<br>504=<br>524=<br>524=<br>524=<br>524=<br>524=<br>524=<br>524=<br>52                                                                                                                                                                                             | 08-03 CSGH<br>50+458<br>50+574<br>50+574<br>3+1377<br>3+1377<br>3+1377<br>4+9124<br>68+493<br>68+493<br>68+494<br>67+175<br>67+175<br>67+175<br>67+175<br>67+175<br>67+175<br>67+175<br>67+978<br>12-037<br>67+978<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-975<br>34-9755<br>34-9755<br>34-9755<br>34-9755<br>34-9755<br>34-97 | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11                             | 262<br>30<br>1217<br>2395<br>1217<br>2395<br>1217<br>2395<br>1217<br>2395<br>1217<br>203<br>2455<br>2455<br>2455<br>2455<br>2455<br>2455<br>2455<br>245                       | 1 + 45333 - 01 $35 + 272$ $35 + 470$ $35 + 287$ $-3 + 3727$ $-4 + 0386$ $-3 + 3342$ $68 + 160$ $68 + 162$ $66 + 161$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $66 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$ $86 + 847$    | TEN<br>TTTTTTTTTTTTTTTTTTT<br>TTTTTTTTTTTTTTT                                       | 19<br>1 4 0 4 4 9<br>1 4 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2623 = 1.22<br>22.513<br>22.751<br>22.744<br>22.507<br>-10.057<br>+10.407<br>+10.389<br>67.831<br>67.832<br>67.832<br>67.829<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520<br>64.520 | 206174<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T | A 1 REL<br>5 m<br>1 1 m<br>2 3 m<br>2 3 m<br>2 3 m<br>3 1 m<br>2 3 m<br>4 1 m<br>3 5 m<br>4 1 m<br>3 5 m<br>4 1 m<br>5 3 m<br>4 1 m<br>5 3 m<br>4 1 m<br>5 3 m<br>4 1 m<br>5 3 m<br>4 1 m<br>5 m<br>5 m<br>4 1 m<br>5 m<br>5 m<br>4 1 m<br>5 m<br>5 m<br>6 5 m<br>6 5 m<br>6 5 m<br>7 m<br>5 m<br>6 5 m<br>7 m<br>6 5 m<br>7 m<br>6 5 m<br>7 m<br>6 5 m<br>6 5 m<br>7 m<br>6 5 m<br>7 m<br>6 5 m<br>6 5 m<br>7 m<br>7 m<br>7 m<br>6 5 m<br>7 m<br>7 m<br>6 5 m<br>7 m<br>7 m<br>7 m<br>7 m<br>6 5 m<br>7 | X ( C i 69)<br>11.890<br>12.144<br>12.138<br>11.864<br>~15.839<br>-16.000<br>-15.824<br>67.898<br>67.503<br>67.503<br>67.499<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>66.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.198<br>67.1988<br>67.1988<br>67.1988<br>67.1988<br>67.1988<br>67.1988 | . 8.<br>T T T T T T T T T T T T T T T T T T T                                   | - 1785+<br>6=<br>12=<br>24=<br>24=<br>24=<br>24=<br>24=<br>24=<br>24=<br>24=<br>24=<br>2                                                                                                                                                                         | $\begin{array}{c} 1 \\ 11.907 \\ 12.154 \\ 12.147 \\ 11.900 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\ -15.982 \\$                                                                                                                                                                                                                                                | 7 (CONTINUED)   | ·          |

SAMPLE PROBLEM / SNFRED

Ħ

鲁

22\* 622+11

27# .24835

'利

21= 627.25

.

\_\_\_\_\_ EYSTERS INPROVED NUMERICAL DIFFERENCING ANALYZER - - - SINDA - - - UNIVAC-110A FORTRAN-V VERSION

ŋ.

24= 622.11

6

23# 627+25

PACE 2

0-

26= 1249.4

р. 7

١.

٨

4.94

END OF DATA • •DIVIDE CHECK HAS OCCURRED• •

2= .33306

٧P

CONPLITER TIME \* +689 HINUTES The problem identified as 0#2435 has been stored at this point

3= ,99999

.

VP T

|     | T            | 213= | 68.829    | T   | 214=  | 38,808  | T        | 215= | 24,867           | T            | 2160         | 12.943         | T      | 217≠  | 2.9432  |    | 2189 |
|-----|--------------|------|-----------|-----|-------|---------|----------|------|------------------|--------------|--------------|----------------|--------|-------|---------|----|------|
|     | T            | 219= | 68.83C    | Ť   | 220-  | 38,466  | т        | 221= | 24,455           | Ť            | 2220         | 12.483         | Ť      | 223.  | 2.4592  | Ť  | 229  |
|     | T            | 225= | 12.053    | Ť   | 226 - | -7+1641 | T        | 227= | -15,060          | Ť            | 226=         | +20.046        | Ť      | 229=  | -24.458 | ÷  | 2304 |
|     | ` <b>⊺</b> ′ | 231= | 12.050    | T   | 232=  | -5.9646 | Т        | 233= | -15,203          | Ť            | 2348         | +20.120        | ,<br>T | 235=  | -24 863 | ÷  | 2368 |
|     | Ŷ            | 237= | 12.055    | T   | 238=  | -5.5474 | T        | 239= | -15.182          | Ť            | 240#         | =20.103        | ÷      | 291=  | -24.847 | ÷  | 2428 |
|     | - <b>Τ</b>   | 293= | 12.059    | T   | 244=  | 7.0389  | T        | 245= | -15.055          | ÷.           | 246#         | -20-047        | i      | 2478  |         | ÷  | 2488 |
|     | T            | 249= | 68,827    | T   | 250*  | 65,490  | T        | 251= | 65.16B           | ÷            | 2578         | 64.847         | ÷      | 2638  | 44 597  | ÷. | 2548 |
|     | T            | 255= | 68,827    | T   | 256*  | 65.498  | Ť        | 257= | 45.177           | ÷            | 2588         | 64 857         | ÷      | 26.98 | 64 E 18 | -  | 2608 |
|     | 7            | 2610 | 68.828    | Т   | 262=  | 65.499  | Ť        | 263= | 45.178           | ÷            | 2648         | 64.857         | ÷      | 2468  | 44 638  | ÷  | 244  |
|     | Т            | 267= | 68.828    | Ť   | 268=  | 65.991  | Ť        | 269= | 45.169           | ÷            | 270=         | 64.847         | ;      | 2717  | 14 641  | ÷  | 200- |
|     | T            | 273= | 67,504    | t   | 274=  | 64.214  | Ť        | 275= | 63.896           | ÷            | 2764         | 63.579         | ÷      | 277#  | 43 544  | ÷  | 2788 |
|     | T .          | 279= | 67.504    | ۳.  | 280-  | 69.222  | T        | 281  | 63.905           | ÷ -          | 282=         | 63.589         | ÷      | 283=  | 43.275  | ÷  | 284= |
|     | T            | 285= | 67.509    | 1   | 286=  | 64.221  | T        | 287= | 63.904           | ÷            | 286*         | 63.549         | ÷      | 2897  | 61 974  | ÷  | 2900 |
|     | 1            | 271= | 67.504    | т   | 292=  | 64.213  | T        | 293* | 63.895           | ÷.           | 2940         | 43.579         | ÷      | 2954  | 43.243  | ÷  | 2964 |
|     | T            | 297- | 68,825    | T   | 298=  | 68.825  | T        | 299= | 68.876           | ÷            | 380.         | 68.827         | ÷      | 3010  | 12 011  | ÷  | 3024 |
|     | T            | 303# | 12.033    | T   | 304=  | 12.038  | Ť        | 3u5≈ | +15.913          | ÷.           | 306#         | -15.901        | ÷      | 307#  | AC 8 20 | ÷. | 104- |
|     | T            | 309= | 67,502    | Т   | 310=  | 67.502  | ÷        | 311= | 67.502           | ÷            | 31/8         | 47 503         | -      | 3138  | 44 404  |    | 1.00 |
|     | T -          | 315= | 39.617    | T   | 316=  | 67.97B  | Ť        | 3170 | 39.621           | ÷            | 400=         | -459.49        |        | 212-  | 90.110  | i  | 211- |
|     |              |      |           |     |       | •       | =        | •••  |                  | •            |              | - (2140)       |        |       |         |    |      |
|     | W.           | 1=   | 2500+0    | R   | 2=    | 2500.0  | *        | 3.0  | 812.64           |              | <i>4</i> 1 – | 416.18         |        |       |         |    |      |
|     | 1            | 6=   | 207.03    | 11  | 7=    | 209.29  |          | 6.   | 204.97           | 11<br>12     | 78           | 414.26         |        | 10    | 504030  |    |      |
|     | *            | 11-  | 1667.3    | 1   | 12=   | 833.66  |          | 13.  | 417-51           |              | 1.4.46       | 416.15         |        | 10-   | 037.07  |    |      |
|     |              | 16=  | 416+15    | *   | 17=   | 833.67  |          | 18   | 1447.3           |              | 100          | 617.44         |        | 12-   | 41/421  |    |      |
| • • | 17           | 21=  | 209.39    | ť   | 22=   | 207-113 | w        | 23.8 | 209.30           | н<br>ц       | 200          | 704.07         | - 7    | 20-   | 416442  |    |      |
| _   | 19           | 26=  | 832.64    | W   | 27=   | 1667.3  |          | 28-  | 833.44           | ••<br>••     |              | 417.63         |        |       | 410463  |    |      |
| 5   | 10           | 31=  | 417.52    | W   | 37=   | 416.15  | 1        | 33+  | 811.47           |              | 274          | 111136         | 11     | 30*   | 916+15  |    |      |
| •   | ŧ.           | 36=  | -24719-n1 | w   | 37=   | 2500.0  |          | 18-  | 812.44           | 11           | 30-          | 100183         | r,     | 32.   | 2500.0  |    |      |
|     |              |      |           |     |       |         |          | 304  | 32 104           | n            | 344          | 100112         |        |       |         |    |      |
|     | 0p           | 1-   | 209.29    | 0p  | 2=    | 209.30  | Do       | 3 =  | 8111.7           | Da           | 41 -         | 17.728         | 00     | 5.00  |         |    |      |
| -   | DP -         | 6=   | 343.25    | 0P  | 7=    | 343.05  | 0 P      | A    | 143.05           | 00           |              | 12 0 1 1       | 00     |       | 341420  |    |      |
|     | DP           | 11=  | 412.08    | DP  | 129   | 92.879  | Ω.0      | 13.  | 3044.4           | 00           | 7-           | 161744<br>100D | 01     | 10-   | 15-92/  |    |      |
|     | DP           | 16=  | 3984.8    | DP  | 17=   | 42.884  | 0F       | 18-  | 5. 5.E           | UP<br>OD     | 144          | 3704+0         | ٥P     | 15=   | 3484*8  |    |      |
|     | DP           | 21=  | 337.79    | DP  | 72=   | 337.79  | no       | 23-  | 317.51           | 00           | 174          | 12934/         | 90     | 20-   | 12.931  |    |      |
|     | DP           | 26=  | 126.79    | De  | 27    | 51 616  | 00<br>00 | 28-  | 8- 003           | 01           | 29-          | 221421         | 014    | 254   | 13.210  |    |      |
|     | 0P           | 31*  | 1980.6    | De  | 12=   | 3980.4  | 0.0      | 33-  | 42.003           | 00           | 27           | 3700.0         | 90     | 30=   | 3460+0  |    |      |
| ·-  | DP "         | 16#  | 11248.    | nø. | 37=   | 210.07  | 0P<br>De | 33+  | 7.7.56           | 90           | 34=          | 412+15         | 0P     | 350   | 2100.7  |    |      |
|     |              |      | 111301    | ΨF  | 3,    | 210+07  | 01       | 205  | 13/0/5           | 0P           | 34=          | 0124.2         |        |       |         |    |      |
|     | P            | ]=   | 11708.    | ρ   | 2=    | 1.499.  | p        | ٦-   | 11289.           | -            | <i>n</i> –   | 3176 E         |        |       |         |    |      |
|     | è.           | 6.   | 3162.8    | P   | 7.    | 2019 4  | г<br>0   | 44   | +1207+<br>7004 0 | Ę.           | 4.           | 31/5.5         | P      | 58    | 2832+5  |    |      |
|     | P            | 110  | 10834.    | P   | 178   | 491914  |          |      | -0074U<br>4107 0 | , r          | 40           | 100//+         | Р      | 102   | 6892.3  |    |      |
|     | P            | 16=  | 2775.6    | P   | 17=   | 2817.8  | г<br>6   | 19-  | 2210 0           | <u>۲</u>     | 140          | 2748.3         | P      | 15*   | 2441.0  |    |      |
|     | ÷            |      | 4703.5    |     |       | 2722.9  | r 0      |      | 210.07           | - <b>1</b> - | - 198        | 0/70.4         | . P    | 20*   | 2745.8  |    | -    |
|     | •            | 2    |           | •   |       | 212291  | <b>-</b> | 238  | 410+07           | P            | #4 <b>=</b>  | •00000         |        |       |         |    |      |

CAMPLE PROBLEM / SNFRWO

SYSTERS INPROVED NUMERICAL DIFFERENCING AMALYZER . - - SINDA . - - UNIVAC-ILOR FORTHAN-V VERSION PAGE

E

12+153 11.703 -15,856 -15.971 -15.952 -15.843 67.500 67.564 67.504 67.501 66.197 46.200 66.199 66.196 12.032 68.826 66.198

3

TABLE 7

(CONT IN UED)

.

\_\_\_\_\_

1

. . . . . . . . .

ų

- -----

÷.

;

| Augusta Augusta Augusta Distance Business Distance | Unta) Biogeneration de Seconderation () Bioman van bio s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • •••··• •          | •1 12•2•4 12•                                                                                                                    | ne waris spraware rig    | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| annes accurs a the a class of presents of          | , ∎ Andreas Brown a state a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • • <b>•</b>        | 4 12 T 12                                                                                                                        | i Brenzeller a           | Participation of the second se |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                                                                                                                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| . •                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | •                                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                                                                                                                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| • •                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                                                                                                                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                                                                                                                  |                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| · •                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                                                                                                                  |                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SHFRAD PLOTS                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                                                                                                                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                    | PLOT PROGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                                                                                                                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TITLE - SINFLO                                     | SAMPLE PROBLEM / SNFR#D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                                                                                                                  | · _                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                    | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                                                                                                                  | • ·                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •0                                                 | 000 HRS. TO 3.000 HRS #11H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.000 HRS. PER GRID |                                                                                                                                  |                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                                                                                                                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                                                                                                                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                    | THE HISTORY TAPE LABEL IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                                                                                                                                  |                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SAMPI E PROBL                                      | LEM / SNFRHD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                                                                                                                  | -                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                                                                                                                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                    | 534 1958 1860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                   |                                                                                                                                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| THE TTEH COUNTS ARE -                              | ЛАА З90Р 24PR 2VP 08<br>067 39FR 0FT 0TT 2385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B UCC<br>T          |                                                                                                                                  | • <u>.</u>               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| THE ITEN COUNTS ARE -                              | 9AA 390P 24PR 2VP 08<br>06t 39FR 0FT 0TT 2385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HB UCC<br>T         |                                                                                                                                  | l îta                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| THE TTEH COUNTS ARE -                              | 9AA 390P 24PR 2VP 08<br>087 39FR 0FT 0TT 2385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B UCC<br>T          |                                                                                                                                  | PLOT I                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| THE ITEH COUNTS ARE -                              | ЛАА 390Р 24PR 2VP 08<br>06т 39FR OFT 0TT 2385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | θ υςς<br>T          |                                                                                                                                  | PLOT RUN                 | <del>.</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| THE TTEH COUNTS ARE -                              | 544 390P 24PR 2VP 08<br>097 39FR OFT 07T 2385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B UCC<br>IT         | ·<br>·                                                                                                                           | PLOT RUN PR              | · TABL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ТнЕ <u>1</u> ТЕН COUNTS ARE -                      | ЛАА 390P 24PR 2VP 08<br>06т 39FR OFT 0TT 2385<br>1 17EH - <b>965</b> т ат 320<br>2 1TEH 1045т ат 328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HB UCC<br>IT        | ·<br>·                                                                                                                           | PLOT RUN PRINT           | TABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ТнЕ <u>1</u> ТЕН COUNTS ARE -                      | JAA         390P         24PR         2VP         0B           097         39FR         0FT         0TT         2385           1         17EH         -96ST         AT         320           2         1TEH         104ST         AT         326           3         1TEH         114ST         AT         336           4         1TEH         115ST         AT         337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B VCC               | ·<br>·                                                                                                                           | PLOT RUN PRINTED         | TABLE 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| THE ITEH COUNTS ARE -                              | JAA       390P       24PR       2VP       0B         06T       39FR       0FT       0TT       2385         1       1TEH       -96ST       AT       320         2       ITEH       104ST       AT       326         3       1TEH       114ST       AT       336         4       ITEH       115ST       AT       337         5       ITEH       -117ST       AT       339         4       ITEH       200ST       AT       342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HB UCC<br>IT        | <b>N</b> Q                                                                                                                       | PLOT RUN PRINTED OUT     | TABLE 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                    | JAA       390P       24PR       2VP       0B         067       39FR       0FT       0TT       2385         1       1TEH       -76ST       AT       320         2       ITEH       106ST       AT       326         3       JTEH       114ST       AT       336         4       ITEH       115ST       AT       337         5       ITEH       117ST       AT       339         6       ITEH       205T       AT       342         7       ITEH       196ST       AT       340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 98 υςς<br>T<br>     |                                                                                                                                  | PLOT RUN PRINTED OUT PU  | TABLE 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                    | JAA       390P       24PR       2VP       0B         067       39FR       0FT       0TT       2385         1       1TEH       -96ST       AT       320         2       ITEH       106ST       AT       328         3       1TEH       114ST       AT       336         4       ITEH       115ST       AT       337         5       ITEH       106ST       AT       342         7       ITEH       200ST       AT       342         7       ITEH       196ST       AT       340         8       ITEH       199ST       AT       341         9       ITEH       -1FR       AT       67                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ΗΒ υςς<br>T<br>     |                                                                                                                                  | PLOT RUN PRINTED OUT PUT | TABLE 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                    | JAA       390P       24PR       2VP       08         06T       39FR       0FT       0TT       2385         1       1YEH       -96ST       AT       320         2       1TEH       104ST       AT       326         3       1TEH       114ST       AT       336         4       1TEH       115ST       AT       337         5       1TEH       115ST       AT       339         6       1TEH       200ST       AT       342         7       1TEH       196ST       AT       340         8       1TEH       199ST       AT       341         9       1TEH       -1FR       AT       60         11       1TEH       2FR       AT       60         11       1TEH       36FR       AT       102                                                                                                                                                                                                                                                                                                                                                                 | Ηθ υςς<br>T         | DERIGENNAL<br>MARKENNAL                                                                                                          | PLOT RUN PRINTED OUT PUT | TABLE 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                    | JAA       390P       24PR       2VP       0B         067       39FR       0FT       0TT       2385         1       1TEH       -98ST       AT       320         2       ITEH       106ST       AT       326         3       1TEH       114ST       AT       336         4       ITEH       115ST       AT       337         5       ITEH       100ST       AT       342         7       ITEH       200ST       AT       342         7       ITEH       198ST       AT       340         8       ITEH       198ST       AT       341         9       ITEH       2FR       AT       60         11       ITEH       2FR       AT       60         11       ITEH       2FR       AT       60         11       ITEH       3FR       AT       40         13       ITEH       3FR       AT       60         14       ITEH       3FR       AT       60         15       ITEH       3FR       AT       60         16       ITEH       3FR       AT       60 </td <td>ΗΒ υςC<br/>T<br/></td> <td>DIRATEINAL P</td> <td>PLOT RUN PRINTED OUT PUT</td> <td>TABLE 8</td> | ΗΒ υςC<br>T<br>     | DIRATEINAL P                                                                                                                     | PLOT RUN PRINTED OUT PUT | TABLE 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                    | JAA         390P         24PR         2VP         08           06T         39FR         0FT         0TT         2385           1         1TEH         04ST         AT         320           2         1TEH         104ST         AT         328           3         1TEH         114ST         AT         336           4         1TEH         115ST         AT         337           5         1TEH         115ST         AT         337           6         1TEH         200ST         AT         340           8         1TEH         196ST         AT         340           9         1TEH         196ST         AT         340           10         1TEH         196ST         AT         340           9         1TEH         196ST         AT         340           10         1TEH         2FR         AT         68           11         1TEH         3FR         AT         69           11         1TEH         3FR         AT         69           11         1TEH         3FR         AT         69           12         1TEH         3F      | HB υςς<br>T         | DELICENTAL PAG                                                                                                                   | PLOT RUN PRINTED OUT PUT | TABLE 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                    | JAA       J9DP       24PR       2VP       DB         067       J9FR       DFT       DTT       2J35         1       ITEH       OFT       DTT       2J35         2       ITEH       1065T       AT       J20         3       JTEH       1145T       AT       J26         3       JTEH       1145T       AT       J36         4       ITEH       115ST       AT       J37         5       ITEH       117ST       AT       J42         7       ITEH       195ST       AT       J42         7       ITEH       199ST       AT       J40         8       ITEH       199ST       AT       J40         8       ITEH       199ST       AT       J40         9       ITEH       -1FR       AT       60         11       ITEH       J6R       AT       L02         12       ITEH       3FR       AT       40         13       ITEH       JFR       AT       47         14       ITEH       JFR       AT       49         14       ITEH       JFR       AT       41                                                                                                    | 98 υςς<br>T         | DEBUGINAL PAGE                                                                                                                   | PLOT RUN PRINTED OUT PUT | TABLE 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                    | JAA       390P       24PR       2VP       0B         067       39FR       0FT       0TT       2385         1       17EH       04ST       AT       320         2       17EH       104ST       AT       328         3       17EH       114ST       AT       336         4       17EH       115ST       AT       337         5       17EH       115ST       AT       339         6       17EH       200ST       AT       340         8       17EH       196ST       AT       340         8       17EH       196ST       AT       340         9       17EH       196ST       AT       340         10       17EH       196ST       AT       340         11       17EH       36FR       AT       60         11       17EH       36FR       AT       102         12       17EH       36FR       AT       40         13       17EH       36FR       AT       40         14       17EH       36FR       AT       49         14       17EH       37FR       AT       49                                                                                              | 48 υςC<br>T         | DELICENTAL PACE IS<br>DELICENTAL PACE IS<br>DELICENTAL PACE IS<br>DELICENTAL PACE IS<br>DELICENTAL PACE IS<br>DELICENTAL PACE IS | PLOT RUN PRINTED OUT PUT | TABLE 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                    | JAA       J90P       24PR       2VP       0B         067       J9FR       0FT       0TT       2J35         1       ITEH       104ST       AT       320         2       ITEH       104ST       AT       326         3       ITEH       114ST       AT       336         4       ITEH       114ST       AT       336         4       ITEH       115ST       AT       337         5       ITEH       115ST       AT       337         6       ITEH       20ST       AT       342         7       ITEH       19ST       AT       340         8       ITEH       199ST       AT       341         9       ITEH       -1FR       AT       60         10       ITEH       2FR       AT       60         11       ITEH       3FR       AT       40         13       ITEH       3FR       AT       40         14       ITEH       3FR       AT       40         13       ITEH       3FR       AT       40         14       ITEH       2FR       AT       40     <                                                                                                   | HB υςς<br>T         | DERIGENVALL PAGE IS<br>DERIGENVALL PAGE IS<br>DERIGENVALL PAGE IS                                                                | PLOT RUN PRINTED OUT PUT | TABLE 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

.

٠

والمراجع المراجع المراجع المراجع مستحد المراجع والمتحافظ والمتكر والمشرو المحموطين والمراجع والمراجع والمراجع المراجع

SNERRA PLOTS

.

-

\_

# POSITIONING AND READING THE HISTORY TAPE

· · · · ·

|    |                  |                    |          | LOADED  | +01000           | HRS          | LOOKING FOR       | 3.00000  | wRe .                  |           |
|----|------------------|--------------------|----------|---------|------------------|--------------|-------------------|----------|------------------------|-----------|
|    | 76.857           | 65,463             | 70+000   | 66.107  | 66+515           | 77.230       | 80.000            | 71.000   | 2499.995               | 440 90ke  |
|    | .025             | 2499,988           | 2499.713 | +2>0    | 11198.566        | 10970.183    | 10763+199         |          | 9976.644               | A302 739  |
| •  | 23n2+722         | 209.338            | 1.000    | 1,000   |                  |              |                   |          |                        | 23049737  |
|    |                  |                    |          | LOADLD  | •02000           | HRS.         | OGELNG FOR        | 3-00-00  | upe                    |           |
|    | 764297           | 60,030             | 70.000   | 60.903  | 61.522           | 76'261       | 80.000            | 47.440   |                        |           |
|    | +025             | 2499,967           | 2499.713 | • Z>0   | 11179.351        | 10972.363    | 10792.601         |          | 24778770<br>90/14 /10u | 7474,767  |
|    | 2303.390         | 209.398            | 1.000    | 1.000   | ••••             | 10           | 10                | +000     | **00.074               | 7303,408  |
|    |                  |                    |          | LOADED  | +0300n           | <b>UR5</b> . | DARTNG FAR        | 3.00.00  |                        |           |
| -  | 74.953           | 54.615             | 70.000   | 55.791  | 56.368           | 74 880       | 80.000            | 41 470   | HK5.                   |           |
|    | +025             | 2499.969           | 2499.719 | 2>0     | 11144.838        | 10935 638    | 10778.461         | 034370   | 24774747               | 2499.969  |
|    | 2305.295         | 209.556            | 1.000    | 1.000   |                  | 10.001000    | 101201401         | +000     | 44044041               | 2302.313  |
|    |                  |                    |          | LOADED  | .04000           | HR5. (       | OOKTNG FOR        | 3.00.00  |                        |           |
|    | 73.529           | 50,123             | 70.000   | 51.045  | 51.553           | 73.452       |                   | 68.711   | 1424                   |           |
|    | .023             | 2499.968           | 2999.717 | .247    | 11131+114        | 10921 892    | 10712.673         | 301121   | 84718777<br>8476 81 1  | 2497.768  |
|    | 2307.140         | 209.727            | 1.000    | 1.000   |                  | 10.0110.1    | 10,141013         | 1000     | 78/31/52               | 230/e15v  |
|    |                  |                    |          | LOADED  | +05000           | NBS.         | OOF ING FOD       | 3.00.100 |                        |           |
|    | 72+189           | 45,923             | 70.000   | 46.715  | 47.211           | 72'11        | 80.000            | 54 197   | HKS.                   |           |
|    | +D25             | 2499.970           | 2499.719 | .250    | 11119-098        | 10909 845    | - 300 E0C         | 110      | 2400.000               | 2447.470  |
|    | 2316+612         | 209.864            | 1.000    | 1.0.0   |                  | 10.011040    | 101001010         | .000     | AH07#117               | 7308,632  |
|    |                  |                    |          | 104060  | *06000           |              | Deuthe con        |          | '                      |           |
|    | 70.979           | 42.214             | 70.000   | 47.917  | 41.160           | 7.01.        | LOOKING FOR       | 3.00000  | HR5.                   |           |
|    | +025             | 2499.973           | 2499.720 | 350     | 1383-0           |              | 80.000            | 50+470   | 2499.995               | 2499.973  |
|    | 2309.766         | 209.972            | 1.000    | +2+0    | 11117+110        | 10404 905    | 10440+001         | •UUQ     | 9853 <b>.</b> 098      | 2309,786  |
|    |                  |                    | 1.000    |         | 01000            |              |                   |          |                        |           |
| Ξ. | A 9 . 904        | 36.972             | 49.909   | 19 600  | 10/000<br>10 001 | HK2+ L       | DOKING FOR        | 3.00-00  | H85.                   |           |
| œ  | 025              | 2499.973           | 2499.719 | 376373  | 11108 600        | 64 846       | 80.000            | 47.022   | 2484*869               | 2499.973  |
|    | 23 n 78n         | 210-057            | 1.000    | +210    | 11100+200        | 10040*410    | [069].179         | •vüQ     | 9044.191               | 2310.001  |
|    |                  |                    | 1.004    | 14000   |                  | - 4          |                   |          |                        |           |
|    | 48.962           | 36.110             | 49.999   | 34 474  | 11 025           | 1:85+ L      | OOKING FOR        | 3.00000  | HRS.                   |           |
|    | .025             | 2499.970           | 2448.711 | 51 3.0  | 37+042           | au, vij      | 80.000            | 43,783   | 2499.997               | 2499.970  |
|    | 23.2.337         | 210.201            | .000     | 518237  | 110776///        | 10/13+34/    | 10350.378         | .ປປ6     | 9542+984               | 2322.517  |
|    |                  |                    |          | 11000   |                  |              |                   |          |                        |           |
|    | 48.231           | 11 690             | 49.610   | LUADED  | +04000           | HRS. L       | OOKING FOR        | 3.00000  | HRS.                   |           |
|    | .025             | 2040 010           | 076337   | 34+721  | 34+9/2           | 08,145       | 80.000            | 41.319   | 2499.996               | 2499,969  |
|    | 19, 3, 335       | 210.204            | 23/3:304 | 120.045 | 10/67+003        | 10300.680    | 9876.989          | • 000    | 9112.537               | 2372.023  |
|    | 2111122          | 210.270            | • 7 4 7  | 1.0.0   |                  |              |                   |          |                        |           |
|    |                  |                    | 17       | LOADED  | .10000           | HRS L        | OOKING FOR        | 3,00000  | HRS.                   |           |
|    | 010122<br>010122 | 21022 254          | 0/11/0   | 33,432  | 33.621           | 67 694       | 80.UOO            | 39.475   | 2499.996               | 2473.356  |
|    | 201031           | 2413,356           | 2205+130 | 216.201 | 10293+401        | 9786,877     | 9228 <b>.</b> 994 | • 000    | 8522.790               | 2457 562  |
|    | 84434525         | 212-012            | • 9 1 3  | * 898   |                  |              |                   |          |                        |           |
|    | .7               | 10 .00             |          | LOADED  | +11000           | HR5, L       | OOKING FOR        | 3.00008  | HRS.                   |           |
|    | 674203           | 674273<br>Anad 100 | 07.207   | J2,5d5  | 33+054           | 47.259       | 80.000            | 38,459   | 2499.997               | 2439.658  |
|    | 00.130           | £437.090           | 51390315 | 313,457 | 9644.966         | 9097,716     | 8450.561          | •U00     | 7812.693               | 2587.050  |
|    | 2249.330         | 212.504            | •872     | .976    |                  |              |                   |          |                        |           |
|    |                  |                    |          | LOADED  | 12000            | HRS. L       | OOKING FOR        | 3.00000  | HRS.                   |           |
|    | 84+101           | 2/ .40/            | 61.893   | 32.027  | 32+924           | 67 09        | 80.000            | 37,749   | 2449.997               | 2404.329  |
|    | 95.665           | 2404.329           | 1994.456 | 413.051 | 8520.132         | 7861.721     | 7598.742          | .080     | 7034.300               | 2757.378  |
|    | 2162+941         | 211+057            | *828     | * 9 0 2 |                  | -            | -                 |          |                        |           |
|    |                  |                    | _        | LOADED  | •13000           | HRS. L       | OOKING FOR        | 3.00000  | HNS.                   |           |
|    | 67+150           | Z5+607             | 40.449   | 31.701  | 33+134           | 67,153       | 80.000            | 37.031   | 2494.998               | 2371.628  |
|    | 128-308          | 23/1.628           | 1865.830 | 515.607 | 8000.927         | 7488,114     | 6929.897          | UUU      | 6426.573               | 1015.394  |
|    | 2151+206         | 212.440            | •783     | .949    |                  | •            | -                 |          |                        | ********* |
|    |                  |                    | _        | LONDED  | ∎1409U           | HKS, L       | OOKING FOR        | 3.00440  | HRS.                   |           |
|    | 67+117           | 23.866             | 59.802   | 31.742  | 33.599           | 67.115       | 80.000            | 37.020   | 2499 999               | 2349.740  |
|    | 155.254          | 2344,740           | 1738.014 | 619.772 | 7327.948         | 6821.377     | 6275.360          | - uuu    | 5831 04                | 1350.738  |
|    |                  |                    |          |         |                  |              |                   | ,        |                        |           |

F

TABLE 8 (CONTINUED)

. .

and the second 
ORIGINAL' PAGE IS OF POOR QUALITY

.

Ξ

-

.

6 - steel 8.... D-8 1 Barra Barra - 1 .

ŝ

and the second 
-

-

- ----

| SHFR#D PLOTS               |                                |                           |                             |                     |                     |                     |                |                                        |                                        |  |
|----------------------------|--------------------------------|---------------------------|-----------------------------|---------------------|---------------------|---------------------|----------------|----------------------------------------|----------------------------------------|--|
| 48+825<br>+025<br>2310+788 | -15.901<br>2499,966<br>210,075 | 66.198<br>832.643<br>.333 | 39,617<br>1647,323<br>1+040 | 39+619<br>11707+790 | 60,625<br>11498,504 | 80+005<br> 1289+205 | 43.062<br>+uQQ | 2499 <b>.</b> 997<br>3175 <b>.</b> 534 | 2499 <b>.966</b><br>10877 <b>.</b> 125 |  |

1

. مور

25 DATA VALUES HAVE BEEN STORED FOR EACH OF 101 TIME POINTS 2500 Data values have been stoned - -- -- -

. . . . . . .

1

.911

ORIGINAL PAGE IS OF POOR QUALTY

TABLE ω (CONTINUED)

the state process of the second process

Ξ.

SNERNA PLOTS

- - - -

.

|     |     | ITEN TYPE | AVG PLOTTING SYMBOL AND DESCRIPTION   |        | <b>X - H I N</b> | ¥-MAX    | STATUS |
|-----|-----|-----------|---------------------------------------|--------|------------------|----------|--------|
|     | 1   | -98 ST    | 1 RADIATOR INLET TEMPERATURE          |        | ⇔l.59U+01        | 7.686.01 | 320    |
|     | 2   | 106 ST    | 2 HAIN RADIATOR OUTLET TEMPERATURE    | DEGF   | Ŭ∎Ŭtu            | 0.000    | 328    |
|     | Э   | 114 ° ST  | S PRIME TUBE OUTLET TEMPERATURE       | DEGF   | 0.000            | 6.080    | 336    |
| - • | 4   | 115 51    | 9 MIXED RADIATOR OUTLET TEMPERATURE   | DEGF   | 0.000            | 0.000    | 337    |
|     | 5   | -117 ST   | 1 RADIATOR CONTROLLED DUTLET. HE INLE | - DEGF | 3.292*01         | 8.000+01 | 339    |
|     | 6   | 200 ST    | 2 HA OUTLET ON RADIATOR SIDE          | DEGF   | 0.000            | 0.000    | 342    |
|     | 7   | 198 ST    | 3 HX INLET ON WATER SLOE              | UEGF   | 0.000            | 0.000    | 340    |
|     | 9   | 199 ST    | 4 HA OUTLET ON WATER SIDE             | DEGF   | 0.000            | 0.000    | 341    |
|     | 9   | -1 FR     | 1 TOTAL PUMP FLOW RATE LB/HR          |        | 2.307-02         | 2.500+03 | 67     |
| -   | 10  | 2 FR      | 2 TOTAL RADIATOR FLOM RATE LU/HR      |        | () « Qu i)       | 0.000    | 68     |
|     | ÷ 1 | 36 FR     | 3 BYPASS FLOW RATE LO/HR              |        | Ū. <b>↓</b> Ū.µŪ | 0.000    | 102    |
|     | 12  | -2 FR     | 2 TOTAL RADIATOR FLOW RATE LB/HR      |        | 2+471-01         | 2.500+03 | 6 13   |
|     | 13  | 3 FR      | 2 MAIN HADIATOR FLON RATE LB/HR       |        | 0,000            | 0.000    | 69     |
|     | 14  | II FR     | 3 PRIME TUBE FLOW RATE LB/HR          |        | 0.000            | 0.000    | 77     |
|     | 15  | -1 98     | 1 PUMP OUTLET PRESSURE PSG            |        | ប្រធាណ           | 1.171+84 | 41     |
|     | 16  | 2 PK      | 2 VALVE I INLET PRESSURE PSF          |        | មិតមិតរដ         | 4.000    | 42     |
|     | 17  | 3 PR      | 3 VALVE 2 INLET PRESSURE PSF          |        | 0                | 6.060    | 43     |
|     | 18  | 24 PR     | 9 PUMP INLET PRESSURE PSF             |        | 0.000            | 0.000    | 64     |
|     | 19  | #4 PR     | I MAIN NADIATOR INLET PRESSURE PSF    |        | 2+083+02         | 1.068+04 | 44     |
|     | 20  | 9 PR      | 2 PHIME TUBE INLET PRESSURE PSF       |        | U.QUD            | 0.000    | 49     |
|     | 21  | 18 PR     | 3 PRESSURE AT RADIATOR OUTLET PSF     |        | 4.004            | 0.000    | 58     |
|     | 22  | 23 PR     | 4 PRESSURE AT HA INLET PSF            |        | 1.000            | 0.000    | 63     |
|     | 23  | -2 VP     | I VALVE 2 POSITION                    |        | 3.331-01         | 1.000+00 | 65     |
|     | 24  | 3 VP      | 2 VALVE 3 POSITION                    |        | 0.000            | 0.000    | 66     |

•

1 . . . . . . .

.

120

\_\_\_\_ --**. ..**....

.....

•

TABLE 8 (CONTINUED)

t 1 di j transformatik

•

and the set of the state of the set of the s

<u>+</u>--

SNFRWE PLOTS

6 - 1 - 1 - 1

- -

STARTING PLOTS

.

g i i

Barren ann a'

TABLE

œ

(CONTINUED)

:

-

nter de la sector No sector de la sector

|   | PLOTTING   | 1   | RADIATOR INLET TEMPERATURE           | bEr |
|---|------------|-----|--------------------------------------|-----|
|   | PLOTTING   | 2   | HAIN RADIATOR DUTLET TEMPERATURE     | DE/ |
|   | PLOTYING   | ž   | PRIME TUNE OUTLET TEMPERATURE        | 0E  |
|   | DIGTTING   | 4   | HITEN RANTATOR OUTLET TEMPERATURE    | 050 |
|   | FLUITING   |     | HALL HADINION GUICET ICH CHAIGHE     | 05  |
|   | PLOTTING   |     | KADIATOK CONTROLLED DOTLETT HA THEFT | 024 |
|   | PLOTTING   | 2   | HE DUTLET ON RADIATOR SIDE           | UE  |
|   | PLOTTING   | 3   | HX INLET ON MATER SIDE               | DE( |
|   | PLOTTING   | 4   | HX DUTLET ON WATER SIDE              | DE  |
|   | PLOTTING   | 1   | TOTAL PURP FLOW RATE LB/HR           |     |
|   | " PLOTTING | · 2 | TOTAL RAWLATOR FLOW RATE LB/HR       |     |
|   | PLOTTING   | 3   | BYPASS FLOW RATE L8/HR               |     |
|   | PLOTTING   | · 1 | TOTAL RADIATOR FLOW RATE LO/NR       |     |
|   | PLOTTING   | 2   | HAIN RADIATOR FLOW RATE LO/HR        |     |
|   | PLOTTING   | 3   | PRIME TUDE FLOW RATE LO/MR           |     |
|   | PLOTTING   | L   | PUHP OUTLET PRESSURE PS              |     |
|   | PLOTTING   | 2   | VALVE 1 INLET PRESSURE PSF           |     |
|   | FLOTTING   | 3   | VALVE 2 INLET PRESSURE PSF           |     |
| • | PLOTTING   | 4   | PUHP INLET PRESSURE PSF              |     |
|   | PLOTTING   | 1   | HAIN RADIATOR INLET PRESSURE PSF     |     |
|   | PLOTTING   | 2   | PRIME TUDE INLET PRESSURE •• PSF     |     |
| • | PLOTTING   | 3   | PRESSURE AT RADIATOR OUTLET PSF      |     |
|   | PLOTTING   | - 4 | PRESSURE AT HX INLET PSF             |     |
|   | PLOTTING   | 1   | VALVI 2 POSITION                     |     |
| 2 | PLOTTING   | 2   | VALVE 3 POSITION                     |     |
|   |            |     |                                      |     |

| <br>COMPUTER | TIME = | ·14435 | HINUTES |
|--------------|--------|--------|---------|
|              |        | •      |         |
|              |        |        |         |

OPHD +

#### 9MSGIN END D#243E

a contract of the second se

• · · • ·

#### GORKPT PRINTS

**\_**\_\_\_.

# FIGURE 11





14.16

# FIGURE 12

1

Town of

-

I

TEMPERATURE

# SYSTEM TEMPERATURES PLOTS

1 3



TIME - (HOURS?



1

Contraction of the local distance of the loc

FIGURE 13

SYSTEM FLOW RATE PLOTS

TIME - (HOURS)

FLOW RATE



FIGURE 14

RADIATOR FLOW RATE PLOTS

DRIGINAL PAGE IS DE POOR QUALITY

l.

I

I

T

1

Ω

Ω

Π

Ω

Π



FIGURE 15 SYSTEM PRESSURE PLOTS T

Participal de la constante

TIME - (HOURS)

5 3673 10 16 26 3 23 10 26 30 40 10

# FIGURE 16

I

PRESSURE

and the second s

# RADIATOR PRESSURE PLOTS



TIME - (HOURS)

ORIGINAL PAGE IS



# FIGURE 17 VALVE POSITION PLOTS

Contractor of

128

TALLAL STORE

# 7.0 REFERENCES

80

6

.

ļ

1

T

# Echert, E.R.G., and Drake, R. M.; <u>Heat and Mass Transfer</u>, McGraw Hill, New York, 1959.

- Gaddis, J. L., "Explicit Finite Difference Heat Transfer Program -LVVM25", LTV Report No. 00.823, 29 July 1966.
- 3. Hardi, P. D., Howell, H. R., Williams, J. L.; "Lunar Module Ascent Stage Thermal Simulator", LTV Report No. 350.3, 11 August 1957.
- 4. Oren, J. A., Phillips, M. A. and Williams, D. R., "Modular Thermal Analysis Routine", LTV Report 00.1524, Vol. I, 27 March 1972.
- Oren, J. A., Williams, D. R., "Thermal and Flow Analysis Subroutines for the SINDA-VERSION 9 Computer Routine", VSD Report 00.1582, 24 September 1973.
- 6. Sellers, J. R., Tribus, M., and Klein, S. J., "Heat Transfer to Laminar Flow in A Round Tube or Flat Conduit - The Graetz Problem Extended", Transaction of ASME, Vol. 78, 1956, pp 441-448
- Smith, J. P., "SINDA Users Manual", TRW Report 14690-H001-R0-00,
   April 1971.
- Sparrow, E. M., and Cess, R. D., <u>Radiation Heat Transfer</u>, Brooks/Cole
   Publishing Co., Belmont, California, 1966.

## APPENDIX A

## RADIATION INTERCHANGE ANALYSIS

Capabilities have been incorporated into subroutines for use with SINDA to facilitate the analysis of radiation heat transfer in an enclosure. The capabilities include the ability to:

- Analyze diffuse and/or specular infrared radiation in an enclosure
- (2) Analyze diffuse and/or specular radiation from an external source for as many wave bands as desired
- (3) Consolidate several temperature nodes into a single surface to improve computational efficiency

A radiation surface is defined as a group of temperature nodes which may be assumed to have identical radiating properties, angle factors and interchange factors.

The subroutines account for the net radiation heat transfer between a number of surfaces due to the emitted radiation from each surface, reflected radiation from each surface, and radiation from any number of incident sources. The reflection of the energy originally emitted by another surface or from an external source may be either diffuse, specular, or any combination of the two.

Emitted Radiation In A Cavity

Ш

Ī

II.

The radiosity of a surface is defined as the flux of infrared radiation leaving that surface with a diffuse distribution (according to Lambert's Law). That energy leaving a surface which has been reflected in a specular manner does not contribute to the radiosity of that surface. The incident infrared radiosity is denoted by the symbol H. The reflectance  $(1 - \varepsilon)$  of a surface is separated into two components, the diffuse reflectance  $(\rho)$ , and the specular reflectance  $(\rho^S)$ . Here  $\varepsilon$  is the emittance of the surface and is equivalent to the absorptance for long wavelength radiation With the angle factors (Fij) defined in the normal way, there exist similar angle factors which relate the geometrical ability of surface i to radiate to surface j by means of a mirror-like reflection from specular surface k. Reference to Figure A-1 indicates the method of imagery which will enable the calculation of these reflected angle factors. Here the angle factor to surface j is identical with the angle factor to the image of surface j. Also the angle factor is limited by the ability of surface i to "see" through the "window" of surface k. With the specular surface angle factors so defined, an interchange factor  $E_{ij}$  is defined similarly to reference 8 as follows:

PRECEDING PAGE BLANK NOT FILMED

A-1 :



$$E_{ij} = \sum_{k} \rho_{k}^{s} F_{ij(k)} + \sum_{k} \sum_{l} (\rho_{k}^{s}) (\rho_{l}^{s}) F_{ij(k,1)} + (A-1)$$

Here  $F_{ij(k)}$  is the angle factor from i to j as seen in the specular surface k,  $F_{ij(k,l)}$  is the angle factor from i to j as seen in the double specular reflection from k and 1. There are an infinite number of possible combinations of these multi-reflections. It is evident that the interchange factors account for the specularly reflected radiant flux from the reflecting surface. This portion of total leaving flux is not a component of the radiosity of that surface. The radiosity may be written

$$B_{i} = \epsilon_{i} \sigma T_{i}^{4} + \rho_{i} H_{i}$$

and, for ns surfaces,

$$\mathbf{i} = \frac{1}{A\mathbf{i}} \sum_{\mathbf{j}=1}^{ns} \mathbf{B}_{\mathbf{j}} \mathbf{A}_{\mathbf{j}} \mathbf{E}_{\mathbf{j}\mathbf{i}}$$

Now the interchange factors obey the reciprocity relation

 $A_{j} E_{jj} = A_{j} E_{jj}$ 

So,

J

$$A_{\hat{i}} = \sum_{\hat{j}} B_{\hat{j}} E_{\hat{i}\hat{j}}$$

Substitution into the equation for B results in

$$\sum_{j} (\delta_{ij} - \rho_{i} E_{ij}) B_{j} = \epsilon_{j} \sigma T_{i}^{4}$$
 (A-3)

. (A¬2)

This equation represents a set of linear, simultaneous, inhomogeneous algebraic equations for the unknowns  $(B_j)$ . The symbol  $\delta_{jj}$  is the Kronecker delta function which is 1 when i = j and is 0 when  $i \neq j$ .

Note that the coefficients of  $B_j$  in equation (A-3) do not form a symetric coefficient matrix since the off diagonal terms contain -  $\rho_i E_{ij}$ . This equation can be made symetric by multiplying each equation by  $A_i/\rho_i$ .

This gives

$$\sum_{j} \left( \frac{\delta_{ij} A_{i}}{\rho_{i}} - E_{ij} A_{i} \right) B_{i} = \frac{\epsilon_{i} A_{i}}{\rho_{i}} \sigma T^{4} \qquad i = 1, m$$

СП Ш

1

(A-4)

Written in matrix form this equation is

$$\mathbf{E} \mathbf{B} = \mathbf{T}$$

Where E is a symetric coefficient matrix. The solution is

$$B = E^{-1}T = \begin{bmatrix} e_{ij}^{-1} \end{bmatrix} T$$

or

$$= \sum_{\mathbf{j}=1}^{ns} e_{\mathbf{i}\mathbf{j}}^{-1} \frac{\epsilon_{\mathbf{i}} A_{\mathbf{j}}}{\rho_{\mathbf{j}}} \sigma_{\mathbf{j}}^{4}$$
(A-5)

The net heat transfer rate asorbed by surface i is given by

$$Q_{i} = A_{i} \epsilon_{i} [H_{i} - \sigma T_{i}^{4}]$$

Where  $H_i$  is given from equation (A-2) as

$$H_{i} = \frac{1}{\rho_{i}} \left[ B_{i} - \epsilon \sigma T_{i}^{4} \right]$$

Substituting in for  ${\rm H}_{\bar{1}}$  gives

R<sub>ī</sub>

$$Q_{1} = A_{i} \epsilon_{i} \left\{ \frac{1}{\rho_{i}} \left[ B_{i} - \epsilon_{j} \sigma T_{i}^{4} \right] - \sigma T_{i}^{4} \right\}$$

$$\frac{A_{i} \epsilon_{i}}{\rho} \left\{ B_{i} - \left[ \rho_{i} + \epsilon_{i} \right] \sigma T_{i}^{4} \right\}$$
 (A-6)

A-4

Substituting in for B; from equation (A-5) into equation (A-6) gives

$$Q_{i} = \frac{A_{i} \epsilon_{i}}{\rho_{i}} \left\{ \sum_{J=1}^{ns} \frac{e_{ij}^{-1} \epsilon_{j} A_{j}}{\rho_{j}} \sigma T_{j}^{4} - \left[\rho_{i} + \epsilon_{j}\right] \sigma T_{i}^{4} \right\}$$

$$\frac{A_{i} \epsilon_{i}}{\rho_{i}} \left\{ \sum_{\substack{j=1 \ j \neq i}}^{ns} \frac{e_{ij}^{-1} \epsilon_{j}A_{j}}{\rho_{j}} \sigma_{i} \frac{\sigma_{j}}{\rho_{j}} - \left[\rho_{i} + \epsilon_{i} - \frac{e_{ij}^{-1} \epsilon_{i}A_{j}}{\rho_{i}}\right] \sigma_{i}^{-1} \right\}$$
(A-7)

(A-8)

Since, in steady state,  $Q_i = o$ , and  $T_i^4 = T_j^4$  for all i and j we can conclude that

$$\rho_{\mathbf{i}} + \epsilon_{\mathbf{j}} - \frac{\mathbf{e}_{\mathbf{i}\mathbf{j}}^{-1} \epsilon_{\mathbf{i}}\mathbf{A}_{\mathbf{j}}}{\rho_{\mathbf{i}}} = \sum_{\substack{\mathbf{J}=1\\\mathbf{J}\neq\mathbf{i}}} \mathbf{e}_{\mathbf{i}\mathbf{j}}^{-1} \frac{\epsilon_{\mathbf{j}}\mathbf{A}_{\mathbf{j}}}{\rho_{\mathbf{j}}}$$

Making the above substitution in equation (A-7) gives

ns

$$Q_{i} = \sum_{J=1}^{n} \sigma \frac{\epsilon_{i} \epsilon_{j} A_{i} A_{j} e_{ij}^{-1}}{\rho_{i} \rho_{j}} \left[ T_{j}^{4} - T_{i}^{4} \right]$$

If we define  $\mathcal{F}$  as

$$\mathcal{F}_{ij} = \underbrace{\substack{\epsilon_i \ \epsilon_j \ A_j e_{ij}^{-1}}_{\rho_i \ \rho_j}}_{i \ \rho_j} \quad i \neq j$$

$$\mathcal{F}_{ij} = \frac{\varepsilon_i \varepsilon_j A_i}{\rho_i \rho_j} \begin{bmatrix} e_{ij}^{-1} - \rho_i / A_i \end{bmatrix} \quad i = j$$

Then

推進し

Г

$$Q_{i} = \sum_{J=1}^{ns} \sigma \mathcal{F}_{ij} A_{i} \left[ T_{j}^{4} - T_{i}^{4} \right]$$

This equation gives the heat flux between surfaces. However, each surface can contain several nodes. The heat absorbed by for each node is determined by:

 $Q_{n} = \frac{A_{n}}{A_{j}} \sum_{J=1}^{ns} \sigma \mathcal{F}_{ij}A_{i} \left[ T_{J}^{4} - T_{n}^{4} \right]$ (A-9)

(A-11)

Where n = the node number on surface i Prior to each iteration, the temperature of the surfaces are determined by

$$T_{i}^{4} = \frac{\sum_{n=1}^{nn} A_{n} T_{n}^{4}}{\sum_{n=1}^{nn} A_{n}} = \frac{\sum_{n=1}^{nn} A_{n} T_{n}^{4}}{A_{i}}$$
(A-10)  
the number of nodes on surface i

Since the heat transfer rate given by equation (A-9) depends on the node temperature, stability considerations must be taken into account. This is handled by storing the following relation into the array containing the sum of the conductors used for time increment calculation

Where

nn =

$$CON_n = 4 \frac{A_n}{A_i} \sigma \tau_n^3 \sum_{J=1}^{nc} \mathcal{F} A_{ij}$$

Subroutine RADIR makes the calculations necessary to obtain Qn given by equation (A-9) and CONn given by equation (A-11). The following is a summary of the calculations:

A. The following are performed the first time through RADIR:

- 1. From the user input values of  $E_{ij}$ ,  $A_i$ , and  $\rho_i$ , the E matrix given by equation (A-4) is formed. Only half of the symetric matrix is stored to save space.
- 2. The E matrix is inverted in its own space to get  $E^{-1}$  with elements  $e_{ij}^{-1}$
- 3. The  $\Im$  A<sub>ij</sub> values are determined from equation (A-8) and stored in the surface connections data.
- B. The following calculations are performed on each temperature iterations:
  - The temperature of each surface is calculated by equation (A-10).
  - The heat absorbed for each node is determined using equation (A-9) and is added to the Q array.

A-6

The routine utilizes data used for obtaining  $\mathcal{F} A_{ij}$  in step A as working space for step B, thus, maximizing space utilization.

# Radiation From External Source

As with the internally generated radiation, the solar (or any other external source radiation) interchange factor is defined by

$$E_{ij}^{*} = F_{ij} + \sum_{k} \rho_{k}^{*S} F_{ij}(k) + \sum_{k} \sum_{l} \rho_{k}^{*S} \rho_{l}^{*S} F_{ij}(k,l) + i$$

Where  $\rho_k^{*S}$  is the solar specular reflectance of surface K  $F_{ij}(K)$  is the angle factor from i to j as seen in the specular surface  $\kappa$ 

 $F_{ij}(K, l)$  is the angle factor from i to j as seen in a double specular reflection from j to l to k back to i

(A-12)

(A-13)

The interchange factors as defined above accounts for the specularly flux reflected from the surface. Thus, since the specular component of the flux is assumed to go directly from surface i to surface j by the interchange factor, Eij, this portion of the total flux is not a component of the radiosity for the intermmediate surfaces (k and l above). The radiosity of surface i is given by

 $B_{i}^{*} = \rho_{i}^{*} H_{i}^{*}$ 

Where

Ĩ

 $B_i^*$  is the radiosity (energy leaving)

 $H_i^*$  is the incident energy

 $\rho_i^*$  is the diffuse reflectance

+ S;

The energy incident upon a surface is given by ns

$$H_{i} = \sum_{l=1}^{n} B_{j}^{*} E_{ij}^{*}$$

Where S<sub>1</sub> is the energy directly incident on surface i from an external source

Substituting equation (A-12) into (A-13), multiplying by  $A_i/\rho_i$  and simplifying gives the following relation for the radiosity

$$\begin{bmatrix} A_{i} - E_{ii}^{*}A_{i} \\ p_{i}^{*} \end{bmatrix} \stackrel{B_{i}^{*}}{=} \sum_{\substack{J=1\\J\neq i}}^{n} E_{ij}^{*}A_{i}B_{j}^{*} = S_{i}A_{i} \quad i=1,n \quad (A-14)$$

1

No. 200

(A-19)

(A-20)

(A-21)

This set of n equations can be written in matrix form as

$$\mathbf{E}^{\mathbf{*}} \mathbf{B}^{\mathbf{*}} = \mathbf{S}^{\mathbf{*}} \mathbf{S}^{\mathbf{*}} \mathbf{B}^{\mathbf{*}} = \mathbf{S}^{\mathbf{*}} \mathbf{S}^{\mathbf{*}} \mathbf{B}^{\mathbf{*}} $

Note that the equations are written so that  $E^*$  is a symetric matrix, which has the solution for  $B^*$ 

$$B^* = E^{*-1}S$$
 or  $B_{j} = \sum_{J=1}^{B_{j}} [e_{j,j}^{*+}]^{-1}S_{j}A_{j}$  (A-16)

Where  $[e_{ij}^*]^{T}$  is the ijth element of the inverse of the E\* matrix

The heat flux absorbed by the i th surface is given by

$$\frac{Q_i^{\star}}{A_i} = \alpha H_i$$
 (A-17)

But from equation (A-12)'i

$$H_{i} = \frac{\rho_{i}}{\rho_{i}}$$
(A-18)  
Combining equations (A-16), (A-17), and (A-18) gives

$$Q_{j}^{*} = \sum_{J=1}^{n} e_{jj}^{*-1} \frac{\alpha_{j}}{\rho_{j}^{*}} A_{j}A_{j}S_{j}$$

A-8

If we define

$$\mathcal{F}_{ij}^{*} = e_{ij}^{*-1} \underline{a_i}_{\rho*}^{A_j}$$

Then the absorbed heat flux is given by

$$Q_{i}^{*} = \sum_{J=1}^{n} \mathscr{F}_{ij}^{*} A_{i} S_{j}$$

Equation (A-21) gives the heat absorbed by each surface. However, each surface may contain several temperature nodes. The absorbed heat for each node is given by:

 $Q_n^{\bigstar} = \frac{A_n}{A_i} \quad Q_i^{\bigstar}$  (A-22)

Where A is the area of the node

 $\mathbb{I}$ 

Subroutine RADSØL was written to make necessary calculations to obtain  $Q_n^*$  given by equation (A-22). The following is a summary of the calculations:

. The following calculations are made the first time through RADSOL:

- 1. From the user input values of  $E_{ij}^{*}$ ,  $\rho_{i}^{*}$ , and Ai, the E\* matrix given by equation (A-15) is formed. Only one half is stored since E\* is symetric.
- 2. The E\* matrix is inverted in its own space to get  $E^{*-1}$  with elements,  $e_{ii}^{*-1}$ .
- 3. The  $\mathcal{F}_{ij}^*$  A<sub>i</sub> values are determined from equation (A-20) and stored in the surface connections data.
- B. The following calculations are performed on each temperature iteration:

1. The heat flux absorbed by each node is calculated by

$$\frac{Q_{i}^{*}}{A_{i}} = \frac{1}{A_{i}} \sum_{d=1}^{n} \mathcal{F}_{ij}^{*}A_{i}S_{i}$$

2. The net heat absorbed by this wavelength radiation is calculated for each temperature node on each surface by

$$Q_n^* = A_n \frac{Q_1^*}{A_1}$$

This quantity of absorbed heat is added to the Q array for node n.

A-9
Note that the user may specify subroutine RADSOL for as many bands of radiation from an external source as desired. A single call is required for each band.

China and

## APPENDIX B FLOW DATA STORAGE

Ŋ

ſ

I

家語

T.

Π

|            | The flow data which is input in the FLOW DATA block described in       |
|------------|------------------------------------------------------------------------|
| Section    | 4.1 is stored by the preprocessor in labled common arrays. These       |
| arrays w   | will be included in the main processor phase routine and the routines  |
| generate   | d from the four operation blocks (EXECTN, VARBLI, VARBL2, and OUTCAL). |
| The arra   | ys will be dimensioned in the main processor routine. The following    |
| is a lis   | t of the arrays:                                                       |
| 1.         | Flow Data : /FLODAT/FLOW(ND), where ND is the amount of space          |
| ·          | required for the flow data array. This array includes                  |
|            | tube connections data and tube data for all                            |
|            | systems, specified pressure nodes, valve data, pump                    |
|            | data and enthalpy curve                                                |
| 2.         | System Data : /SYSDAT/SYSTEM(15,NS), where NS is the number of         |
|            | systems. Systems data include property data, solution                  |
|            | parameters and specified pressures.                                    |
| 3.         | Fluid Lump Type Data : /TYPDAT/TYPE(10, NTP), where NTP is the         |
|            | number of fluid types.                                                 |
| <b>4</b> . | Flowrates : /WDOT/W(LT), where LT is the largest input tube            |
|            | number.                                                                |
| 5.         | Pressures : /PRESS/P(LP), where LP is the largest input pressure       |
| · _        | node number.                                                           |
| 6.         | Flow Conductors : /FLOWG/GF(LT)                                        |
| 7.         | Valve Positions : /VALVP/VP(LV), where LV is the largest input         |
|            | valve number.                                                          |
| . 8.       | Imposed Flowrates : /WD0T1/W1(LP)                                      |
| 9.         | Added Flow Resistances : /FLOWR/AFR(LI)                                |
| 10.        | Pressure Drops : /DELTAP/DP(LT)                                        |
|            | Dimensions : /FDIMNS/NITPE, NSTS, NIB, NP, NV, NFD                     |
| • • •      | where NITPE is given the value NIP (above)                             |
|            | NSYS is given the value NS                                             |
|            | NIE IS GIVEN THE VALUE LI                                              |
|            | NP TS given the value LP                                               |
|            | NV is given the value LV                                               |
| -<br>      | NFU is given the value NU                                              |

B-1

The items to be stored in the above are discussed in more detail below.

1.01

5f | |

1.0 FLOW Array

The FLOW array contains flow data that is not easily addressable by the user. Items contained are (1) the network and subnetwork connections data, (2) the tube data which includes the fluid lump/tube lump pairs and the fluid lump type, (3) the specified pressure nodes, (4) the valve data, (5) the network valve data, (6) the pump data, and (7) valve data locations. The format for storing each item is discussed below.

1.1 Network and Subnetwork Connections The network and subnetwork connections data is stored in the following order for each network or subnetwork: IC1, 'NAME1', LOCPRI, LOCVI, NTBII, NFRMI1, NTOII, LOCDII NTBI2, NFRMI2, NTOI2, LOCDI2

ICn, 'NAMEn', LOCPRn, LOCVn, NTBn1, NFRMn1, NTOn1, LOCDn1

NTBnn, NFRMnn, NTOnn, LOCDnn

B-2

n in the second se

where

10

4

ICi is the integer count of the number of spaces in the connections data for the ith network or subnetwork

NAMEi is the 4 character name of the ith network or subnetwork input on the heading card

LOCPRi is the location in the flow data array of the specified pressure nodes for the ith network or subnetwork

LOCVi is the location of the ith network or subnetwork valve data

(which is an array of locations of the actual valve data)

NTBij is the tube number of the jth tube of the ith network of subnetwork

NFRMij is the "from" pressure node for the jth tube of the ith network or subnetwork

NTOij is the "to" pressure node for the jth tube of the ith network or subnetwork

LOCDij is the location of tube data (or subnetwork connections) for the jth tube of the ith network or subnetwork

If LOCD > 0 it is the location of the tube data (fluid/tube lump pairs and type no's.)

If LOCD < 0 it is the location of the subnetwork connections data for tube j

If LOCD = 0, the user is supplying the flow resistance for tube j in the added flow resistance array, AFR

A sort is required on the connections data for each network or subnetwork. The connections must be arranged so that for each pressure node, all NTO references for that node must occur in the list prior to any NFRM references. The four data values (NTB, NFRM, NTO, LOCD) must remain intact as a group during the sort. Tubes whose "from" node, NFRM, is not referenced as a "to" node, NTO, should come first in the connections data.

B-3

### 1.2 Tube Data

The tube data portion of the FLOW array contains the fluid lumps, fluid lump types and tube lumps for each tube. This data is referenced by the LOCD values in the connections data for each tube described in Section 4.1. The format for the tube data portion of the FLOW array is: ICI, NFLMP11, NTYPE11, NTBLMP11, ---, NFLMP1n, NTYPE1n, NTBLMP1n

ICn, NFLMPn1, NTYPEn1, NTBLMPn1, ---, NFLMPnn, NTYPEnn, NTBLMPnn

where ICi is the integer count for the tube data for tube i (must be

a multiple of 3)

NFLMPij is the relative fluid lump number of the jth fluid lump in tube i

NTYPEij is the type number of the jth fluid lump in tube i NTBLMPij is the relative tube lump number for the jth fluid lump in tube i

Notice that NFLMP and NTBLMP are relative lump numbers. Thus, during storage these numbers must be converted from actual numbers which are input to relative numbers.

## 1.3 Specified Pressure Node Data

The specified pressure node data is a list of the pressure nodes whose pressures are not calculated. One such list exists for each network in the problem and may also exist for any subnetwork if it contains any specified pressures. The format for each specified pressure node list is:

i I

under 1

IC,  $NSP_1$ ,  $NSP_2 - - - NSP_{IC}$ 

where IC is the integer count which is also the number of specified pressure nodes in the network or subnetwork

 $\text{NSP}_{i}$  is the ith specified pressure node

### 1.4 Valve Data

The valve data described in Section 4.3 is stored in the FLOW array. The format for this is slightly different for the different types of valves. For the rate limited valve the format is: IC, NV, NTS1, NTS2, MODE, XMIN, XMAX, E, TSEN1, TSEN2, DB, RF, RL For the polynomial valve it is

IC, NV, NTS1, NTS2, MODE, XMIN, XMAX, E, TSEN1, TSEN2, CO, C1, C2, C3, C4, C5, VTC For the switching value it is

IC, NV, NTS1, NTS2, MODE, XMIN, XMAX, E, NSEN, T1, T2

where the symbols are described in Section 4.3 The integer count for each is the number of data values and is 12 for a rate limited value, 16 for the polynomial and 10 for the switching value.

1.5 Network Valve Locations

TI.

Ĭ

TH

T

T

T

Т

Contraction of the local distribution of the

Ĭ

The network valve locations is a list of locations in the FLOW array for the valve data of the valves in a network or subnetwork. One such list is needed in the FLOW array for each network or subnetwork that contains valves. The location of the network valve data list is provided in the fourth location of the Network Connections Data.

The format of the network valve locations is:

IC, LOCVI, - - - LOCVIC

where IC is the number of valves in the network

LOCVi is the location in the FLOW array of the valve data for the ith valve in the network

1.6 Flow Source Data

The flow source data lists are supplied in the FLOW array for each flow specification statement input in the BCD FLOW SOURCE data block described in Section 4.4.. The input statements from the FLOW SOURCE data are transferred directly to the FLOW array except an integer count is added to each list and array numbers are converted from actual to relative numbers.

The formats for storage are as follows for the three types of flow sources:

Flow As A Function of Time IC, NPI, AW Pressure Rise As a Tabulated Function of Flowrate IC, NPI, NPO, ADP Pressure Rise As A Polynomial Function of Flowrate IC, NPI, NPO, CO, C1, C2, C3, C4 where IC is the integer count of the list (2, 3, and 7 respectively)

All other variables are described in Section 4.4. The actual numbers of arrays referenced by AW and ADP must be converted to relative locations prior to storage in the FLOW array. Only one flow source data list per network is to be stored in the FLOW array and the location is referenced from the SYSTEM array (to be discussed later).

An option on AW is that it may be input as an array or a real constant. If AW is supplied as a real constant, the flow source list is not stored in the FLOW array. Rather, the constant, AW, is stored in the imposed flowrate array, WI, (to be discussed later).

## 1.7 Valve Locations

1 -

The valve locations list is a list of locations of the valve data (whose input is described in Section 4.2 and storage is described in the Appendix)for all the valves in the problem in order of valve number. There is only one valve location list in the FLOW array and the location of this list is given as the seventh item in the FDIMNS labled common block (described be-low).

The format for storage of the valve locations is

IC, LOCVI, LOCV2, - - - -, LOCVIC

where IC is the interger count and is the total number of valves in the problem

LOCVi is the location in the FLOW array for the valve data for valve number i

### 2.0 SYSTEM Array

The system array contains fluid property data (or locations of property data), the gravitational constant (gc), solution parameters, and the locations in the FLOW array for the flow source list, the network connections data and the enthalpy curve for each system. The SYSTEM array is a two dimensional array dimensioned to 15 by NSYS where NSYS is the number of systems. Thus 15 locations are allocated for each system (only 13 are currently used leaving 2 blank spaces per system). The system array is in the labled common block SYSDAT.

|        |              | The   | format              | for                | storage               | of the              | SYST               | EM arra              | y is              |         |          |            |       |        |
|--------|--------------|-------|---------------------|--------------------|-----------------------|---------------------|--------------------|----------------------|-------------------|---------|----------|------------|-------|--------|
| ACP,,  | ARO.         | ,,AMU | AKT.                | ,GC,,              | MPASS, ,T             | OL,,MX              | PASS <sub>1</sub>  | ,FRDF,,              | КОР₁              | ,LOCP,  | ,LOCNET, | ,LOCH      | ,,0,0 | 0      |
| ACP ,  | ARO.         | ,AMU  | Ja,AKTa             | ,GC,               | MPASS,T               | οι <u>,</u> Μλ      | ۱<br>PASS          | ,FRDF,               | ۲<br>KOP          | LOCP    | ,LOCNET  | ,LOCH      | ,.0,1 | 0      |
| 1      | , <b>1</b> ' | 2 1   | 2, 2                | ,2                 | 1                     | 1                   | 1                  | 1                    | 1                 | 1       | 1        | <u>د</u> ا |       | I      |
| 1      | 1<br>1       | 1     | 1                   | 1<br>1             | 1                     | 1                   | 1                  | 1<br>1               | 1                 | t<br>t  | т<br>Т   | 1          | 1     | 1<br>1 |
| 1      | 1            | 1     | ł                   | t                  | I                     | I                   | 1                  | I                    | I.                | :       | t        | <b>,1</b>  | I     | 1      |
| ACP n' | ARO,         | n,AMU | n, <sup>AKT</sup> n | ,GC <sub>n</sub> , | MPASS <sub>n</sub> ,T | 0L <sub>n</sub> ,MX | (PASS <sub>n</sub> | ,FRDF <sub>n</sub> , | KOPn              | ,LOCPn  | ,LOCNET  | n,LOCH     | n,0,1 | 0      |
| where  |              | ACP,  | ,ARO,,/             | ΑMU.,,             | and AKT               | , are               | the r              | elative              | arra              | ay numi | bers for | r the      |       |        |
|        |              | 1     |                     |                    |                       | arra                | ys or              | the va               | lues              | of the  | e consta | ant va     | lues  |        |
|        |              |       |                     |                    |                       | for                 | the sp             | pecific              | hea               | t, den  | sity, vi | iscosi     | ty ai | nd     |
|        |              |       |                     |                    |                       | ther                | mal co             | onducti              | vity              | for t   | he ith s | system     |       |        |
|        |              |       |                     |                    | GC                    | is t                | he gra             | avitati              | ona l             | const   | ant for  | the i      | th    |        |
|        |              |       |                     |                    |                       | syst                | en                 |                      |                   |         |          |            |       |        |
|        |              |       |                     |                    | MPASS <sub>i</sub>    | is t                | he nur             | nber of              | tem               | peratu  | re itera | ations     | be-   |        |
|        |              |       |                     |                    | •                     | twee                | n pre              | ssure s              | oluț              | ions fo | or syste | em i       |       |        |
|        |              |       |                     |                    | MXPASS                | is t                | he max             | ximum n              | umber             | r of pa | asses in | n the      |       |        |
|        |              |       |                     |                    | ·                     | bala                | ncing              | loop p               | ermi              | tted to | o obtair | n a pro    | essui | re/    |
|        |              |       |                     |                    |                       | flow                | solu               | tion for             | r sys             | stem i  |          |            |       |        |
|        |              |       |                     |                    | FRDF i                | is t                | he flo             | owrate (             | damp <sup>.</sup> | ing fa  | ctor for | ° syste    | em i  |        |
|        |              |       |                     |                    | TOLi                  | is t                | he so              | lution               | tole              | rance ( | on the f | fractio    | 'n    |        |
|        |              |       |                     |                    |                       | of c                | hange              | of flo               | wrate             | es from | n one pa | uss in     | the   |        |
|        |              |       |                     |                    |                       | flow                | solu               | tion to              | the               | next 1  | for syst | tem i      |       |        |
|        |              |       |                     |                    | КОР <sub>і</sub>      | is t                | he ch              | eck-out              | -pri              | nt cod  | e for sy | /stem ·    | i     |        |
|        |              |       |                     |                    | LOCP i                | is t                | he lo              | cation               | of tl             | he flow | w source | e data     | in    |        |
|        |              |       |                     |                    |                       | the                 | FLOW a             | array f              | or tl             | he ith  | system   |            |       |        |
|        |              |       |                     |                    | LOCNET                | is t                | he lo              | cation               | of tl             | he neti | work cor | nnectio    | ons   |        |
|        |              |       |                     |                    |                       | data                | in t               | he FLOW              | arra              | ay for  | the ith  | ı syste    | em    |        |
|        |              |       |                     |                    | LOCH <sub>1</sub>     | js t                | he lo              | cation               | of t              | he ent  | halpy cu | irve i     | n     |        |
|        |              |       |                     |                    |                       | the                 | FLOW               | array f              | or t              | he ith  | system   |            |       |        |
| The v  | aluu         | as fo | er ACP              | ARO                | ΔΜ11 . Δ.Κ            | 7 GC                | MPAS               | S .MXPA              | 55.               | FRDF    | TDI, and | d KOP      | are   |        |

T

T

I

U.

L L

 $\square$ 

The values for  $ACP_i$ ,  $ARO_i$ ,  $AMU_i$ ,  $AKT_i$ ,  $GC_i$ ,  $MPASS_i$ ,  $MXPASS_i$ ,  $FRDF_i$ ,  $TOL_i$  and  $KOP_i$  are taken from the systems input supplied in the BDC 3NETWORK block except that array numbers are converted to relative array locations for ACP, ARO, AMU and AKT and default values are supplied for GC, MPASS, MXPASS, FRDF, TOL and KOP if no values are input (Default values are shown in Section 4.1). The values for LOCP, LOCNET and LOCH which are storage locations in the FLOW array are determined as the FLOW array is built during the preprocessor phase.

B--7

## 3.0 Fluid Type Array

The fluid lump type data is stored in the TYPE array which is in the TYPDAT labled common block. This array contains the fluid lump type information which is input in the BCD 3FLUID LUMP DATA input block on the left of the equal sign for all type cards. The TYPE array is a two dimensional array, dimensioned to 10 by NTP, where NTP is the number of types. The format for the TYPE array is تے : : دنے

.

i

and the second

1424

Linder V

 $CSA_{1}, WP_{1}, FLL_{1}, AHT_{1}, NHL_{1}, MFF_{1}, FFC_{1}, FI_{1}, F2_{1}, \frac{FLL_{1} * WP_{1}}{4.0 * CSA_{1}}$   $CSA_{2}, WP_{2}, FLL_{2}, AHT_{2}, NHL_{2}, MFF_{2}, FFC_{2}, F1_{2}, F2_{2}, \frac{FLL_{2} * WP_{2}}{4.0 * CSA_{2}}$   $CSA_{n}, WP_{n}, FLL_{n}, AHT_{n}, NHL_{n}, MFF_{n}, FFC_{n}, F1_{n}, F2_{n}, \frac{FLL_{n} * WP_{n}}{4.0 * CSA_{n}}$ 

is the fluid flow cross sectional area for fluid lump type i CSA, where is the fluid wetted perimeter for fluid lump type i WP; is the fluid lump length for fluid lump type i FLL is the area for heat transfer for connection for fluid lump AHT; type i (usually WP\*FLL) is the number of head losses for fluid lump type i if input NHL ; as a real constant is stored as the relative location in the array data for the user input array of head losses vs Reynolds number if input as AXX where XX is the array number MFF is the code to determine the method used for calculating friction factor for type i. If MFF = 0, the internal methods are used to calculate friction factor. If MFF =

> AXX, XX is an array (the relative location is stored) of the Friction Factor vs Reynolds number.

FCC is a constant to be multiplied times the friction factor
for type i

F1 is a code to determine the method for calculating convection heat transfer coefficient for type i. If F1 is real, the internal equation for flow in a tube is used and F1 is the laminar fully developed coefficient. F2 is the laminar entry

R-5

length coefficient.

If Fl = 1, F2 is AXX, XX is an array(stored as the relative array location) of Stanton Number vs Reynolds number array. If Fl = 2, F2 is AXX, XX is an array (stored as the relative array location) of an array giving heat transfer coefficient vs tube flowrate.

F2<sub>i</sub>

I

4

T

J,

T

T

Constant d

is described under Fl above

The tenth item in the list for each type is FLL\*WP/(4.0\*CSA) which is the L/D for the type. This item must be calculated and stored for each type during the preprocessor phase.

The TYPE array is shown in Table B-I for the sample problem.

4.0 <u>Other Arrays</u>

Eight arrays must be set up for the flow problem in addition to the three primary flow problem arrays discussed in Sections 1.0, 2.0, 3.0. These arrays are each in a separate labled common block to provide ready access to them for user input and output in the user logic block. The labeled common block and the array name for each is given below:

> Array of flowrates per tube /WDOT/W(LT) /PRESS/P(LP) Array of pressures per pressure node ----/FLOWG/GF(LT) -Array of flow conductors per tube /VALVP/VP(LV) -Array of valve positions per valve /WDOTI/WI(LP) -Array of imposed flowrate per pressure node Array of added flow resistance per tube /FLOWR/AFR(LT) -Array of pressure drops per tube /DELTAP/DP(LT) -- Dimensions for the /FDIMNS/NTYPE,NSYS,NTB,NP,NV,NFD flow problem

The dimensions in the above arrays are as follows:

LT is the largest tube number

LP is the largest pressure node number

LV is the largest valve number

TABLE - I FLUID TYPE ARRAY

| CSA      | WP     | FLL  | AHT   | NHL   | MFF | FFC | F1  | F2  | FLL/D*  |     |
|----------|--------|------|-------|-------|-----|-----|-----|-----|---------|-----|
| 0.001008 | 0.1125 | 12.0 | 1.35  | 0.0   | 0   | 1.0 | 1.0 | 1.0 | 334.821 | 10  |
| 0.000938 | 0.36   | 3.25 | 1.17  | 117.0 | 0   | 1.0 | 1.0 | 1.0 | 311.834 | 20  |
| 0.001008 | 0.1125 | 5.0  | .5625 | 0.0   | 0   | 1.0 | 1.0 | 1.0 | 139.509 | 30  |
| 0.853E-4 | 0.0328 | 0.25 | .0082 | 2.49  | 0   | 1.0 | 1.0 | 1.0 | .24E-6  | 40  |
| 0.001008 | 0.1125 | 20.0 | 2.25  | 0.0   | 0   | 1.0 | 1.0 | 1.0 | 558.036 | 50  |
| 0.001008 | 0.1125 | 2.5  | .281  | 0.0   | 0   | 1.0 | 1.0 | 1.0 | 69.75   | 60  |
| 0.001008 | 0.1125 | 50.0 | 5.62  | 0.0   | 0   | 1.0 | 1.0 | 1.0 | 1395.09 | 70  |
| 0.001008 | 0.1125 | 7.0  | .7875 | 0.0   | 0   | 1.0 | 1.0 | 1.0 | 195.31  | 80  |
| 0.001008 | 0.1125 | 2.0  | .225  | 0.0   | 0   | 1.0 | 1.0 | 1.0 | 55.80   | 90  |
| 0.853E-4 | 0.328  | 0.25 | 0.0   | 0.0   | 0   | 1.0 | 1.0 | 1.0 | .24E-6  | 100 |

\*D = 4.0 X CSA/WP

Internet Brontering

#30.000.35%

Constantion and

Section of

----

- Stranspoor

The variables in the FDIMNS labeled common array indicate the size of various aspects of the total flow problem. The following values are assigned:

ir A

Number of types NTYPE -Number of systems NSYS \_ NTB Number of tubes .... Number of pressure nodes NP ----Number of valves NV ---Number of spaces in the FLOW array NFD --

 $\int$ 

I

軍制

Ţ

Π

 $\square$ 

#### APPENDIX C

#### USERS DESCRIPTION FOR PLOT PROGRAM

This Appendix presents user descriptions for a SINDA plotting routine, FLOPLT and a tape combining routine, MCOMB. Both routines are available on the ES3\*SINDA Secure File. A brief description of the routines and the user input description is given below.

#### FLOPLT DESCRIPTION

SYSTEM CONTROL CARDS FOR FLOPLT

京川田田

1

T

「「「「

t.

1

Ł

The plot routine which is available on \*SINDA can be used with a history file from a previous SINDA run to generate microfilm output. The items available for plotting are (1) pressure drop for each tube, (2) pressure for each pressure node, (3) valve positions for each valve, (4) flow rates for each tube, and (5) temperatures for each temperature lump. Each of these items may be plotted as a function of mission time. The user specifies the grid time range to be plotted, a time label, and the itmes to be plotted. A number of history files may be combined prior to plotting the results. The user has the option of averaging any portion of the plotted curve and of specifying the range of the ordinate axis.

The system control cards and the data input card for FLOPLT are described below:

C-1

# FLOPLT DATA CARDS

| <u>Columns</u>   | <u>Format</u> | Title  | Description                                                                 |
|------------------|---------------|--------|-----------------------------------------------------------------------------|
| <u>Card 1</u> (T | itle Card)    |        |                                                                             |
| 1-72             | 12A6          | TITLEA | Any 72 alphammeric characters to be used as heading for each frame of plots |
| <u>Card 2</u> (P | arameter Can  | rd)    |                                                                             |
| 1-10             | F10.0         | TA     | First value of time to be plotted (hours).                                  |
| 11-20            | F10.0         | TZ     | Last value of time to be plotted (hours).                                   |
| 21-30            | F10.0         | TPG    | Time range for each grid. Number of grids                                   |
|                  |               |        | drawn will be (TZ-TA)/TPG. (If TPG is                                       |
|                  |               |        | left blank, the job will terminate.)                                        |
| 31-35            | 15            | ITMX   | Time scale lable:                                                           |
|                  |               |        | = 1, "SECONDS"                                                              |
|                  |               |        | = 2, "MINUTES"                                                              |
|                  |               |        | = 3, "HOURS"                                                                |
|                  |               |        | Any other value, "*****"                                                    |
| 36-40            | I5            | MPNT   | Print control code                                                          |
|                  |               |        | = 1, prints information to be plotted                                       |
|                  |               |        | while loading the plot tape                                                 |
|                  |               |        | $\neq$ 1, will not print information to be plotted                          |
| 41-45            | 15            | NTP    | Number of tapes to be combined. Use a                                       |
|                  |               |        | negative number if start and/or stop times                                  |
|                  |               |        | are specified on <u>Card 3</u> for any tape to                              |
|                  |               |        | be combined.                                                                |
| 46-50            | 15            | KT     | File number to which file to be                                             |
|                  |               |        | plotted is assigned. If left blank, file                                    |
|                  |               |        | 23 is assumed. The combined file is                                         |
|                  |               |        | assigned to this unit.                                                      |
| 51-55            | 15            | INC    | = 1, every time point and associated data                                   |
|                  |               |        | value from the tapes to be combined                                         |
|                  |               |        | will be transferred to the combined tape.                                   |
|                  |               |        | = 2, every second time point and associated                                 |
|                  |               |        | data values will be transferred to the                                      |
|                  |               |        | combined tape.                                                              |
|                  |               |        |                                                                             |

i erud

La Carlo

l of the little

11

0

bar paku atau atau

S research

Caller

etc.

C-2

| Columns               | Format                     | <u>Title</u> | Description                                                                                                 |
|-----------------------|----------------------------|--------------|-------------------------------------------------------------------------------------------------------------|
| 56-60                 | 15                         | IUNIT        | Logical unit number to which first tape<br>to be combined is assigned. If left<br>blank, unit 7 is assumed. |
| 61-70                 | F10.0                      | ASTRT        | Beginning time for averages (hours).                                                                        |
| 71-80                 | F10.0                      | ASTØP        | Ending time for averages (hours).                                                                           |
| <u>Card 3</u> (Re     | equired only               | /if NTP < 0  | . See <u>Card 2</u> columns 41-45)                                                                          |
| 1-5                   | F5.3                       | XSTART       | First time point from first tape to be<br>combined which will be transferred to<br>the combined tape.       |
| 6-10                  | F5.3                       | XSTØP        | Last time point from first tape to be<br>combined which will be transferred to<br>the combined tape.        |
| Repeat XSTA           | ART and XSTØ               | MP in five c | olumn fields for each tape to be combined.                                                                  |
| <u>Card 4</u> (It     | em Card)                   |              |                                                                                                             |
| 1-5                   | 15                         | ITEM         | The item number to be plotted. Use a negative value if this item is to start a                              |
| Repeat <u>Car</u>     | <u>d 4</u> f <b>or</b> eac | h item to be | e plotted.                                                                                                  |
| <u>Card 5</u><br>1-80 |                            |              | Blank                                                                                                       |
| <u>Card 6</u><br>1-80 |                            |              | Blank                                                                                                       |
| If additio            | nal history                | tapes are    | to be plotted, repeat <u>Card 1</u> and subsequent                                                          |

.

 $\prod$ 

[]

Culture and

ि स्व

C-3

cards for each additional history tape.

#### COMBINE ROUTINE DESCRIPTION

The combine routine, MCOMB, can be used to combine history files into one history file prior to its being plotted or being compared to another file. The combined file which is generated can be saved for future use if required. The user selects the frequency with which the time points and associated data values on the criginal files are added to the new file. That is, every time point on the original file can be added to the new file or every second, third, etc., point can be added depending on the requirements for the combined file.

The compine routine is a very useful feature if several history files are generated on a long mission run. By combining these files before plotting, a continuous plot of the mission can be obtained. The convenience of the combine routine can also be observed when mission runs made with different time increments are compared. Obviously, the run made with the smaller time increment will take more computer time than the run made with the larger time increment, and will probably require at least one "restart". In such a situation, there would be two history files with the smaller time increment to compare to one with the larger time increment. The two files with the smaller time increment on the same run.

- -

nis.

Survey .

The system control cards and the data input cards for MCOMB are described below:

#### SYSTEM CONTROL CARDS FOR MCOMB ROUTINE

@ RUN
@ ASG, A ES3\*SINDA
@ USE 7,XXX (First file to be combined)
@ USE 8,XXX (Second file to be combined)

Add additional USE cards as required for files to be combined. @ MAP ES3\*SINDA, MCOMB/MAP,TPF\$.RUN

@ XOT RUN

Data cards

0 FIN

| <u>Columns</u> | Format            | <u>Title</u>  | Description                             |
|----------------|-------------------|---------------|-----------------------------------------|
| Repeat         | XSTART and XSTOP  | in five colum | ms fields for each file to be combined. |
| <u>Card 3</u>  | (Required only if | KODE2 > 0.    | See <u>Card 1</u> columns 16-20         |
| 1-10           | F10.0             | ADD           | Time to be added to each time read from |
|                |                   |               | first file to be combined.              |
| Repeat         | ADD in 10 column  | fields for ea | ach file to be combined.                |

[]