General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
 NASÁ CR-

SINDA/SINFLO COMPUTER ROUTIME \rightarrow
Report No. 2-53002/4R-3167
g
1

Revision A
vOLUME I
15 February 1975

PERFORMED UNDER
 TRW SUBCONTRACT 183LK3E NASA CONTRACT NAS9-10435

SINDA/SINFLO COMPUTER ROUTINE Report No. 2-53002/4R-3167

Revision A
VOLUME I
15 February 1975

Submitted By
VOUGHT SYSTEMS DIVISION
LTV Aerospace Corporation
P.O. Box 5907

Dallas, Texas

To

TRW SYSTEMS GROUP
P.O. Box 58327

Space Park Drive Houston, Texas

Prepared by:

D.R. in Means
D. R. Williams

Approved by:

R. J. French, Supervisor EC/LS Group
1.0 INTRODUCTION AND SUMMARY 1
2.0 DISCUSSION OF METHODS 3
2.1 Thermal Analysis Methods 3
2.1.7 Flow-Hybrid Solution for Explicit Problems 3
2.1.2 Fluid Temperature Solution for Implicit Problems 6
2.1.3 Fluid Temperature Solution for General Hybrid Problems 7
2.1.4 Fluid Termperature Solution for Steady State Problems 8
2.1.5 Coefficient to Temperature Equations 9
2.1.6 Heat Exchanger Analysis 12
2.1.7 Cabin Analysis 17
2.2 Fluid Flow Analysis 24
2.2.1 Overall Flow Model Description 24
2.2.2 Tube Conductor Determination 28
2.2.3 Valve Anatysis 30
2.2.4 Pressure-Flow Network Solution 36
2.2.5 Pump and System Pressure - Flow Matching 39
3.0 SINDA ROUTINE MODIFICATIONS AND ADDITIONS 44
3.1 Preprocessor Modifications and Additions 44
3.2 Execution Routine Modifications 44
4.0 FLOW DATA BLOCK INPUT FORMAT 45
4.1 NETWORK and SUBNETWORK Formats 47
4.2 FLUID LUMP DATA Block Format 53
4.3 VALVE DATA Input Block (Optional) 54
4.4 FLOW SOURCE Data Block 56
4.5 Example of Flow Input 57
5.0 USER SUBROUTINES 60
6.0 SAMPLE PROBLEM 103
7.0 REFERENCES 129

TABLE OF CONTENTS (CONT'D)

APPENDICES

A Radiation Interchange Analysis A-T
B Flow Data Storage B-7
C Users Description For Plot Program C-1
D Subroutine Listings D-1*
LIST OF TABLES
1 SINFLO Input Blocks 46
2 Input Format for The NETWORK and SUBNETWORK Data Blocks 48
3 Value of GC For Various Problem Units 51
4 Flow Data Input for Sample Problem 58
5 User Subroutines 61
6 Listing of Sample Problem Input 106
7 Sample Problem Printed Output 113
8 Plot Run Printed Output 117
LIST OF FIGURES
1 Flow System Schematic 25
Main Network and Subnetworks 27
Friction Factor vs Reynolds Number 31
Rate Limited Valve Operation 33
System/Pump Curve Solution 40
5
Flow Charts of FLOSOL and NTSOL 70 70
6
Flow Charts of NTSOLI and NTSOLN 71
7 7
8 Flow Chart of FLBAL 72

[^0]
LIST OF FIGURES (CONT'D)

9 104
10 Structure Model for The Sample Problem 105
11 Radiator Temperature Plots 122
12 System Temperatures Plots 123
13 System Flow Rate Piots 124
14 Radiator Fiow Rate Plots 125
15 System Pressure Plots 126
16 Radiator Pressure Plots 127
17 Valve Position Plots 128

1.0 INTRODUCTION AND SUMMARY

This report describes the SINFLO modification package for SINDA, which was developed by the Vought Systems Division (VSD) of LTV Aerospace Corporation under subcontract to TRW Systems Group during the period of August 1973 to February 1975. Also included in this report is a description of the capabilities added during the development of SINDA-VERSION 9^{5}. The SINFLO package was developed to modify the SINDA preprocessor to accept and store the input data for fluid flow systems analysis and adding the FLOSOL user subroutine to perform the flow solution. This greatly reduced and simplified the user input required for analysis of flow problems. Also, a temperature calculation method, the Flow-Hybrid method which was developed in previous VSD thermal simulator routines ${ }^{3}$, was incorporated for calculating fluid temperatures. The calculation method accuracy was improved by using fluid enthalpy rather than specific heat for the convective term of the fluid temperature equation.

The effort described herein was performed under Task Order LT-1 and Task Order LT-2 of Subcontract 183LK3E of NASA Contract NAS9-10435. Task Order LT-1 calls for the completion of the following tasks:
A. Optimize the SINDA Routine flow input data which includes the following effort:

1. Establish the best input format for the flow systems data block to be added.
2. Establish the format for storing the flow systems data by the preprocessor.
3. Submit the user input and preprocessor output formats for mutual agreement between NASA-JSC, TRW, Inc. and VSD.
4. Iodify the preprocessor to accept the input from the new flow data block and store for use with processor routines.
B. Write routine to perform fluid flow analysis using data stored by proprocessor.
C. Develop Fluid Hybrid Routine for SINDA which will take advantage of the temperature calculation equation form for the fluid lumps to calculate the fluid and the tube lumps temperatures using an implicit method while the remaining structure Jumps will be calculated utilizing the method specified by the user.
[^1]Task Order LT-2 required the completion of the following tasks:
A. Modify the following SINDA evecution routines to interface with subroutine FLUID so that thermal analysis of fluid flow systems may be performed: (1) SNFRDL, (2) SNFRWD, (3) CINDSL, (4) FWDBCK, (5) SNDSNR, (6) STDSTL.
B. Add the capability to analyze vaives which will split incoming flow between the two outlet sides of the valve in proportion to the valve position regardless of the pressure balance.
These tasks were completed and the resulting routines added to and substituted into the SINDA general thermal analyzer routine expanded the capabilities of the SINDA to include analysis of systems containing flowing fluids, fluid syscem controls and heat exchangers. A pressure-flow analysis of a system containing an arbitrary tube network is performed simultaneously with the thermal analysis during transient or steady state solutions. This permits the mutual influences of thermal and fluid problems to be included in the analysis.

The general flow solution capabilities include extensive valve characterizations and ability to match pump curves and system prescure-flow characteristics. The valves have been formulated so that either cooling (space radiator) or heating (solar absorber) situations may be controlled with any of the valve types. Pump options included are pressure rise as a tabulated function of system flow rate and pressure rise as a polynomial function of flow rate.

The formulation of the capabilities added during this effort are described in Section 2.0, modifications to the SINDA subroutines are described in Section 3.0, and the data input requirements for the new data block are described in Section 4.0. Section 5.0 describes user subroutines which have been added or modified by VSD including those developed for SINDA-VERSION9.

Appendix A contains a description of the capabilities incorporated into subroutines during the development of SINDA-VERSION 9 to facilitate analysis of radiation heat transfer in an enclosure. A description of the usage of the plot program is presented in Appendix C.

A discussion of the flow data storage is presented in Appendix B. Listings of the new and modified subroutines are given in Appendix $[$. Appendix D is contained in Volume II.

2.0

DISCUSSION OF METHODS
The analytical methods utilized in the subroutines which were added to the SINDA routine are described in this Section. Section 2.1 describes the methods used for calculating temperatures of flowing fluids and Section 2.2 describes methods used in the pressure/flow analysis of flow networks.

2.1 Thermal Analysis Methods

The Flow-Hybrid method for obtaining temperature solutions was fomulated for use with several SINDA temperature solution routines including CNFRWD, CNFAST, CNBACK, CNFWBK, CINDSS, HYBRID, SNFRDL, SNFRWD, CINDSL, FWDBCK, SNDSNR and STDSTL. The formulation included utilization of the fluid flow analysis dats for the thermal analysis thus minimizing input and data storage requirements. The Flow-Hybrid method is described separately below for explicit methods (CNFRWD, SNFRDL, SNFRWD, and CNFAST), implicit methods (CNBACK, FWDBCK and CNFWBK), general hybrid methods (HYBRiD) and steady state (CINDSS, SNDSNR, STDSTL and CINDSL).
2.1.1 Fiow-Hybrid Solution for Explicit Problems

The fluid nodes temperatures are solved using the "Flow-Hybrid" solution method in the explicit SINDA user subroutines, CNFRWD, SNFRDL, SNFRWD and CNFAST. This method requires that the finite difference equations be written in the implicit form for the fluid lumps, while remainder of the lumps in the problem are solved using the explicit methods.

The finite difference equations for the Flow-Hybrid method are as follows: For the fluid lump

$$
\begin{equation*}
T_{f}^{\prime}=T_{f}+\frac{\Delta E}{W_{f} c_{f}}\left[\dot{W} \bar{C}_{p}\left(T_{u}^{\prime}-T_{f}^{\prime}\right)+H A\left(T_{t}^{\prime}-T_{f}^{\prime}\right)+Q_{f}\right] \tag{1}
\end{equation*}
$$

For the tube lump

$$
\begin{equation*}
T_{t}^{\prime}=T_{t}+\frac{\Delta \tau}{W_{t} c_{t}} \quad\left[\sum_{j} G_{t j}\left(T_{j}-T_{t}\right)+H A\left(T_{f}^{\prime}-T_{t}^{\prime}\right)+Q_{t}\right] \tag{2}
\end{equation*}
$$

where: $\quad T_{f}=$ the fluid lump temperature

$$
\begin{aligned}
\mathrm{T}_{\mathrm{t}} & =\text { the tube lump temperature } \\
\Delta \tau & =\text { time increment }
\end{aligned}
$$

w_{f}	$=$ weight of fluid lump
C_{f}	$=$ capacitance of the fluid
\dot{w}	$=$ flowrate in the tube which contains the fluid lump
$\overline{C P}_{p}$	$=$ mean specific heat for the flowing fluid between the upstream lump and the fluid lump
	$=\frac{h_{f}-h_{u}}{T_{f}-T_{u}}$
h_{f}	$=$ the enthalpy of tine fluid lump at temperature T_{f}
h_{u}	$=$ the enthalpy of the fluid lump at temperature T_{u}
T_{u}	$=$ the temperature of upstream lump
HA	$=$ the convection coefficjent times area
G_{tj}	$=$ the conductance value from tube lump t to lump j
w_{t}	$=$ weight of tube lump t
c_{t}	$=$ specific heat of tube Tump t
Q_{f}	$=$ the heat absorbed by fluid lump f
Q_{t}	$=$ the heat absorbed by tube lump t

If the fluid lump is the first in the tube, h_{u} is determined as follows:

$$
h_{u}=\frac{\sum_{k} \dot{w}_{k} h_{o k}}{\sum_{k} w_{k}}
$$

where $\quad h_{o k}=$ is the enthalpy of the fluid leaving tube k and entering fluid lump f
$\stackrel{\rightharpoonup}{w}_{k}=$ is the flow rate of tube k

The value for T_{u} for the first fluid lump in a tube is obtained by revere interpolation of the enthalpy curve at h_{u}. The primed temperatures in equations (1) and (2) represent temperatures at the end of the iteration; the unprimed temperature represent these at the iteration start.

The fluid hybrid solution methods are derived as follows:

Solve equation (2) for $T_{t}{ }^{\prime}$

$$
\begin{equation*}
=\frac{T_{t i}^{\prime}+\frac{\Delta \tau H A}{W_{t} c_{t}} T_{f}^{\prime}}{1+\frac{\Delta \tau H A}{W_{i} c_{t}}} \tag{3}
\end{equation*}
$$

where $T_{t i}{ }^{\prime}$ is the intermediate tube temperature that would be obtained with no connection to the fluid lump.
If equation (3) is substituted into equation (1) and simplified we get:

$$
\begin{equation*}
T_{f}^{\prime}=\frac{T_{f}+\frac{\Delta \tau}{W_{f} C_{f}}\left[\dot{w} \overline{\mathrm{C}}_{\mathrm{p} T_{u}}^{\prime}+\left(\frac{H A}{1+\frac{H A \Delta \tau}{W t C_{t}}}\right) T_{t i}^{\prime}+Q_{f}\right]}{1+\frac{\Delta \tau}{W_{f} C_{f}}}\left[\dot{w} \bar{C}_{p}+\frac{H A}{1+\frac{H A \Delta \tau}{W_{t} c_{t}}}\right] \tag{4}
\end{equation*}
$$

The value of $T_{t j}^{\prime}$ in equation (3) is given by

$$
\begin{equation*}
T_{t i}^{\prime}=T_{t}+\frac{\Delta \tau}{W_{t} C_{t}}\left[\sum_{j} G_{t j}\left(T_{j}-T_{t}\right)+Q_{t}\right] \tag{5}
\end{equation*}
$$

Examination of equation (4) reveals two primed temperatures: T_{u} 'and́ $T_{t i}{ }^{\prime}$. Thus, we must calculate these values prior to evaluation of equation (4). The value of T_{u}^{\prime} can be obtained if the order of calculations start with the first lump in the system and progresses around the system in order, one lump at a time. Since the value of $T_{t i}$ given by equation (5) contains no primed values, its value may be evaluated first. Thus, the order of calculations are:
(1) Calculate the value of all T_{ti} using the normal explicit temperature calculations assuming no fluid lump convection exist. This is given by Equation (5).
(2) Calculate the value of all $\mathrm{T}_{\mathrm{f}}^{\prime}$ in order of their position in the tubes starting with the first lump in the first tube and progressing around the system.
(3) Update the tube temperature using equation (3) to obtain T_{t}. Of course the coefficients in equations (3), (4) and (5) are evaluated prior to evaluation of the equations. Methods used in deteminting coefficient values are discussed in Section 2.1.5.

2.1.2 Fluid Temperature Solution for Implicit Problems

The implicit user subroutines, CNBACK, FWDBCK and CNFWBK, were modified so that the fluid temperatures are calculated simultaneously with the other temperatures of the problam. For CNBACK, FWDBCK and CNFWBK, the fluid lump temperatures are calculated using the relation

$$
\begin{equation*}
T_{f}^{\prime}=\frac{T_{f}+\frac{\Delta \tau}{W_{f} C_{p}}\left[\dot{W} C_{p} T_{u}^{\prime}+H A T_{t}^{\prime}+Q_{f}\right]}{1+\frac{\Delta \tau}{W_{f} C_{p}}\left[\dot{W} \bar{C}_{p}+H A\right]} \tag{6}
\end{equation*}
$$

Where all the variables are as defined for equations (1) and (2) and $T_{t}{ }^{\prime}$ is the last calculated value of the tube lump temperature.

The tube temperatures are calculated using the normal equations but are modified to use the $\operatorname{HAT}_{f}^{\prime}$ and HA terms as follows: For CNBACK:

$$
\begin{equation*}
T_{t}^{\prime}=\frac{T_{t}+\frac{\Delta \tau}{W_{t} c_{t}}\left[\sum_{j} G_{t j} T_{j}^{\prime}+Q_{t}^{\prime}+H A T_{f}^{\prime}\right]}{1+\frac{\Delta \tau}{W_{t} c_{t}}\left[\sum_{j} G_{t j}+H A\right]} \tag{7}
\end{equation*}
$$

For CNFWBK

$$
\begin{equation*}
T_{t}^{\prime}=\frac{T_{t}+\frac{\Delta \tau}{2 W_{t} C_{t}}\left[\sum_{j} G_{t j} T_{j}^{\prime}+Q_{t}^{\prime}+H A T_{f}^{\prime}+\Sigma G_{t j}\left(T_{j} \cdot T_{t}\right)+Q_{t}+H A\left(T_{f}-T_{t}\right)\right]}{I+\frac{\Delta \tau}{2 W_{t} c_{t}}\left[\sum_{j} G_{t j}+H A\right]} \tag{8}
\end{equation*}
$$

The order of calculations for the implicit routines are:
(1) Calculate the value of all T_{f} using equation (6). Fluid flow data is utilized to obtain coefficients in the equation.
(2) During the calculation in (I) the HA values and the fluid lump number for each tube lump are stored in the X array. (captured dynamic storage)
(3) The temperatures for the remaining lumps are calculated using the normal calculations, except tube lump temperatures equations are modified to include the HA and HAT terms as shown in equations (7) and (8).

2.1.3 Fluid Temperature Solution for General Hybrid Problems

The fiYBRID user subroutine was modified to permit calculation of fluid lump temperatures during the normal temperature calculations. Explicit and implicit Tumps are determined by calculating the CSG value for each lump and comparing it with the input time increment. Those lumps with CSG values larger than the input time increment are explicit and the remaining lumps are implicit. If the tube lumps are all explicit, the fluid and tube lump temperatures are calculated using equations (3) and (4). If any of the tube lumps are implicit, the fluid lumps are calculated using equation (6) and tube lumps are calculated using the following equation:

Where $\alpha=$ the point in the iteration for evaluating heat flux
$G_{j i}=$ the conductance value from tube lump t to Tump ji, where lump $j i$ is implicit
$G_{j e}=$ the conductance value from tube lump t to lunp je, where lump je is explicit
$Q_{t}^{\prime \prime}=$ the heat absorbed by tube lump t evaluated at $\tau+\alpha \Delta \tau$
The following calculation procedure is used:
(1) Determine the explicit and implicit lumps by comparing the CSG value for each lump with the input computation interval.
(2) Determine which of the explicit lumps determined in step (i) are interface lumps. Interface lumps are subsequently treated as implicit lumps. Interface lumps are any explicit lumps which are connected to an implicit lump. If any tube lump is treated as an implicit lump, all tube lumps are treated as implicit lumps.
(3) Calculate explicit lump temperatures using the same $\Sigma G_{j e}\left(T_{j}-T_{i}\right)$ for all interface nodes and for adjacent lumps if the adjacent lumps are implicit.
(4) Calculate fluid and tube lump temperatures for tube lumps which are explicit.
(5) Calculate implicit lump temperatures.

2.1.4 Fluid Temperature Solution for Steady State Problems

The steady state solution subroutines, CINDSS, CINDSL, STDSTL were modified to include a calculation of fluid lump temperatures. The following relations are used for calculating the fluid and tube lump temperatures:

For the tube lump:

$$
\begin{equation*}
T_{t}^{\prime}=\frac{\sum G_{i j} T_{j}+Q_{t}+H A T_{t}}{\sum G_{i j}+H A} \tag{10}
\end{equation*}
$$

For the flutd lump:

$$
\begin{equation*}
T_{f}^{\prime}=\frac{\dot{W} \overline{\mathrm{C}}_{p} \mathrm{~T}_{\mathrm{u}}^{\prime}+\mathrm{HAT}_{t}^{\dagger}+Q_{f}}{\dot{\mathrm{w}} \overline{\mathrm{C}} p^{\prime}+\mathrm{HA}} \tag{11}
\end{equation*}
$$

The following order of calculation is used:
(1) Calculate the fluid lump temperatures.
(2) Calculate temperatures for all other lumps using the normal SINDA temperature equation, except tlide lump temperature equations are modified to inc,iude the $H A$ and HAT terms.

2.1.5 Coefficient To Temperature Equations

A brief description of the methods used to obtain the convection heat transfer coefficient, H, and the mean specific heat for a flowing fluid $\overline{\mathrm{C}} \mathrm{p}$ (Equation 1) is considered to be of value. They are discussed separately below.

Convection Coefficient Determination

Several methods are available to the SINFLO user for determine the heat transfer coefficient, H. The different options are available for each fluid lump and are specified by supplying values for $F 1$, the eighth value of the type array (see Section 4.2). When Fl is real, the programed equations for flow in a tube are used to obtain H. Using this method, the flow regime is assumed to be laminar when the Reynolds number is :000 or less. For this regime the convection heat transfer coefficient is calculated by:

$$
\begin{equation*}
h=\frac{k}{D}\left[3.66 \cdot F 1+\frac{.0155 n F 2}{\frac{1}{R_{e} P_{r}} \frac{X}{D}+.015\left[\frac{1}{R_{e} P_{r}} \frac{X}{D}\right]^{1 / 3}}\right] \tag{12}
\end{equation*}
$$

$$
\text { Where: } \quad \begin{aligned}
k & =\text { thermal conductivity } \\
D & =\text { hydraulic diameter to flow } \\
X & =\text { distance from tube entrance } \\
R e & =\text { Reynolds number } \\
& =\frac{4 \dot{m}}{\mu P} \\
\dot{m} & =\text { flow rate of fluid } \\
\mu & =\text { viscosity of fluid } \\
P & =\text { wetted perimeter of fluid flow passage } \\
F l & =\begin{array}{l}
\text { An input factor for modifying fully } \\
\end{array} \\
F 2= & \text { An input factor for modifying developing } \\
& f l o w
\end{aligned}
$$

Equation (12) is a curve fit obtained by VSD to approximate the Graetz solution to flow in a tube for values of $\frac{X}{D} \frac{1}{\operatorname{RePr}^{\prime}}$ greater than 0.001 . The convection heat transfer coefficient for flow in a tube in the transition flow regime ($2000<\operatorname{Re}<6400$) is approximated by the following relation:

$$
\begin{equation*}
h=\frac{K}{D}\left[0.116\left(\mathrm{Re}^{2 / 3}-125\right)(\mathrm{Pr})^{1 / 3}\right] \tag{13}
\end{equation*}
$$

This relation was derived by Hausen and holds only for fully developed flow. The relation used to determine h for turbulent flow ($\operatorname{Re} \geq 8400$) is the following

$$
\begin{equation*}
h=.023 \frac{K}{D}(\operatorname{Re})^{.8}(\operatorname{Pr})^{1 / 3} \tag{14}
\end{equation*}
$$

If Fl is the integer 1, a more general option is used for determining the convection heat transfer coefficient. A curve of $\operatorname{St}(\mathrm{Pr})^{2 / 3}$ vs Reynolds No. is interpolated to obtain the value of $\mathrm{St}(\mathrm{Pr})^{2 / 3}$. That is,

$$
\begin{equation*}
S t(P R)^{2 / 3}=F(R e) \tag{15}
\end{equation*}
$$

where: \quad St $=$ Stanton number

$$
\begin{aligned}
& =\frac{\mathrm{Nu}}{\operatorname{Re} \operatorname{Pr}} \\
& =\frac{\mathrm{h}}{\mathrm{CpV}}
\end{aligned}
$$

$$
\begin{aligned}
V= & \text { Average fluid velocity } \\
F(R e)= & \text { An arbitrary function of Reynolds number which the } \\
& \text { user inputs as a table (identified by F2) }
\end{aligned}
$$

The heat transfer coefficient is calculated by

$$
\begin{equation*}
\left.h=\frac{K}{D} F_{i} \operatorname{Re}\right) \operatorname{Re}(\operatorname{Pr})^{i / 3} \tag{16}
\end{equation*}
$$

If F1 is input as the integer 2 the convection heat transfer coefficient is obtained by direct interpolation of a curve of heat transfer coefficient vs flowrate which is identified by F2.
Mean Specific Heat
The method for obtaining the convective term ($\dot{W} C p$) in equation (1) was modified with SINFLO to get better accuracy. Rather than just using the lump specific heat, a mean value of specific heat was obtained as follows.

The mean specific heat for a fluid going from upstream temperature T_{u} to fluid lump temperature T_{f} may be obtained in integrating:

$=\frac{h_{f}-h_{u}}{T_{f}-T_{u}}$
Where h is the fluid enthalpy
Equation (17) is used to obtain the mean specific heat for equation (1). The enthalpy curve is required as input.

For temperature lumps that have multiple upstream lumps, such as mixing junctions, the value of h_{u} is determined as follows:

$$
\begin{equation*}
h_{u}=\frac{\sum_{i} w_{i} h u_{i}}{\sum_{i} w_{i}} \tag{18}
\end{equation*}
$$

and the upstream temperature, T_{u}, obtained by reverse interpolation of the enthalpy curve. Equation (17) is then applied using the values of h_{u} and T_{f} thus obtained.

2.1.6 Heat Exchanger Analysis

Five subroutines have been written to facilitate the thermal analysis of systems containing heat exchangers. These are HXCNT for analysis of counter flow heat exchangers, HXPAR for parallel flow heat exchangers, HXCROS for cross flow heat exchangers, HXEFF for any heat exchanger with an input effectiveness, and HXCOND for condensing heat exchangers. These subroutines calculate the outlet temperatures of two sides based upon the inlet temperatures and heat exchanger effectiveness. The relations used for calculating effectiveness are described below.

2.1.6.1 Counterflow Heat Exchanger

Subroutine HXCNT calculates the heat exchanger effectiveness using the relation from Reference 1 for counterflow heat exchangers. That is,

$$
\begin{aligned}
& \left.\epsilon=\frac{\left.1-e^{-\left[\frac{\mathrm{UA}}{(\mathrm{PC})_{s}}\right.}\left\{1-\frac{(\mathrm{MC})_{s}}{(\mathrm{MC})_{1}}\right\}\right]}{1-\frac{(\mathrm{MC})_{S}}{(\mathrm{MC})_{1}}} e^{-\left[\frac{\mathrm{UA}}{(\mathrm{MC})_{S}}\left\{1-\frac{(\mathrm{MC})_{S}}{(\mathrm{MC})_{1}}\right\}\right.}\right] \\
& \text { Where } c \text { effectiveness } \\
& \mathrm{UA}=\text { overall effectiveness } \\
& (M C)_{S}=\text { mass, specific heat product for the side with } \\
& \text { the smallest MC } \\
& (\mathrm{MC})_{l}=\underset{\text { the largest } M C}{\text { mass }} \text { specific neat product for the side with }
\end{aligned}
$$

The limiting cases for this relation are:
(I) When $(M C)_{S} /(M C)_{1}=0$,

$$
\varepsilon=1-e^{-U A /(M C)_{S}}
$$

(2) When $(M C)_{S} /(M C)_{1}=1$

$$
\varepsilon=\frac{\frac{U A}{(M C)_{S}}}{1+\frac{U A}{(M C)_{S}}}=\frac{U A}{(M C)_{S}+U A}
$$

Using the effectiveness as calculated by the above method, the outlet temperares are calculated as follows:

1. For the side with the sma? lest MC, (MC) $)_{S}$:

$$
\begin{equation*}
\operatorname{Tout}_{s}=\operatorname{Tin}_{s}-\varepsilon\left(\operatorname{Tin}_{s}-\operatorname{Tin}_{1}\right) \tag{20}
\end{equation*}
$$

2. The enthalpy of outlet for the side with the large MC is then calculated by

$$
\begin{equation*}
\text { hout }_{\ell}=\operatorname{hin}_{\ell}+\left(\operatorname{hin}_{s}-\operatorname{hout}_{s}\right){\dot{\dot{W}_{s}}}_{\ell}^{\dot{W}_{l}} \tag{21}
\end{equation*}
$$

where: hout $_{\ell}=$ enthalpy of the outiet for the side with the large MC hin $_{\ell}=$ enthalpy of the inlet for the side with the large MC hin $_{s}=$ enthalpy of the inlet for the side with the small MC hou $_{s}=$ enthalpy of the outlet for the side with the small MC
$\dot{W}_{S}=$ flow rate of the side with the small MC
$\dot{W}_{\ell} \quad=\quad$ flow rate of the side with the large $M C$
3. Tout $_{\ell}$ is obtained by reverse internolation of the enthalpy curve at hout $_{\ell}$.
2.1.6.2 Parallel Flow Heat Exchanger

Subroutine HXPAR calculates the heat exchanger effectiveness using the relation for parallel flow heat exchangers ${ }^{7}$ which is:

$$
\begin{equation*}
\epsilon=\frac{1-\mathrm{e}^{-\frac{\mathrm{UA}}{(M \mathrm{MC})_{\mathrm{s}}}\left[\frac{1+(M C)_{s}}{(M C)_{l}}\right]}}{1+\frac{(M C)_{s}}{\left(M \mathrm{MC} l_{l}\right.}} \tag{22}
\end{equation*}
$$

The limiting cases are
(1) When $(M C)_{S} /(M C)_{l}=0$,

$$
\epsilon=1-e^{-U A /(M C)_{5}}
$$

(2) When $(M C)_{S} /(M C)_{1}=1$. ,

$$
\epsilon=\frac{1-e^{\left.-2 \frac{U A}{(M C}\right)_{S}}}{2.0}
$$

The heat exchanger outlet temperatures are then calculated using the method described for HXCNT.

2.1.6.3 Cross Flow Heat Exchanger

Subroutine HXCROS calculates the effectiveness fur cross flow heat exchengers using one of the four relations below depending upon mixing of the streams.

Both Streams Unmixed

$$
\begin{equation*}
\left.\epsilon=1-e^{\left[\left(e^{\left.\left[\frac{U A}{(M C)_{S}(M C)_{S}}\right]_{-1}\right]}\right) \frac{(M C)_{l}}{(M C)_{S}}\right.} \frac{1}{\eta}\right] \tag{23}
\end{equation*}
$$

Where $\quad \eta=\left[\frac{\left(\operatorname{SaC}_{\mathrm{C}}\right)_{s}}{U K}\right]^{0.22}$
Both Streams Mixed

Stream (MC) ${ }_{5}$ Unmixed

$$
\begin{equation*}
\epsilon=\frac{1-e^{-\frac{(M C)_{s}}{(M C)_{l}}}\left[1-e^{-\left(\frac{U A}{(M C}\right)_{s}}\right]}{\frac{(M C)_{s}}{(M C)_{l}}} \tag{25}
\end{equation*}
$$

Stream (MC) Unmixed

$$
\begin{equation*}
c=1-e^{-\frac{(M C)}{(M C)} l}\left[1-e^{-\frac{U A}{(M C)} l}\right] \tag{26}
\end{equation*}
$$

The heat exchanger outlet temperatures are calculated using the method described for HXCNT.

2.1.6.4 User Supplied Effectiveness

Subroutine HXEFF was written to perform heat exchanger thermal analysis with a user supplied effectiveness. The effectiveness may either be supplied as a constant or as an array number which gives the effectiveness as a bivariant function of the flowrates on the two sides. The outlet temperatures are then calculated using the method described for HXCNT.

2.1.6.5 Condensing Heat Exchanger

Subroutine HXCOND was written to analyze a condensing heat exchanger. The effectiveness may either be supplied as a constant or as a trivariant function of humidity, flow rate of the gas, and flow rate of the coolant. The outlet temperatures are calculated as follows:

$$
T G_{\text {out }}=T G_{i n}-\varepsilon\left(T G_{i n}-T C_{i n}\right)
$$

where: $\quad T G_{\text {out }}=$ temperature of the gas out of the heat exchanger
E = effectiveness
$T G_{i n}=$ temperature of the gas into the heat exchanger
$T C_{\text {in }}=$ temperature of the coolant into the heat exchanger

The saturation pressure is given by

$$
\left.\mathrm{PB}_{\text {out }}=.1217 \mathrm{e}^{\left(19.3 \frac{\mathrm{TG}}{\mathrm{oout}^{-500}}\right.} \frac{\mathrm{TG}}{\text { out }}\right)
$$

where: $\quad \mathrm{PB}_{\text {out }}=$ saturation pressure of the gas
And the outlet humidity is

$$
\psi=\frac{\text { XMIMO } \cdot \text { PBOUT }}{P-\text { PBOUT }}
$$

Where $\psi=$ humidity ($\psi_{\text {in }}>\psi_{\text {out }}>0$)

$$
\begin{aligned}
\text { XMIMO } & =\text { molecular weight ratio } \\
P & =\text { total gas pressure }
\end{aligned}
$$

The flow rate of the liquid is

$$
\dot{w}_{\ell}=\dot{w}_{g}\left(\psi_{i n}-\psi_{\text {out }}\right)
$$

where: $\quad \dot{W}_{\ell}=$ flow rate of the liquid

$$
\tilde{w}_{g}=f l o w \text { rate of the gas }
$$

The enthalpy of the coolant out of the heat exchanger is

$$
h c_{\text {out }}=h c_{i n}+\frac{\left[\left\{\left(h g_{\mathrm{in}}+h g_{\mathrm{out}}\right) \dot{w}_{\mathrm{g}}\right\}+\dot{w}_{\ell} \cdot X L A M\right]}{\dot{w}_{\mathrm{c}}}
$$

where: XLAM = latent heat of vaporization
The outlet temperature of the coolant is obtained by reverse interpolation of the enthalpy curve at he out.

2.1.7 Cabin Analysis

A subroutine has been written for use with SINDA which will give the user the abjlity to perform themal analyses on cabin air systems including condensation on the walls and a vapor mass balance. The cabin heat transfer and condensation analysis involves the two-component flow of a condensible vapor and a non-condensable gas, with condensation of the vapor occurring on surfaces in contact with the fluid. Two problems of this nature have been studied extensively.

1. Condensation on, or evaporation from, a surface over which a free stream of fluid is passirg. In this case, for relatively low mass transfer rates, the fluid properties can be assumed to be consさint.
2. Dehumidification of a confined fluid stream by a bank of tubes. In this case there is a marked change in the temperature and vapor content of the fluid, and the detailed deposition of the condensate is not of primary interest. This type of analysis is usually handled or an overall basis similar to heat exchanges effectiveness calculations.
The following additional assumptions have been made with respect to the cabin atmospheric conditions.
3. The heat of circulation in the cabin is sufficiently high that the temperature and rumidjty are effectively the same throughout the cabin.
4. The velocity at all points where heat transfer and/or condensation can occur is known, and is proportional to the total mass flow rate in the cabin.

These assumptions make it possible to calculate the heat and vapor balance in the cabin for the entire volume as a unit, and to solve the heat transfer and condensation equations at each node independently of the other nodes.

Cabin humidity can be determined from an overall vapor balance in the cabin. The total vapor in the cabin at the end of an iteration is:

$$
W_{V}=W_{v}{ }^{i-1}+w_{v} \text { in }-W_{V} \text { out }-\sum W_{L}
$$

Where W $W_{\text {W }}$ mass of vapor in cabin at end of iteration i

$$
W_{v}^{i-1}=\text { mass of vapor in cabin at start of iteration } i-1
$$

$$
W_{v} \text { in }=\text { mass of vapor flowing into cabin during iteration } f
$$

$$
W_{v} \text { out }=\text { mass of vapor flowing out of cabin during iteration } i
$$

$$
\Sigma W_{L}=\text { mass of vapor condensed during iteration } \cdot 1
$$

W_{v} in is determined from the known conditions of the gas flowing into the cabin.

$$
W_{v i n}=m \text { in }\left[\frac{\psi_{i n}}{1 . \psi_{i n}}\right]
$$

Where $\quad \dot{m}$ in $=$ mass flow rate into cabin

$$
\begin{aligned}
\psi \text { in } & =\text { specific humidity of gas flowing into cabin } \\
& =\text { time increment. }
\end{aligned}
$$

It is assumed that an equal volume of gas is flowing out of the cabin. Then,

$$
W_{v ~ o u t ~}=\dot{m} \text { out }\left[\frac{\psi_{c}}{1+\psi_{c}}\right]
$$

Where $\quad \psi_{\mathbf{c}}=$ specific humidity in the cabin (at the end of the previous iteration)
and $\quad \dot{m}$ out $=\dot{m}$ in $\left[\mathcal{A} / \rho_{\text {in }}\right]$
Where $\quad \rho_{c}=$ cabin density

$$
\rho \text { in }=\text { density of gas flowing into cabin }
$$

The condensation term ΣW_{L} is determined from the calculations for the individual nodes as described below. The properties of the cabin atmosphere are determined from the calculated value of H_{y}. The vapor pressure
in the cabin is

$$
P_{V}=\frac{W_{V}}{V_{c}} \quad R_{V} T_{C}
$$

Where $\quad V_{C}=$ cabin volume
$R_{V}=$ gas constant
$T_{C}=$ temperature of cabin gas
$P_{v}=$ vapor pressure
Assuming that the cabin pressure P_{c} is a constant, the gas partial pressure P_{a} is:

$$
P_{a}=P_{c}-P_{v}
$$

and

$$
W_{a}=\frac{P_{a}}{R_{a}} \frac{T_{c}}{}
$$

Where $W_{a}=$ mass of non-condensible gas in the cabin.
Now the new value of specific humidity in the cabin can be determined by

$$
\psi_{c}=\frac{W_{V}}{W_{a}}
$$

The properties of the atmosphere can now be determined by

$$
\begin{aligned}
\mu_{c} & =\frac{\chi \mu_{g}+\psi_{C} \mu_{V}}{x+\psi c} \\
C p c & =\frac{C p g+\psi c C p v}{\psi+\psi} \\
k_{c} & =\frac{\chi k g+\psi c_{k v}}{X+\psi c} \\
\rho_{c} & =\frac{W_{V}+W_{S}}{V_{C}}
\end{aligned}
$$

Where

$$
\begin{array}{ll}
\mu & =\text { viscosity } \\
\mathrm{C}_{\mathrm{p}} & =\text { specific heat } \\
\mathrm{k} & =\text { thermal conductivity } \\
X & =\text { molecular weight ratio, } \frac{M_{v}}{M_{g}}
\end{array}
$$

and all values are evaluated at $T_{C}{ }^{i-1}$. Cabin temperature T_{C} can be determined by a heat balance on the cabin atmosphere.

$$
T_{c}=T_{c}{ }^{i-1}+\frac{\dot{m} \text { in } C_{p c}\left(T_{i n}-T_{c}{ }^{i-1}\right)-\Sigma Q_{L}}{\left(W_{v}+W_{A}\right) C_{p c}}
$$

Where
$T_{c}{ }^{i-1}=T_{c}$ after previous iteration
$T_{\text {in }}=$ temperature of gas flowing into cabin
$\Sigma Q_{L}=$ net heat loss to cabin lumps
The heat transfer between the cabin atmosphere and the tube and structure lumps in the cabin is defined by:
$Q_{L:}=h A_{L i}\left[T c-T_{L i}\right] \Delta T$
Where $h \quad=$ heat transfer coefficient
$A_{L i}=$ heat transfer area of lump
$\mathrm{T}_{\mathrm{Li}}=$ temperature of tube lump
$\Delta r=$ time increment
using the Colburn-Chilton heat transfer-mass transfer analogy, the condensation (or evaporation) at the tube lump is determined by:
$\Delta W_{L i}=K_{m} A_{L i}\left[P_{V}-P_{w i}\right] \Delta r$
Where

$$
\begin{aligned}
& W_{L i}=\text { condensation on wall, } 1 \mathrm{~b} . \\
& K_{\mathrm{m}}=\text { mass transfer coefficient } \\
& \mathrm{P}_{\mathrm{wi}}=\text { vapor pressure at } T_{\mathrm{Li}}
\end{aligned}
$$

The latent heat addition to the lump due to this condensation is

$$
\Delta Q_{\lambda}=\Delta W_{L i} \lambda
$$

Where $\quad \lambda=$ latent heat of vaporization
The vapor pressure $P_{w i}$ can be determined by a relationship derived from the Clausius-Clapeyron equation and the perfect gas law (Appendix K of Reference 3).

$$
P_{w i}=P_{0} \exp \left\{\frac{\lambda}{R_{g} T_{0}}\left[\frac{T_{L i}-T_{0}}{T_{L i}}\right]\right\}
$$

Where P_{0} is known vapor pressure at a reference temperature T_{0}.

Three methods are available for determining mass and heat transfer coefficient. For tube lumps the equations from Referenca 1 for gas flowing normal to the tube axis was assumed. Three different equations are used depending on the value of the Reynold's number.

$$
\begin{aligned}
& \mathrm{Nu}=0.43+.533(\mathrm{Re})^{.5}(\mathrm{Pr})^{.31} \mathrm{Re}<4000 \\
& \mathrm{Nu}=0.43+.193(\mathrm{Re})^{.618}(\mathrm{Pr})^{.31} \quad 4000<\mathrm{Re}<40000 \\
& \mathrm{Nu}=0.43+.0265(\mathrm{Re})^{.805}(\mathrm{Pr})^{.31} \quad 40000<\mathrm{Re}<400000
\end{aligned}
$$

These equations were derived for an air-vapor mixture, but should be relatively accurate for other similar gases. The Nusselt and Reynold's numbers in the equations are defined using the tube diameter for the characteristic dimension, and the velocity in the Reynold's number is input at each lump and ratioed to the total cabin atmosphere flow rate.

Where $\dot{W} c o=$ nominal cabin atmosphere circulation rate vio = velocity at lump at Wco $\dot{W}_{C}=$ circulation rate at time of calculation

The second option assumes flat plate flow for cabin wall lumps. In this case the heat transfer coefficient, for laminar flow, varies along the plate. Hence, direction of gas flow and the location of an assumed leading edge must be assumed. The equation for flat plates from Reference 1 is:

$$
N_{u}=0.332 \mathrm{Re}^{.5} \mathrm{Pr}^{1 / 3}
$$

Where the Nusselt and Reynold's numbers are local values and are defined by the distance X from the assumed leading edge. For a wall lump of length L_{i} which is located a distance $L_{j o}$ from the assumed leading edge, the
average Nusselt number can be defined as:

$$
N_{u}=0.664 \operatorname{Pr}{ }^{1 / 3}\left[\left(R e_{1}\right) \cdot 5-\left(R e_{0}\right) \cdot 5\right]
$$

Where $\quad N u$ is defined by L_{i}
Re_{o} is defined by L_{i}
Re_{1} is defined by $\mathrm{L}_{\mathrm{io}}+\mathrm{L}_{\mathrm{i}}$
The third option is a direct user input for convective heat transfer coefficient.
For the determination of mass transfer coefficients, the same equations which were used for heat transfer coefficient can be used with the Sherwood number substituted for Nusselt numioer and Schmidt number for Prandtl number. However, if the diffusion coefficient for the cabin is approximately equal to thermal diffusivity, the Sherwood number is equal to the Nusselt number and the mass transfer coefficient can be determined directly from the heat transfer coefficient. That is:

$$
\begin{aligned}
S h & =N u \\
\frac{\mathrm{~K}_{\mathrm{m}} \mathrm{R} T_{g} \mathrm{x}}{\mathrm{D}} & =\frac{n_{x}}{\mathrm{k}}
\end{aligned}
$$

If $D \cong a$ then

$K_{m} \cong \frac{h}{C_{p} P_{c}}$
Equation (28) is the Lewis relationship (Reference 1). For a mixture of oxygen and water vapor characteristic values are .866 for the diffusion coefficient, D, and .879 for thermal diffusivity, α, so the relationship should be vaild.

For cabin tube and wall 1 umps the values for $\Delta Q_{L i}$ and $\Delta Q_{\lambda i}$ are added to the basic heat balance equation for these lumps. Values for ΔQ_{Li}
are summed for all participating lumps for input to the cabin atmosphere heat balance. Values for $\Delta W L_{i}$ are also summed for all lumps for cabin humidity balance, and the value for total water condensed on each lump W_{i} is maintanned.

If the rate of evaporation or condensation is high it would be possible for the cabin humidity to change significantly during a single iteration. This could lead, for example, to overestimating condensation by assuming that the humidity is constant in the calculation. A test of the approximate vapor pressure in the cabin at the end of the iteration is made, and the condensation or evaporation at any lump is reduced, if the sign of the ΔW_{i} term is changed. A value W_{V} is calculated by:

$$
W_{V}^{\prime}=W_{V}^{i-1}-\Sigma W_{L}^{i}
$$

and

$$
P_{v}!=\frac{W_{v}^{\prime}}{144 V_{C}} \quad R_{v} T_{g}
$$

Then for each lump if

$$
\frac{P_{V}{ }^{\prime}-P_{W i}}{P_{V}-P_{W i}}<0
$$

a new value of $\Delta W_{L} i$ is calculated by:

$$
\Delta W_{L j}=\Delta W_{L i}\left[\frac{P_{V}-P_{W i}}{P_{V}-P_{V}^{\prime}}\right]
$$

The new values of $\Delta W_{\text {Li }}$ are now again summed for the new value of $\Sigma \Delta W_{\mathrm{L}}$ for establishing cabin humidity for the next iteration. A test is also made to assure that $W_{V}{ }^{\prime}$ is never less than zero.

2.2 Fluid Flow Analysis

Subroutine FLisol was written as a SINDA user subroutine to provide the ability to perform fluid pressure/flow analysis for flow of an incompressible fluid in tubes. The fluid flow analysis of FLOSOL is integrated with the themal analysis capability so that the temperature dependence of properties is included in the pressure balances. FLOSOL is called from the VARIBLES 2 user logic biock.

FLOSOL performs a pressure-flow balance on a general flow network including the following effects:
(1) Friction pressure drop
(2) Orifices and fitting type pressure losses
(3) Vaives
(4) Pumps
(5) Incoming flow sources at any pressure point in the system The user describes the flow model to the subroutine by supplying the tube network connections and information concerning fluid properties, flow geometry, temperature model lumps, orifices, valves and pumps. Using this information, the subroutine determines the flow distribution required to satisfy (1) the conservation of mass at each node point and (2) equal pressure drops across tubes in parallel. The model used to describe the flow system and the analytical methods for determining the solution are described below.

2.2.1 Overall Flow Model Description

A flow problem may be analyzed with FLOSOL, simultaneously with a thermal analysis, so that the flow solution is continually updated based on the thermal conditions. To perform a flow analysis, the user must input a mathematical model of the flow system. The flow system is assumed to consist of a set of interconnected tubes such as the example shown in Figure 1 , which consists of two radiator panels, each containing four tubes and connected so that they flow in parallel.

For clarity the following definitions are made at this point:

(x) Tube Numbers

XX Pressure Nodes

FIGURE 1 FLOW SYSTEM SCHEMATIC
(I) A tube is any single length of pipe between two pressure nodes. A tube "contains" fluid temperature nodes and may contain 2.5 many of these as required.
(2). A pressure node is located at each end of a tube. As many tubes as desired may be connected at a node junction and a node must exist at the junctions of two flow pipes.
We must make a mathematical model to describe the fluid flow information to the computer. The information required consists of:
(1) Identification of the pressure node numbers
(2) Identification of the tube numbers and the two pressure nodes connected by tube
(3) The fluid temperature nodes contained in each tube
(4) The flow geometry for each temperature fluid nodes
(5) The number of "head losses" for items such as orifices
(6) Fluid property information
(7) Valve connections and characteristics
(8) Pump characteristics

To build a flow mathematical model, a schematic of the flow system is needed. As shown in Figure 1, the pressure nodes and tubes may be superimposed on the schematic. It is also helpful to impose the fluid temperature lump numbers for each tube.

To facilitate speedy analysis on a general flow problem, provisions have been made for the user to divide the flow system network into subnetwork elements. For example, the flow system shown in Figure 1 could be divided as shown in Figure 2. Tubes 23 and 24 are added in the main network as shown in 2(a) to replace subnetwork elements 1 and 2. The subnetwork elements 1 and 2 which are shown in Figures 2(b) and ?(c) are then input as separate network elements. This type of subdivision allows the solution to be obtained by solving two sets of 6 simultaneous equations and one set of 8 equations rather than the original set of 16 simultaneous equations. This type of subdivision has been found to enhance the solution speed and accuracy for problems with a large number of nodes.

In summary, the pressure/flow solution is obtained by the following sequence:

a) Main Flow Network

b) Subnetwork No. 1

c) Subnetwork No. 2

FIGURE 2 MAIN NETWORK AND SUBNETWORKS
(1) The flow resistance is obtained for each fluid temperature lump in each tube including the effects of friction, orifices, and fitting type losses.
(2) The flow conductor value is obtained for each tube by summing all the resistances of the fluid lumps in the tube, adding the valve and user supplied resistance to the sum, and inverting the resistance.
(3) A set of simultaneous equations is set-up and solved for each main system and subnetwork to obtain the pressures.
(4) The flow rates are then calculated.

A detail discussion of each element in the above sequence is described in the following subsections.

2.2.2 Tube Conductor Determination

The value of the flow conductor is determined for each tube by first calculating the flow resistance for each temperature fluid lump contained in the tube, summing these resistances up to obtain the flow resistance of the tube and inverting the tube resistance to get the conductance. Flow conductance is defined by the relationship

$$
\begin{equation*}
\dot{W}_{i j}=G F_{i j}\left[P_{i}-P_{j}\right] \tag{29}
\end{equation*}
$$

Where $\dot{w}_{i j}=$ flow rate between pressure nodes \mathbf{i} and \mathbf{j} $\mathrm{GF}_{\mathrm{ij}}=$ flow conductance between nodes i and j $\mathrm{P}_{\mathrm{i}}=$ pressure at pressure node \mathbf{i} j = pressure at pressure node j

The flow resistance for each lump is then

$$
R_{K}=\frac{l}{G F}=\frac{\Delta P_{k}}{\dot{W}}
$$

Where $R_{k}=$ flow resistance for lump k $\Delta P_{k}=$ pressure drop for lump k

But ΔP_{k} is given by

$$
\begin{equation*}
\Delta P_{k}=\left(f_{k} \cdot f f c \cdot \frac{L_{k}}{D_{k}}+k\right) \quad \frac{\dot{w}^{2}}{2 g_{c} \rho_{k} A^{2}} \tag{30}
\end{equation*}
$$

$$
\text { Where } \begin{aligned}
f_{k} & =\text { the friction factor for lump } k \\
f f c & =\text { the friction factor coefficient } \\
L_{k} & =\text { the lump length for lump } k \\
D & =\text { the lump hydraulic diameter for lump } k \\
K & =\text { the dynamic head losses for lump } k \\
\dot{W} & =\text { the flow rate } \\
g_{C} & =\text { the gravitational constant } \\
\rho_{k} & =\text { the fluid density for lump } k \\
A & =\text { the flow area }
\end{aligned}
$$

The flow resistance is then given by

$$
\begin{equation*}
R_{k}=\left(f_{k} f f c \frac{L_{k}}{D_{k}}+k\right) \frac{\dot{w}}{2 g_{c} \rho_{k} A^{2}} \tag{31}
\end{equation*}
$$

Two options are available for obtaining the friction factor, f_{k}. These are (1) internal calculations for all flow regimes and (2) internal calculation for laminar flow and obtained from a table of f vs Re (where Re is the Reynold"s number) for transition and turbulent flow. For the first option the internal calculations for the three flow regimes are:

Laminar Regime: $\quad \operatorname{Re}_{k} \leq 2000$.

$$
\begin{equation*}
f_{k}=\frac{64}{R e_{k}} \tag{32}
\end{equation*}
$$

Where $f_{k}=$ friction factor for lump k
Re $_{k}=$ Reynolds number for Tump k
Transition Regime: $\quad 2000<\mathrm{Re}_{\mathrm{k}}<4000$

$$
\begin{align*}
f_{k}= & .2086082052-.1868265324\left[\frac{\operatorname{Re}_{k}}{1000}\right] \tag{33}\\
& +.06236703785\left[\frac{R e_{k}}{1000}\right]^{2}-.0065545818\left[\frac{\operatorname{Re}_{k}}{1000}\right]^{3}
\end{align*}
$$

$$
\begin{equation*}
f_{k}=\frac{.316}{\left(\operatorname{Re}_{k}\right)^{.25}} \tag{34}
\end{equation*}
$$

Equation (33) for the transition regime is a curve fit between the laminar and turbulent regimes which was derived to match the two curves in a continuous manner. It is merely an arbitrary curve in this undefined region. A curve of the friction factor vs Reynold's number given by the above relations is shown in Figure 3.

The second option for friction factor uses equation (32) for the laminar regime and a user input curve of f_{k} ve $R e$ for the other regimes. The options availabie for input of the dynamic head loss, K, include (1) an input constant or (2) a tabulated curve of K vs Re.

To obtain the conductance for each tube, the flow resistances for all the lumps in the tube are added and then inverted, giving

$$
\begin{equation*}
G F_{i j}=\frac{1}{\sum_{k} R_{k}} \tag{35}
\end{equation*}
$$

2.2.3 Valve Analysis

Two methods have been included in the FLOSOL subroutine for modeiting valves. These are (1) pressure drop through the valve is included in the system flow balance and (2) valve position is used as a fraction for splitting the flow. The first method uses the following equation to characterize the pressure drop through each side of the valve:

$$
\Delta P=E\left[\frac{\dot{W}}{X}\right]^{2}
$$

where $\Delta P=$ vaive pressure drop
$E=$ valve pressure drop factor (user input)
$\dot{\omega}=$ flow rate through the side of the valve under consideration
$x=$ the fraction of the valve opening
The second method for modeling valves uses the valve position as a fraction for splitting the flow into the valve according to the following equation:

$$
\dot{w}_{i}=x_{i} \dot{w}_{i n}
$$

where $\quad \begin{aligned} \dot{w}_{\dot{j}} & =\text { flow rate out side } i \text { of the valve } \\ x_{j} & =\text { valve position of side } i \\ \dot{w}_{i n} & =\text { flow rate into the valve }\end{aligned}$
The pressure drop through the valve is not included in the system flow balance.
The valve pressure drop factor controls which method is used. The first method is used when the valve pressure drop factor is greater than 0 . To specify the second method the user must input a 0 for the valve pressure drop factor. For either method the value of X must be greater than 0 and less than 1 .

Three basic types of valves are available in FLOSOL for either the pressure drop or the flow splitting formulations which give different characteristics for the dynamics of the valve position X. These types are: (1) Rate Limited; (2) Polynomial, and (3) Shut-off.
A number of variations are available for each valve type. For instance, each of the above may be either one sided or two sided. If a valve is two sided, the valve position of side $2, x_{2}$, is related to that of side one by

$$
x_{2}=1.0-x_{1}
$$

If the valve is one sided, either side one or side two may be used. Provisions are included for a valve time constant to be included with the polynomial valve.

The methods used to obtain the valve positions for each of the three types are described below.

2.2.3.1 Rate Limited Valve

The valve position for the rate limited valve is obtained by an approximate integration of the valve rate of movement, \dot{x}. \dot{x} depends on the temperature difference between the valve control set point temperature and the sensor temperature as shown in Figure 4. With this characteristic, the valve has no movement as long as the valve temperature error, ΔT, is within the dead band. Outside the dead band, the velocity of the valve increases linerarly as the error increases to a maximum rate, \dot{x} max. The dead band, rate of velocity increase, $d \dot{x} / d(\Delta T)$, and the maximum velocity are controlled by user input.

The relations used to obtain the valve positions are as follows:

$$
\begin{equation*}
x^{i+1}=x^{i}+\left(\dot{x}^{i+1}\right)\left(\Delta^{r}\right) \tag{36}
\end{equation*}
$$

Where $x^{i+1}=$ valve position at iteration $j+1$
$x^{i}=$ valve position at iteration i
$\dot{x}_{\Delta r}^{\dot{i} 1}=$ value velccity at iteration $i+1$
$\Delta r=$ the problem time increment

FIGURE 4 RATE LIMITED VALVE OPERATION

The valve position is 1 imited by
$x \min \leqslant x^{i+1} \leqslant x \max$
Where X min and X max are input limits on the valve position. The valve velocity, \dot{x}^{x+1}, in equation (3E) is given by:

$$
\dot{x}^{i+1}=0 \quad \text { if } \mid \text { Tsen - Tset } \mid \leq T d b
$$

where: $\dot{X}^{i+1}=\frac{d \dot{X}}{d(\Delta T)}$ [Tsen-Tsei-Tdb] if T ren $>$ Tset $4 T d b$
$\dot{x}^{i+i}=\frac{d \dot{x}}{d(\Delta T)}[T$ sen-Tset-Tdb] if T sen $<$ Tset $-T d b$
Tsen = sensor lump temperature
Tset $=$ set point temperature
Tdb $=$ valve dead band temperature
The valve velocity is limited by

$$
\dot{x}_{\min } \leqslant \dot{x}^{i+1} \leqslant \dot{x}_{\max }
$$

After the valve position for side 1 is obtained from equation (3F), the side 2 position is obtained from $x_{2}=1.0-x_{1}$

2.2.3.2 Polynomial Valve

The potynomial valve determines the steady state valve position as a 4th degree polynomial function of the temperature error between the sensor lump and the set point. A valve time constant is then applied to determine how far between the previous position and the new steady state position the vaive will move. The steady state position, $X_{S S}$, is given by

$$
x_{s s}=A_{0}+A_{1} \Delta T+A_{2} \Delta T^{2}+A_{3} \Delta T^{3}+A_{4} \Delta T^{4}
$$

Where $\Delta T=$ Tsen - Tset
Tsen $=$ the sensor lump temperature
Tset $=$ the set point temperature
$A_{0}, A_{1}, A_{2}, A_{3}, A_{4}=$ input constants

The valve position, $x^{i+\top}$ is then determined by

$$
\begin{equation*}
x^{i+1}=x_{s s}+\left(x^{i}-x_{s s}\right) e^{-\Delta r / t_{c}} \tag{37}
\end{equation*}
$$

$$
\text { Where } \begin{aligned}
x^{i+1} & =\text { valve positon at iteration } i+1 \\
x^{i} & =\text { valve position at iteration } i \\
\Delta r & =\text { problem time increment } \\
r_{C} & =\text { valve time constant }
\end{aligned}
$$

The valve position for side 2 is given by

$$
x_{2}=1.0-x_{t}
$$

where X_{1} is given by equation (37)

If one desires to eliminate the effect of the time constant (and thus, give the valve an instantaneous response), a value for τ_{c} shouid be input which is small compared to the time increment, $\Delta \tau$. Also, either a constant value or a temperature lump number may be specified for the set point to permit use of the valve for proportioning between two sides.

2.2.3.3 Shut-off Valve

For side 1 of a shut-off valve the valve position decreases from $X_{\max }$ to $X_{\text {min }}$ when the temperature of the sensor lump drops below the specified "off" temperature, $T_{0 f f}$, and increased from $X_{m i n}$ to $X_{\text {max }}$ when the sensor lump exceeds a second specified temperature, Ton. Ton must be greater than Toff. Side 2 works in reverse of side 1 . The valve position increased from $X_{m i n}$ to $X_{\text {max }}$ when the sensor temperature drops below the specified Ton and decreases from $X_{\max }$ to $X_{\min }$ when the sensor lump increases above the off temperature, Toff. For side 2, Toff must be greater than $T_{\text {on }}$. Note that, if the shut-off vaive is a two sided valve with both sides active, the valve is a switching valve.

2.2.3.4 Valve Flow Resistance Calculations

The valve pressure drop on side one is assumed to be given by:

$$
\begin{equation*}
\Delta P=E\left[\frac{\dot{W}}{\bar{X}}\right]^{2} \tag{38}
\end{equation*}
$$

Since flow resistance is $\Delta P / W$, the valve flow resistance is given by

$$
\begin{equation*}
R_{v}=\frac{E w}{x^{2}} \tag{39}
\end{equation*}
$$

This value of flow resistance is calculated and added to the other flow resistances of the tube prior to performing the operation in equation (35) to find the value of the flow conductor for the tube.

Valves may be either one way or two way, i.e., be one tube or two tubes at the outlet. If only one tube exists on the valve outlet the flow resistance is calculated using equation (39) above. If a second tube exists, the resistance on side 2 is given by

$$
\begin{equation*}
R_{v 2}=\frac{E_{2} \dot{w}_{2}}{(1-x)^{2}} \tag{40}
\end{equation*}
$$

2.2.4 Pressure-Flow Network Solution

As previously stated, the user may subdivide a system flow network into a main network and subnetwork elements. The elements which are subnetworks to the main network may also contain subnetwork elements but the subdivision can go no lower than two levels.

After the flow conductor values have been obtained by the methods described in Sections 2.2 .2 and 2.2.3 a set of simultaneous equations are set up and solved for the main system and for each subnetwork. The subnetwork elements are all solved first and then, their equivalent flow conductor value is calculated. The value is inserted in the main system network and the system solution is obtained. The procedure is repeated until the problem is balanced.

A set of simultaneous equations are obtained by conservation of mass at each pressure node for each network and subnet.tw.rk. For any node it the cons, rvation equation can be written as follows:

$$
\begin{align*}
& \sum \dot{w}_{\text {out }}-\sum \dot{w}_{i n}=0 \tag{41}\\
& \text { Let } \quad \dot{w}_{i n}={\underset{w}{i}}^{\text {and }} \quad \sum \dot{w}_{\text {out }}= \\
& \sum_{j=1}^{\text {nc }} G F_{i j}\left[P_{j}-P_{i}\right]
\end{align*}
$$

Then equation (47) becomes

$$
\sum_{J=1}^{n} G F_{i j}\left[P_{j}-P_{i}\right]-\mathscr{w}_{i}=\dot{0} \quad i=1, n
$$

Where $\quad \mathrm{GF}_{\mathbf{i j}}$. = flow conductor between pressure nodes \mathbf{i} and \mathbf{j}
$\mathbf{P}_{\boldsymbol{i}}=$ pressure at node \boldsymbol{i}
$\mathbf{P}_{\mathbf{j}}=$ pressure at node \mathbf{j}
$w_{i}=$ flow rate added at node \mathbf{i}
$n \quad=$ number of pressure nodes in the subnetwork
The above equation is a set of n simultaneous equations for P array. Pressure in the system or subsystem may be set at a specified level but the last (outlet) node must be specified. Equation (42) may be written in matrix form as:

$$
\begin{equation*}
G P=C \tag{43}
\end{equation*}
$$

Where

$$
G=\left[\begin{array}{cccc}
\sum G F_{i j} & -G F_{12}-G F_{13} \cdots \cdots \cdots \cdots \\
-G F_{21} & \sum^{G F_{2 j}}-\mathrm{GF}_{23} & \cdots \cdots \cdots \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \\
\cdot & \cdot & \cdot & \\
-G F_{n-1,1} & -G F_{n-1,2} & \cdots \cdots & \sum_{n-1, j}
\end{array}\right]
$$

$$
\begin{aligned}
& P=\left[\begin{array}{c}
P_{1} \\
P_{2} \\
\cdot \\
\cdot \\
P_{n-1}
\end{array}\right] \\
& c=\left[\begin{array}{l}
\ddot{w}_{1}+G F_{7 n} P_{n} \\
\dot{W}_{2}+G F_{2 n} P_{n} \\
\cdot \\
\vdots \\
\dot{W}_{n-1}+G F_{n-11} \\
P_{n}
\end{array}\right]
\end{aligned}
$$

P_{n} is the specified pressure. The above equations are solved for pressures at each point in the system and flow rates are then calculated for each tube by:

$$
\dot{W}_{i}=G F_{i j}\left(P_{i}-P_{j}\right)
$$

Since the coefficient matrix given by equation (43) is symetric and positive definite the efficient square root or Symmetric Cholesky method was programmed to obtain the solution. This method is more accurate and faster than any other methods studied for this application.

Since the flow conductors are functions of the flow rate, the set of equations given by (43) are solved numerous times on each temperature iteration with a new set of $\mathrm{GF}_{\mathrm{ij}}$ values for each solution. The iteration
process continues until the change in the flowrates is within some user specified tolerance before proceeding to the next iteration.

2.2.5 Pump and System Pressure - Flow Matching

Concurrent with iterating the system flow equation to solution on each temperature iteration, the overall system pressure drop and flowrate must be matched to a pump characteristic. Several types of pump characteristics are available to the user as options. These are (1) system flow rate specified as a constant, (2) system flowrate specified as a known function of time, (3) pressure drop specified as a function of the flowrate in a tabulated form and (4) pressure drop specified as a function of flowrate with a fourth degree polynomial curve.

The first two options require no balancing of the pump with the system. Balancing is requirad for options (3) and (4) and iterative procedures have been devised to obtain the solution of the pump curve to the system characteristics with as few passes as possible through the system pressure/flow balancing locp for these options. The procedures used for these options are described below.
2.2.5.1 Tabulated Pump Curve Solution

The matching of a tabulated pump pressure rise/flow characteristic to the system pressure drop/flow characteristic is accomplished by the following procedure. See Figure 5 to aid in understanding the procedure.

Step 1 : The initial flowrate, ${ }^{\circ}$, at the system inlet is established either from user input on the first iteration or the system flow of the previous iteration for subsequent iterations.
Step 2 : Using \dot{W}_{7}, a solution to the flow network is obtained using the methods described in Sections 2.2.2, 2.2.3 and 2.2.4. Following this solution, $\Delta \mathrm{P}_{1}$ is available establishing point 1 on the true system characteristic curve shown in Figure 5.
Step 3 : Obtain an equation for the straight line approximation of the system characteristic (line 0, 1 for the first pass, line 1, 2 for the second pass, etc.)

$$
\Delta P_{S}=C \dot{W}_{S}+D
$$

FIGURE 5 SYSTEM/PUMP CURVE SOLUTION
where $\quad c=\frac{\Delta P_{1}-\Delta P_{0}}{\dot{W}_{1}-W_{0}}$

$$
D=\Delta P_{0}-\frac{\Delta P_{1}-\Delta P_{0}}{\dot{W}_{1}-\dot{W}_{0}} \dot{W}_{0}
$$

$\Delta \mathrm{P}_{S}, \dot{w}_{S}$ are the system pressure drop and flowrate values given by the approximate equation
$\Delta \mathrm{P}_{1}, \dot{W}_{1}$ are the latest values for system pressure drop and corresponding system flowrate
$\Delta P_{0}, \dot{w}_{0}$ are the values for system pressure drop and corresponding system flowrate for the previous pass (These values are zero for the first pass)
Step 4 : Obtain the equation of the line connecting points ap and b_{1} which is an approximation of the pump characteristic.
(1) Two points are determined on the pump characteristic curve:
(a) interpolate the tabulated characteristic at \dot{W}_{1} to ubtain $\Delta \mathrm{P}_{\mathrm{a}}$ (See Figure 5) to locate point al at $\left.\dot{W}, \Delta P_{a}\right]$. If \dot{W}_{1} is greater than $\dot{W}_{\text {max }}$, set ${ }^{\prime}$ equal to $\dot{W}_{\text {max }}$ and $\Delta \mathrm{P}_{\mathrm{a}}$ equal to zero.
(b) reverse interpolate the tabulated characteristic at $\Delta \mathrm{P} \eta$ to obtain \dot{W}_{b} to locate point bl on the curve. If $\Delta \mathrm{P}_{1}$ is greater than $\Delta \mathrm{P}_{\max }, \Delta \mathrm{P}_{\mathrm{j}}$ is set to $\Delta \mathrm{P}_{\max }$ and \dot{W}_{b} is set to zero.
(2) Determine the coefficients A and B for the equation

$$
\begin{gathered}
\Delta P_{p}=A \dot{W}_{p}+B \\
\text { where } A=\frac{\Delta P_{1}-\Delta P_{a l}}{\dot{W}_{b 1}-\dot{W}_{1}} \\
B=\Delta P_{a l}-\frac{\Delta P_{1}-\Delta P_{a l}}{\dot{W}_{b 1}-\dot{W}_{1}}
\end{gathered}
$$

$\Delta P_{p}, \dot{W}_{p}$ are the pump pressure rise and flowrate as given by the approximation.
Step 5 : Solve the approximate equations obtained in Steps 3 and 4 to obtain an approximate solution to the system characteristic and the pump characteristic (Point N) as follows:

$$
\begin{aligned}
\dot{W}_{N} & =\frac{D-B}{A-C} \\
\Delta P_{N} & =A \dot{w}_{3}+B
\end{aligned}
$$

Step 6 : Check the tolerance below where \dot{W}_{n-1} is the previous WN (W_{1} for the first time through)

$$
\text { is } \quad \frac{\dot{w}_{N}-\dot{w}_{N-1}}{\dot{w}_{N-1}}<.007
$$

(1) If the above inequality equation is not satisfied repeat steps 4 through 6 substituting \dot{W}_{N} for \dot{W}_{1} and $\Delta \mathrm{P}_{\mathrm{N}}$ for $\Delta \mathrm{P}_{1}$
(2) If the inequality is satisfied the point Sl (Figure 5) has been located. Continue with step 7. The final flowrate is $\mathbf{W} 2$
Step 7 : Check the following tolerence

$$
\text { Is } \quad \frac{\dot{W}_{2}-\dot{W}_{1}}{\dot{W}_{1}}<\operatorname{TOL}^{*}
$$

(1) If the above inequality equation is not satisfied, repeat steps 2 through 7 using the value of \dot{w}_{2} for ${ }^{1} 1$.
(2) If the inequality is satisfied, W_{2} is the solution flowrate.

[^2]
2.2.5.2 Polynomial Pump Curve Solution

When the user describes the pump curve with a polynomial curve fit, the pump characteristic is described by the relation

$$
\Delta P_{p}=A_{0}+A_{1} \dot{w}+A_{2} \dot{w}^{2}+A_{3} \dot{w}^{3}+A_{4} \dot{w}^{4}
$$

When this option is used, the procedure for matching the pump characteristic to the system characteristic is identical to that described in Section 2.2.5.1 for the tabulated pump characteristic except Steps 4 and 5 are replaced with the following:

Step 4 : Obtain the coefficients of the 4th order equation to be solved

Since:
$\Delta P_{p}-\Delta P_{s}=0$
$\Delta P_{s}=C \dot{W}_{s}+D(C$ and D are obtained from Step 3)
$\Delta P_{p}=A_{0}+A_{1} \dot{w}_{p}+A_{2} \dot{w}_{p}^{2}+A_{3} \dot{w}_{p}^{3}+A_{4} \dot{w}_{p}^{4}$
The solution occurs when

$$
\Delta P_{S}=\Delta P_{p}
$$

Then the equation for W_{N} is

$$
\left(A_{0}-D\right)+\left(A_{1}-C\right) \dot{w}_{N}+A_{2} \dot{w}_{N}^{2}+A_{3} \dot{w}_{N}^{3}+A_{4} \dot{w}_{N}^{4}=0
$$

Step 5 : Solve the equation for $\dot{\mathbf{w}}_{N}$ using the Newton-Raphson Method of solution for a fourth order polynomial

The remaining steps are identical to that given in Section 2.2.5.1.

SINDA ROUTINE MODIFICATIONS AND ADDITIONS
This section describes the actual modifications and additions to the SINDA program. Preprocessor changes are discussed in Section 3.1. Processor changes are discussed in Section 3.2. The specific changes can be seen in the listings in Appendix C .

3.1 Preprocessor Modifications and Additions

The preprocessor required four interface points to include the FLOW DATA block. The first point was in subroutine CODERD prior to the processing of the CONSTANTS DATA where a call is made to subroutine FLOM1 which reads and interprets the FLOW DATA cards. The second point is also in subroutine CODERD immediately following the processing of the ARRAY DATA where subroutine FLOW2 is called to process the FLOW DATA. The last two interface points involve setting up arrays in labelled common blocks. Subroutine FLOCOM does this when called from subroutine GENLNK and subroutine PRESUB.

Subroutine PSEUDO was modified to allow a node to not have any connections in the BCD 3CONDUCTOR DATA bTcck. This was necessary since the tube fump to fluid lump connections are internally generated and not defined in the BCD 3CONDUCTOR DATA block. 3.2 Execution Routine Modifications

The requirements for integration of the Fluid Hybrid Temperature solution subroutine, FLUID, with the SINDA temperature sulution subroutines were minimized at the interface point. A labelled common block which contains a code for flow problems was added to each of the temperature routines. When the code is tested for a flow problem, subroutine FLUID is called to calculate the fluid lump temperatures. In the explicit routines the tube lump temperatures are also calculated. In the implicit routines the convection conductance and adjacent fluid lump number are stored for the tube lump and after returning to the mainiine temperature routines, the convection conductance is included in the calculation of the tube lump temperature. The SINDA routines were modified so that the node with the minimum natural time increment would not be a tube lump which does not have any connections from the conductor data block.

4.0
 FLOW DATA BLOCK INPUT FORMAT

This section describes the input format for the SINFLO input data. The lumps referenced in this section must have been entered in the NODE DATA block. The fluid lumps must be entered as boundary nodes and the tube lumps must be entered as diffusion nodes.

The SINFLO input data for the fluid systems are supplied by the new data block heacied by "BCD 3FLOW DATA" and five new subordinate blocks contained within the FLOW DATA block which will be headed by:

BCD 3NETWORK "Name"
BCD 3SUBNETWORK "Name" (Optional)
BCD 3FLUID LUMP DATA
BCD 3VALVE DATA (Optional)
BCD 3FLOW SOURCE DATA
Table 1 shows the overall organization of the input data blocks* including the new FLOW DATA block. The five subordinate flow blocks may be input in an arbitrary order within the FLOW DATA block. That is, the FLUID LUMP DATA block may be input first if desired instead of the order shown. The FLOW DATA block is optional. Thus, if the problem being analyzed contains no fluid flow or the fluid flow is being handled by another means, there will be no FLOW DATA block. Ās shown in Table 1, the FLOW DATA block will be added between the CONDUCTOR DATA and CONSTANTS DATA SINDA input blocks. The flow data input is initiated by the card (starting in column 8)

BCD 3FLOW DATA
and is terminated by the card
BCD 3END FLOW DATA
The NETWORK blocks and SUBNETWORK blocks may be supplied a multiple number of times. Each must reference a unique four character name. The user would normally supply one NETWORK block for each flow system being analyzed. At least one NETWORK block is required if a BCD 3FLOW DATA card exists. The NETWORK blocks may or may not reference SUBNETWORK blocks, but if one is referenced the data must be supplied in the block referenced by name in the NETWORK data. Division of a network into subnetwork elements is sometimes desirable to permit more efficient analysis on some problems. The NETWORK DATA, FLUID LUMP DATA, FLOW SOURCE DATA blocks are all required when a BCD 3FLOW DATA sard exists. Each of these four blocks contain the required information for the entire flow problem.

Each of the subordinate flow blocks are discussed in the following sections.

[^3]
TABLE 1

SINFLO INPUT BLOCKS

BCD	3THERMAL LPCS	
END		
BCD	3NODE DATA	
END		
BCD	3SOURCE DATA (OPTIONAL)	
END		
BCD	3CONDUCTOR DATA	
END		
BCD	3FLOW DATA *	
BCD	3NETWORK (or SUBNETWORK) Name 1	
END	3NITWORK (or SUBNETWORK) Name 2*	- Variable number of NETWORK or
END	3network (or subnernork) Name 2	NETWORK block for each flow system.
BCD	3NETWORK (or SUBNETWORK) Name n*	
END	3NETWORK (or SUBNETWORK) Name n]	
BCD	3FLUID LUMP DATA	\rangle FLOW DATA block optional
END		
BCD	3VALVE DATA (UPTIONAL)	
END		
BCD	3FLOW SOURCE DATA	
END		
BCD	3END FLOW DATA	
BCD	3CONSTANTS DATA	
END		
BCD	3ARRAY DATA	
END		
BCD	3EXECUTION	
END		
BCD	3YARIABLES 1	
END		
BCD	3VARIABLES 2	
END		
BCD	30UTPUT CALLS	
END		
BCD	3END OF DATA	

[^4]
4.1 NETWORK and SUBNETWORK Formats

The fluid flow tubes, pressure nodes connected by the tubes, and fluid lump/tube lump pairs contained in each tube are input in the NETWORK or SUBNETWORK data blocks. In addition to this connections data, the fluid thermophysical property data, network solution parameters, the value of acceleration of gravity and specified pressure nodes and values are input in the NETWORK data block. One NETWORK data block must be supplied for each fluid system or loop. Connections data for any subnetwork elements are supplied in the SUBNETWORK blocks. As many NETWORK and SUBNETWORK data blocks as required are supplied.

The input formats for the NETWORK and SUBNETWORK blocks are shown in Table II. Each network or subnetwork block is headed by

BCD 3NETWORK Name
or BCD 3SUBNETWORK Name
where the $B C D$ starts in Column 8 and Name is any Alpha/Numeric wors up to four characters which is different from the name of any other network or subnetwork. Each network or subnetwork block is terminated by an END starting in Column 8. The data values between the heading and the END card may be input free field between columns 12 and 72 consistent with the standard SINDA format. Each NETWORK block is a main network for a system. Thus, there are as many NETWORK blocks as there are systems in the problem. The NETWORK block contains (1) system data including information referencing fluid property data, system solution parameters and specified pressure nodes for the network (the SUBNETWORK blocks do not contajn any of this information) and (2) the tube/pressure node connections and the fluid and tube temperature lumps in each tube. As shown in Table II, the systems data including the property data, solution parameters and specified pressure nodes for the network are input immediately following the heading card. These items may be input in any order and may be supplied one to a line or several to a line. The property values are identified by mnemonic names: CP for specific heat, R0 for density, MU for viscosity, KT for thermal conductivity, and H for enthalpy. The property names are followed by an equal sign which is followed by a reference to the property value. For example, the property values could be supplied by:

$$
\begin{aligned}
& C P=0.25, M U=A 25 \\
& R O=A 37, K T=.073, H=A 8
\end{aligned}
$$

TABLE 2
INPUT FORMAT FOR THE NETWORK AND SUBNETWORK DATA BLOCKS

BCD 3NETWORK Name 1
$C P=A X X, R O=A X X, M U=A X X, K T=A X X, G C=X X, X X X, H=A X X$ MPASS $=X X$, TOL $=X X$, MXPASS $=X X$, FRDF $=0 . X X, K O P=X$ $P(N)=X X . X, E N D$
$\mathrm{NT}_{1}, \mathrm{NPF}_{1}, \mathrm{NPT}_{1}=\mathrm{FL}_{11}, \mathrm{TL}_{11}, \mathrm{FL}_{12}, \mathrm{~T}_{12},---\mathrm{F}_{1 \mathrm{n}}, \mathrm{TL}_{1 \mathrm{n}}$, END $\mathrm{NT}_{2}, \mathrm{NPF}_{2}, \mathrm{NPT}_{2}=\mathrm{FL}_{21}, \mathrm{TL}_{21},\left(\mathrm{~F}_{22}, \mathrm{TL}_{22}, \mathrm{FL}_{2 n}, \mathrm{TL}_{2 n}\right)$, END $\mathrm{NT}_{3}, \mathrm{NPF}_{3}, \mathrm{NPT}_{3}=\left(\mathrm{FL}_{31}, \mathrm{TL}_{31}, \mathrm{FL}_{3 n}, \mathrm{TL}_{3 n}, \mathrm{IFL}, \mathrm{ITL}\right)$, END

1	1	1
1	1	1
1	1	1
1	1	1

$N T_{n}, N P F_{n}, N P T_{n}=F L_{n 7}, T L_{n 7}-\cdots L_{n n}, T L_{n n}, E N D$
END
BCD 3SUBNETWORK Name 2

END
BCD 3NETWORK Name 3
 NT, NPF, NPT $=---------$, END

END
BCD 3SUBNETWORK Name 4

END

The following definitions apply to the above:
Name i - any unique four character name
$C P \quad$ - indicates specific heat value
RO - indicates density value
MU - indicates viscosity value

KT	indicates thermal conductivity value
H	enthalpy value
AXX	- array in the ARRAY DATA with actual value of XX
GC	acceleration of gravity in the desired units. Default value $=416962080$.
MPASS	- a pressure/flow solution is performed every MPASS temperature iterations. Default value $=\mathrm{T}$
MXPASS	- maximum number of passes permitted in the balancing 100p to obtain a pressure/flow solution or any given network. Default value $=100$
TOL	- the solution tolerance on the fraction of change of flow rates from one pass in the flow solution to the next. Default value $=.01$
FRDF	flow rate damping factor which is a value between 0.5 and 1.0 to aid the convergence of the flow solution. Default value $=0.5$
$\mathrm{P}(\mathrm{N})$	- references the value of the scecified pressure for pressure node N
NT ${ }_{i}$	- tube number \mathfrak{i} which connects pressure nodes $\mathrm{NPF}_{\mathfrak{i}}$ and NPT.
NPF ${ }_{j}$	from pressure node number for tube no. i
NPT ${ }_{i}$	to pressure node numbe: for tube no. ${ }^{\text {j }}$
FLij	jth fluid Iump in ith tube
TLij	jth tube lump in ith tube
IFL	increment for generating fluid Tump numbers
ITL	- increment for generating tube lump numbers
KOP	- checkout print code (Default value $=0$)
	- 0 : no checkout print is obtained for the network - 1 : a checkout print is obtained for the network

The value to the right of the equal may either be constant or reference an array in the ARRAY DATA. In the above example, the specific heat and thermal conductivity reference constant values of 0.25 and 0.073 while the viscosity and density reference arrays 25 and 37 in the array data. The enthalpy curve is supplied by array 8 . The arrays referenced must be temperature dependent. The solution parameters which may be input in the systems data are MPASS, MXPASS, KOP, TOL, and FRDF (these are defined in Table II). These items are input by the same format as the property data except only integers are permitted for MPASS, KOP and MXPASS and only real numbers are permitted for TOL and FRDF. Any or all of the five solution parameters may be omitted and default values will be supplied. The default values are MPASS $=1$, MXPASS $=100, K O P=0$, TOL $=.01$, FRDF $=0.5$, when omitted. The acceleration of gravity. GC, is supplied in the systems data. This permits the user to analyze the flow problem in any desired units. The default value of GC is 416962080. $\mathrm{ft} / \mathrm{hr}^{2}$. Values of GC for various problem units are given in Table III.

The specified pressure nodes and their pressure values are also supplied in the systems data. For example, if pressure node 34 is set at 14.7, the input would read

$$
P(34)=14.7
$$

The system data input is terminated by an END similar to ARRAY DATA input. An example of the systems data input is

BCD 3NETWORK SYSTM1

$$
\begin{aligned}
& C P=0.25, M U=A 25, R O=37, K T=0.073, H=A 8 \\
& T O L=0.01, F R D F=0.55, M P A S S=2, M X P A S S=120 \\
& G C=32.173, P(34)=14.7, E N D
\end{aligned}
$$

SUBNETWORK input blocks contain no systems data.
Tube to pressure node connections are supplied in the NETWORK blocks following the systems data described above and in the SUBNETWORK blocks. The format for the input of the tube cards is:

NT, NPF, NPT $=\mathrm{FL}_{1}, \mathrm{TL}_{1}, \mathrm{FL}_{2}, \mathrm{TL}_{2}, \cdots$
where NT, NPF, NPT are the tube number, "from" pressure node and "to" nodes respectively. FL, TL are the fluid lumps/tube lumps pairs contained in the tube.
A variation of the above format is available for the input of groups of fluid and tube lumps with a fixed interval between their numbers. The format for this option is:

TABLE 3 VALUE OF GC FOR VAREOUS PROBLEM UNITS

$$
N T, N P F, N P T=F L_{1}, T L_{1},--\left(F L_{i}, T L_{i}, F L_{j}, T L_{j}, I F, I T\right),---F L_{n}, T L_{n} \text {, END }
$$

Where the lunps within the parenthesis are being incremented
FL_{i} is the first fluid lump number of the interval
$F L_{j}$ is the last fluid lump number of the interval
IF is the increment between the lump numbers in the interval
$T L_{i}$ is the first tube lump number of the interval
TL_{j} is the last tube lump number of the interval
IT is the increment between tube lump numbers
The values of $F L_{i}-F L_{j}$ must be a multiple of $I F$ and $T L_{i}-T L_{j}$ must be a multiple of IT. If IF and IT are both the integer 1, they may be omitted.

An example of the input of a tube in the NETWORK block or SUBNETWORK
is
$8,3,5=(1,201,10,210)$, END
This statement indicates that tuve No. 8 connects pressure nodes 3 and 5 and contains temperature fluid lumps 1 thru 10 with adjacent tube temperature lumps 291 thru 210. A tube card is supplied for each tube in the network.

Special tube cards are supplied when a subnetwork is referenced from a main network. This card consists of a dummy tube number and the first and last pressure nodes of the subnetwork on the left of the equal sign and the subnetwork name on the right of the equal sign. For example, an input in the main network of

46, $10,21=$ SUB1, END
references the block with the heading card of
BCD 3SUBNETWORK SUB1
for that portion of the network between pressure nodes 10 and 21 . The dummy tube number is 46. Subnetwork elements may be referenced from "first level" subnetwork elements as well as network elements.

The input of negative fluid temperature lump numbers on the tube cards will indicate that no pressure drop calculations will be made for that fluid lump. Negative tube lump numbers indicate no temperature calculations will be made on the fluid lumps and tube lumps. This capability is useful for closed loop systems. For example, the input for the first tube in a closed system would be

$$
1,1,2=-200,-297,97,297, \text { END }
$$

where fluid lump 200 is the last lump in the system.

Each tube must have ai least one fluid lump. This requirement is necessary to provide thermal continuity in the network.

4.2 FLUID LUMP DATA Block Format

The FLUID LUMP DATA block contains the type data for all fluid lumps in all systems. The block is headed by

BCD 3FLUID LUMP DATA
and is terminated by
END
Where the BCC and END are each in columns 8, 9 and 10 consistent with SINDA input convention. The format for this block is the type data for each fluid lump type followed by an equal and the fluid lump numbers. The format is

$$
\begin{aligned}
\text { CSA, WP, FLL, AHT, NHL, MFF, FFC, } F 1, F 2 & =F L_{i}, F L_{2},---F L_{n}, E N D \\
& =\left(F L_{1}, F L_{n}, I N C\right), E N D \\
& =\left(F L_{1}, F L_{n}\right), E N D \\
\text { or } & =F L_{1}, F L_{2},-\cdots,\left(F L_{i}, F L_{j}, I N C\right),---, F L_{n}, E N D
\end{aligned}
$$

where	CSA	$=$ cross sectional area to fiow
	WP	= wetted perimeter
	FLL	$=$ fluid lump length
	AHT	$=$ area for convection heat transfer
	NHL	$=$ a real constant : NHL is the number of head losses $=A X X: X X$ is an array number of head losses vs Reynolds number
	MFF	$=$ method for friction factor calculation $=0$: internal calculations used for friction factor $=A X X: X X$ is an array number of an array of friction factor vs Reynolds for Reynolds numbers greater than 2000.
	FFC	$=$ constant to be multiplied times the friction factor
	F1 \& F2	: Fl is a code to determine the method to be used for calculating heat transfer
	If Fl	$=$ real number : Fl is the convection laminar flow fully developed coefficient; $F 2$ is the entrv length coefficient

> If $F 1=1$: F2 is AXX where $X X$ is an array of Stanton number versus Reynolds number from which the convection heat transfer coefficient will be obtained If $F 7=2$: $F 2$ is $A X X$ where $X X$ is an array of heat transfer coefficient versus flow rate
> $\mathrm{FL}_{i}=$ ith fluid lump number in the tube
> INC $=$ the increment between lump numbers generated using the parenthesis option. If INC is 1 it may be ommited.

The parenthesis option may be inserted anywhere in the group of fluid nodes on the right of the equal sign. That is, lump numbers separated by commas may or may not be input before or after the lump generated by the paraenthesis option. Also, any number of parenthesis options may be used on one type card.

The values for MFF, FFC, F1, and F2 may be left off the type cards if the default values are desired for all these items. The default values are MFF $=0$ and $F F C, F 1$ and $F 2=1.0$. The input would then be:

$$
C S A, W P, F L L, A H T, N H L=F L_{1}, F L_{2}, \cdots\left(F L_{i}, F L_{j}, I N C\right), \cdots L_{n}, E N D
$$

4.3 VALVE DATA Input Block (Optional)

The VALVE DATA input block contains the valve data for all valves in all flow systems. (That is, there is only one VALVE DATA block in the problem.) The block is headed by the card

BCD 3VALVE DATA
and is terminated by
END
Where the BCD and the END cards are each in columns 8, 9, and 10 .
Three types of vaives are available to the user: rate limited, polvnomial, and switching (see Section 2.2.3). The input required for these valves is:
Rate Limited
NV, NTS , NTS2 = XI, MODE, XMIN1, XMAX1, E, TSEN1, TSEN2, DB, RF, RL, END Polynomial

NV, NTS1, NTS2 = XI, MODE, XMIN1, XMAX1, E, TSEN1, TSEN2, CO, C1, C2, C3, C5, VTC, END Switching

NV, NTS1, NTS2 = XI, MODE, XMIN], XMAX1, E, NSEN, T1, T2, END

The following definitions apply in the above formats:
NV - Valve number
NTS1 - Tube number connected to side 1 of the valve
NTS2 - Tube number connected to side 2 of the valve
XI - Initial valve position
MODE - Operating mode : 1 - operating; 0-not operating
XMIN1 - Side 1 minimum position; side 2 maximum position is (1.0 - XMINI)

XMAX] .. Side 1 maximum position; side 2 minimum position is (1.0 - XMAX1)

E - The valve geometric factor ielating pressure drop through the value by
$\Delta P=E$ (flowrate/valve position) ${ }^{2}$
TSEN1 - Sensor lump for side 1 or set point for side 2; if TSENT is an integer, it identifies the side 1 sensor lump to be controlled to (a) the set point for side 1 or (b) the sensor lump for side 2 (TSEN2). If the variable is input as a floating point number it represents a set point to which the side 2 sensor lump will be controlled.
TSEN2 - Sensor lump for side 2 or set point for side 1; if TSEN2 is an integer, it identifies the side 2 sensor lump to be controlled to (a) the set point for side 2 or (b) the sensor lump for side 1 (TSEN1). If the variable is input as a floating point number it represents a set point to which the side ? sensor iump will be controlled.
C0,Cl,C2,C3,C4,C5 - Polynomial curve fit coefficients for a curve fit of the steady state valve position vs sensed temperature error for side l:
$X I S S=C 0+C 1 \cdot \Delta T+C 2 \cdot \Delta T^{2}+C 3 \cdot \Delta T^{3}+C 4 \cdot \Delta T^{4}+C 5 \cdot \Delta T^{5}$
DB - Dead band for the rate limited valve, degrees of temperature (Figure 4)
RF - Rate factor, the rate of change of valve velocity to sensed temperature error ($d x / d(c T)$) as shown on Figure 4
RL - Rate limit, the maximum valve velocity, Xmax (see Figure 4)

VTC - Valve time constart as described in Section 2.2.3.2. If a valve is desired with no time lag, a time constant which is very small compared to the problem time increment should be input. (VTC must be greater thani zero).

NSEN - Sensor lump for switching valve
Tl - Side 1 off temperature or side 2 on temperature for switching valve
T2 - Side 2 off temperature or side 1 on temperature for switcining valve
4.4 FLOW SOURCE Data Block

The FLOW SOURCE data block contains specification of flow rate for all the systems in the problem. The heading card for this block is

BCD 3FLOW SOURCE DATA
and is terminated by
END
Three types of flow specifications are available. These are:
(1) flow rate as a function of time; (2) pressure rise as a function of flow rate specified by a tabulated curve; and (3) pressure rise as a polynomial function of flow rate. The input for each of these is given below.
Flow as A Function of Time
NPI, AW, END
Pressure Rise as A Tabulated Function of System Flow Rate
NPI, NPO, ADP, END
Pressure Rise as A Polynomial Function of Flow Rate
NPI, NPO, CO, C1, C2, C3, C4, END
where:
NPI $=$ system inlet pressure node
AW : W is an array number of an array which gives tabulated flow rate vs time if input as AXX
: AW is constant imposed flowrate for node NPI if AW is a floating point number.
NPO $=$ system outlet pressure node
ADP : DP is an array number of an array which gives tabulated pump pressure rise as a function of flow rate

$$
\begin{aligned}
\mathrm{C}, \mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C4}= & \text { polynomial curve fit constants for pressure rise } \\
& \text { as a function of flowrate, i.e. }
\end{aligned}
$$

$$
\Delta P=C O+C l \cdot \dot{w}+C 2 \cdot \dot{w}^{2}+C 3 \cdot \dot{w}^{3}+C 4 \cdot \dot{w}^{4}
$$

The value of AW may be input as a floating point number if a constant system flow rate is desired.
4.5 Example of Flow Input

An example of the flow input described in Sections 4.1 and 4.4 is given in Table IV. This table gives the flow input for the sample problem given in Section 6.0 .

TABLE 4

FLOW DATA INPUT FOR SAMPLE PROBLEM

BCD JFI IN DATA
BCD 3NETWOKK MAIN
 TOL=.01,MXPASS=100.FRDF=7, F (24)=0., END

END
RCD 35 UANETWURK SURI

4.	4.	6	=		100.300		END
5.	6 。	7	*	1	7,207.	12.2121	F.ND
6.	6.	7	$=$	1	1.201.	6,20ht	FND
7.	4.	5	*	1	13.213,	16.2181	FND
8.	4	5	$=$	1	19.219.	24,2241	FND
9.	5	7	$=$		101.301		FND
10	7.	8	\#		102.302		FND
19.	d.	14	x		103.303		F.ND
20	14.	16	I		104.304		FND
21	16.	17	-	1	37.237.	42,247)	END
22	16:	17	-	1	43.243.	4安, 248)	END
23.	14.	15	*	1	31.231.	36,236)	FND
24.	14.	15	B	1	25.225.	30.230\%	END
25	15.	17	-		105.305		- END

FND
RCD 3SURNETWORK SUAZ

FNO

```
ACD TFLUID LUMP DATA
    ก. 001008 . \(0.1125,12.0,1.35\), \(0.0=\)
```



```
        \((26,29), 132,35), 138,41 \%, 44,471\) END
    ก.00100日, \(0.1125,500,0.5625,000=\)
        \(7,12,13,18,39,36: 37,42\)
        97 , \(9 \mathrm{~A}, 117\), END
```



```
        (50, 53). 56 , 59) \(5(62,651,(68,71)\)
        \(174,77 i, 160,83 i, 186,89), 192,851, E N D\)
```



```
    \(0.001008,0.1125,50.0,5.62,000.0\)
        115 EEND
    0.00100日, 0.1125, 7.0, 0.7575: 0.0 =
        \(100,101,104,105,108,100,112,113\) END
    ก.001cos, \(0.125,2.0,0.225,0.0=\)
        116
                            - EAD
        \(0.0,0,0,0 \cdot 0,0.0,0,0=200, E N D\)
END
ACD 3VALVE OATA
```



```
\(E^{\text {nid }}\)
ACD 3FLOW SOURCE DATA
    1.24.A13,END
FND
ACD 3END FLOW DATA
```

This section describes the user subroutines which have been developed and modified by VSD for SINDA. Table 5 summarizes the subroutines and the page that each description of usage is found.

The subroutine inputs rely upon the ability to convert from actual array, node, and conductor numbers to relative numbers in the array data. To use the capability the user may supply an actual array number, node number, or conductor number by preceding the actual number with *A, *T, or *G respectively. This causes the preprocessor to replace the entry with the relative number. Consider the example for array number 2 shown below
2, *A14, *T5, *G7, END

In this example, following the preprocessor phase, *A14 would be replaced by the location in the A array of the array number 14 data, *T5 would be replaced by the relative node number for actual node number 5 , and $* G 7$ would be replaced by the relative conductor number for actual conductor number 7 .

In addition, revisions have been made to some of the temperature solution subroutines to interface with the Fluid Hybrid solution subroutines. The following subroutines were revised:

CINDSL	-	Steady State
CINDSS	-	Steady State
CNBACK	-	Backward Differencing
CNFWBK	-	Mid-differencing
CNFRWD	-	Forward Differencing
CNFAST	-	Forward Differencing
FWDBCK	-	Mid-differencing
SNDSNR	-	Steady State
SNFRDL	-	Forward Differencing
SNFRWD	-	Forward Differencing
STDSTL	-	Steady State

TABLE 5

USER SUBROUTINES

SUBROUTINE PAGE
ACOMB 62
CABIN 63
CRVINT 67
CYCLE 68
FLOSOL 69
FLOTMP 73
FLPRNT 74
FLUX 75
gENOUT 77
HSTFLO 78
HXEFF 80
HXCNT 82
HXCOND 84
HXCROS 86
H:PAR 88
HYBRID 90
INVRS 92
QCOMB 93
RADIR 94
RADSOL 96
REVPOL 98
SINVRS 99
TIMCHK 101
WPRINT 102

See description for usage of OCOMB.

PURPOSE:

This subroutine performs a thermal and mass balance on a cabin air system. The cabin air is assumed to be a two component gas mixture with one condensible component and one noncondensible component. The cabin air is assumed to be well mixed so that the temperature and specific humidity are constant throughout. The cabin may contain any number of entering streams each with different temperature and humidity conditions. The cabin air may transfer heat to any number of nodes in its surroundings with the heat transfer coefficient obtained by one of the the three options:

1. User input coefficient
2. Relations for flow over a flat plot
3. Relations for flow over a tube bundle

The relatioris describing the second and third options are given in Section 2.1.7. The mass transfer coefficient for determining the rate of condensation or evaporation is determined by the Lewis relation which relates the mass transfer coefficient directly to the convection heat transfer coefficient. By the Lewis Relation, if the diffusion coefficient is approximately equal to the thermal diffusivity, the Sherwood number is approximately equal to the Nusselt number, thus giving a direct relation. (See Section 2.1.7 for details). Mass and heat transfer rates are determined at each node that interfaces the cabin gas as well at entering and exiting streams and a new cabin gas temperature and humidity is determined each iteration based upon the heat and mass balance. An account is kent of the condensate on the walls when condensation occurs but the condomsate is assumed to remain stationary and not flow to other wall nc. ;

Limits are applied when necessary to prevent more condensation than the vapor existing under severe transient condition and to prevent evaporation of more liquid than exists at each wall lump.

As many cabins as desired may be analyzed in a given problem, but each must contain separate input information.

RESTRICTIONS:
CABIN must be called in VARIABLES 1.
CALLING SEQUENCE:
CABIN(A(IC) TC, TC, K1, K2)
The following definitions apply to the above calling sequence: boundary node
$\mathrm{Kl}, \mathrm{K} 2$
Storage locations needed by CABIN
The A array has the following format where the *A procedure is used:

$$
A(I C), I F, P R, C N, H, F P, T B, S P, E N D
$$

Where IF

PR Identifies an array identifying array numbers

$$
\mathrm{IF}(\mathrm{IC}), \mathrm{NS}, \mathrm{FR}_{1}, \mathrm{PSI}, \mathrm{TE}_{1}, \mathrm{FR}_{2}, \mathrm{PSI}_{2}, T E_{2}-\cdots--\mathrm{FR}_{\mathrm{ns}}, \mathrm{PSI}_{\mathrm{ns}}, T E_{\mathrm{ns}}
$$ for property values. The format of the array is:

PR(IC) ,NFLC,NMUO, NMUV,NCPO, NCPV,NKO,NKV, NLAT

CN Identifes an array containing pertinent constants. The format of the array is:

$$
C N(I C), R A, R V, V C, P C, X C, W V, P S I C, P O, T O, C O N V
$$

Identifies an array containing node numbers and convection heat transfer coefficient values for nodes surrounding the cabin gas. The format of the array is:

$$
H(I C), L N_{i}, H A_{1}, L N_{2}, H A_{2},--L N_{n l}, H A_{n 1}
$$

$$
\mathrm{FP}(\mathrm{~T} C), L N_{1}, X X_{1}, X I_{1}, A I_{1}, V I W \emptyset_{1}, L N_{2}, X X_{2}, X I_{2}, A I_{2},
$$

$$
V I N \emptyset_{2}, \cdots--L N_{n 2}, X X_{n 2}, X I_{n 2}, A I_{n 2}, V I W \emptyset_{n 2}
$$

- Identifies an array containing node numbers and information to permit calculation of convection coefficients for tube bundles. The format is:
$\mathrm{TB}(\mathrm{IC}), \mathrm{LH}, \mathrm{NI}_{1}, \mathrm{AI}_{1}, \mathrm{VIW} \mathrm{\emptyset}_{1}, \mathrm{LN}_{2}, \mathrm{DI}_{2}, \mathrm{AI}_{2}, \mathrm{VIW} \mathrm{\emptyset}_{2}, \cdots-\cdots-\mathrm{LN}_{\mathrm{n} 3}, ~$ $D I_{n 3}, A I_{n 3}, V I W O_{n 3}$ Identifies an array which contains working space equal to or greater thar three times the sum of the number of nodes with input heat transfer coefficients plus the number using flat plot relations plus the number using tube bundles.

The following symbol definitions apply in the above:

Number of incoming streams

FR ${ }_{\mathbf{i}}$	Entering flow rate for stream i
PSI ${ }_{i}$	Specific humidity for entering stream i
$T E_{i}$	Temperasure of entering stream i
NFLC	Curve number for circulation flow rate vs time
NMUO	Curve number for noncondensible viscosity vs temperature
NMUV	Curve number for condensible viscosity vs temperature
NCPO	Curve number for noncondensible specific heat vs temperature
NCPV	Curve number for condensible specific heat vs temperature
NKO	Curve number for noncondensible therma? conduction vs temperature
NKV	Curve number for condensible thermal conduction vs temperature
NLAT	Curve number for latent heat of condensible vs temperature
RA	Gas constant for non-condensible component
RV	Gas constant for condensible component
vC	Cabin volume
PC	Cabin Pressure
XC	Molecular weight ratio, Mv/Mo
WV	Initial vapor weight in cabin
PSIC	Initial specific humidity for cabin
$L N_{j}$	Cabin wall lump
HA	Heat transfer coefficient times area
$n]$	Number of wall lumps which have input HA values
n2	Number of wall lumps which have HA calculated by flat plate relations
n3	Number of wall lumps which have 1 H calculated by tube bundle relations

$x x_{i}$	Distance from leading edge for flat plate heating for ith flat plate node
$X I_{i}$	Length of flat plate in flow direction for ith flat plate node
$A I_{i}$	Heat transfer area for flat plate or tube node
DI ${ }_{\text {j }}$	Tube outside diameter for tubes in the bundle for i th tube node
V IW0	Ratio of velocity at the lump to the circulation flow rate
To	The reference temperature to be used for estimating the saturation pressure of the condensible component. Should be near the range of saturation temperature expected
Po	The saturation pressure at To for the condensible component
CONV	Conversion factor to make the quantity XLAM/Rv/To dimensionless where XLAM is the latent heat of vaporization and Rv is the gas constant for the vapor. If XLAM is BTU/lb, Rv is $\mathrm{FT}-\mathrm{LB} /{ }^{\circ} \mathrm{R}$ and To is ${ }^{\circ} \mathrm{R}$, $\mathrm{CONV}=778$.

PURPOSE:

This subroutine performs an integration of the doublet array, A, and stores the results in doublet array B. The independent variables (the odd data valves) of the A array are transferred directly to the B array. The dependent variables of the B array are calculated by

$$
\left.\left.\begin{array}{rl}
B(2)= & 0.0 \\
B(2 * N)= & B(2 *(N-1))+0.5 *[A(2 * N)+A(2 *(N-1)] \\
& \star[A(2 * N-1)-A(2 *(N-1)-1] \\
& N=2, N P
\end{array}\right\} \text { where NP=} \text { number of points in the } A \text { array }\right\}
$$

This subroutine was written primarily for integration of specific heat arrays to obtain enthalpy arrays but could be used for irtegration of any dependent variable over the independent variabie range.

RESTRICTIONS:

Space in B array must be exactly equal to the space in the A array. Must be at least two points in A array (i.e., the integer count must be greainer than or equal to 4).

CALLING SEQUENCE: \quad CRVINT(A(IC), $B(I C))$

PURPOSE:

Subroutine CYCLE will automatically extend the range of independent variables in either direction for cyciic curves by adding (or subtracting) the cycle period to each independent variable when the curve range is exceeded. The total input range of the independent variables is assumed to be one period. CYCLE should be called prior to interpolation so that the necessary changes may be performed to the independent variables.

RESTRICTIONS:
None
CALLING SEQUENCE: $\quad \operatorname{CYCLE}(X, A, N A M E)$
where X - value of independent variable to be used in interpolation of A doublet array
A - doublet array assumed to be cyclic
NAME - one word Hollerith identifier

SUBROUTINE NAME: FLOSOL
PURPOSE:
Subroutine FLOSOL determines the flow distribution in a set of general parallel/series fluid flow tubes so that the pressure drop values between any parallel flow paths are equal and flow is conserved. The following effects are included in the pressure drop calculations:
(1) pipe flow friction
(2) orifices and fittings
(3) valves

The effect of temperature dependent properties are included in the calculations. The properties are evaluated at the temperature of each fluid lump in each tube in evaluating the flow resistance when setting up the equations to be solved. A balance is made between the flow/pressure drop characteristics of the system and the flow/pressure rise of a pump for each system concurrent with the system pressure flow solution to obtain the incoming system flowrate. A detailed discussion of the equations and techniques used are described in Section 2.1. General flow charts of FLOSOL and supporting subroutines are shown in Figures 6,7, and 8. RESTRICTIONS:

FLOSOL should be called from EXECUTION prior to temperature solution call and from VARIABLES 2 for transient problems. For steady state solutions FLOSOL should be called from VARIABLES 1 and DTIMEU should be set in the CONSTANTS DATA if valve operation is required. The system of units used for the thermal and flow problem should be consistent.

CALLING SEQUENCE: FLOSOL
DYNAMIC STORAGE REQUIREMENTS:
Dynamic storage required for FLOSOL is $1 / 2$ (NPRN $^{2}+$
$7 * N P R N+12)$, where NPRN is the maximum of the number of pressure nodes in any network.

FIGUPE 6 ¿LOW CHARTS OF FLOSOL. AND NTSOL

FIGURE 7 FLOW CHARTS OF NTSOL 1 AND NTSOLN

FIGURE F FLON CHAP- OF FLBAL

SUBRROUTINE NAME: FLOTMP

PURPOSE:

Subroutine FLOTMP will read the node temperatures, flowrates, pressures and valve positions at time TMPTIM from the history tape assigned to Unit U generated by subroutine HSTFLO for a previous run on Unit T to initiate a probiem at tnese conditions. The time to read the tape, TMPTIM is the argument. The subroutine should be called in the execution block prior to the call to the temperature solution subroutine.

RESTRICTIONS:
Must be called in the EXECUTION block prior to the call to the appropriate temperature solution subroutine. The history tape must be assigned on Unit U.

CALLING SEQUENCE:
FLOTMP (TMPTIM)

PURPOSE:
Subroutine FLPRNT will write the values of the DATA array of real numbers at 10 to a line. The array is labeled by the variable input $H E A D$ which contains 9 six character alpha numeric words. The array location of every tenth value in the array is identified to the right of the appropriate line.

RESTRICTIONS:
Should be called from OUTPUT. The array must be real.
CALLING SEQUENCE:
FLPRNT(DATA(IC), HEAD(DV))

PURPOSE:
Subroutine FLUX permits doublet time variant curve values stored on magnetic tape unit NFLXTP to be read into NCRV arrays starting at array DATA when the mission time exceeds DQTIME. The flux tape must be generated prior to the run using a GE routine LTVFTP. This routine generates the flux tape in the following format:

Record No. 1
First Read Time
Record No. 2
Number of points on first curve (Integer), first curve independent variables, first curve dependent variables, number of points on second curve, second curve independent variables, second curve dependent variables, etc. for all curves.

Record No. 3
Second Read Time
Record No. 4
Same as Record No. 2 except with new values
Record No. 5
Third Read Time
Etc. until all blocks of data are on tape.
Subroutine FLUX writes the values from the appropriate NFLXTP record into the arrays defined by DATA and NCRV in the proper doublet array fomat. Flux values should be input into the heat flux arrays (DATA]---DATANCRV) initially if the user doesn't want the values to be read from the tape at the start of the problem. The value of QTIME should initially be the value of the time the first read is desired.

RESTRICTIONS:

The following restrictions apply:
(1) The initial block of curve data must be input on cards or data


```
    ここここん ご こごミ
```



```
    tnemselves.
```

CALLING SEQUENCE：
FLUX（NFLXTP，CATA，NCRV，IWTIMR ，IIIMI
where
NFLXTP－logical unit to which the thex tape fo amothor Mhet hes supplied by a user constant．
DATA－starting location（IC）for llux curver
NCRV－number of flux curves to be uplaterd trint lim rlun lame
DQTIME－time scale shift for flux curves milimi is alilat lin und indeperdent value for each thux curve tead than lif all

SUBROUTINE NAMES: GENOUT, GENI OR GENR
PURPOSE:
These subroutines print out arrays of numbers 10 to a line. GENOUT prints either real numbers, integer or both. GENI and GENR print integers and real number arrays respectively. The integers are written in an I9 format and the real numbers in an E12.4 format.

RESTRICTIONS:
GENI writes arrays of integers only. GENR writes arrays of real numbers only.

CALLING SEQUENCE:
GENOU'T. (A, ISTRT, ISTP, 'NAME')
GENI (A, ISTRT, ISTP, 'NAME')
GENR (A, ISTRT, ISTP, 'NAME')
where A - is the array location
ISTRT - is the first value in A being written
ISTP - is the last value in A being written
'NAME' - is a title of 22 Hollerith words for identification

SUBROUTINE NAME:
HSTFLO
PURPOSE:
Subroutine HSTFLO stores the problem time, the pressures of all pressure nodes, the valve positions for all valves, the flowrates for all tubes, and the temperatures of all temperature nodes at an input interval on a magnetic tape (the history tape) mounted on Unit T. The number of records written on the history tape is the number of history intervals plus two. The first record contains a title, an integer count of the number of items to be written for each of the five categories (pressure drops, pressures, valve positions, flowrates, and temperatures), the actual tube numbers, actual pressure node numbers, actual valve numbers, and the actual node numbers in order of relative numbers. The second through the next-to-last records contain the history records with one for each time point and the last record is the same as the next-to-last except the time is negative. The argument to HSTFLO is the history tape writing interval, TINC.

The format for the history tape is as follows:
Record No. 1
Tital (written internally) is 12A6 format $0,0,0,0,0$, number of tubes, number of pressure nodes, number of valve positions, $0,0,0$, number of tubes, 0,0 , number of nodes, actual tube numbers in increasing order, actual pressure node numbers in increasing order, actual valve numbers in increasing order, and actual node numbers in increasing order of relative node numbers.

Record No. 2
Initial problem time, pressure drops, pressures, valve positions, flowrates, node temperatures

Record No. 3
Second history time, pressure drops, pressures, valve positions, flowrates, node temperatures
,
,

Record No. $N+1$ (Where $N=$ number of history time slices to be written)
Last history time, pressure drops, pressures, valve positions, flowrates, node temperatures
Record No. $\mathrm{N}+2$
Same as last record except time is negative

RESTRICTIONS:
Should be called in VARIABLES 2. An output history tape should be mounted on tinjt T. Subroutine TMCHK must be in VARIABLES 2 prior to the call to Subroutine HSTFLO if TIMCHK is ca'led in the problem.

If the backup feature is used in VARIABLES 2, the call to subroutine HSTFLO should not be made until the last pass to avoid nonincreasing time records or invalid data. For example:

BCD 3VARIABLES 2
$F \quad \operatorname{IF}(T(16) . L T . \quad$ TMAX $) B A C K U P=1$.

F IF (BACKUP .GT. C.; GO TO 70
HSTFLO (.07)
F 10 CONTINUE
END
CALLING SEQUENCE:
HSTFLO(TINC)

SUBROUTINE NAME:
HXEFF
PURPOSE:
This subroutine obtains the neat exchanger effectiveness either from a user constant or from a bivariant curve of effectiveness versus the flow rates on the two sides. The effectiveness thus obtained is used with the supplied flow rates, inlet temperatures and fluid properties to calculate the outlet temperatures using the methods described in Section 2.1.6.4. The user may specify a constant effectiveness by supplying a real number or may reference an array number to specify the effectiveness as a bivariant function of the two flow rates. The user supplies flow rates, specific heat values, inlet temperatures and a location for the outlet temperatures for each of the two sides. The flow rate array may be referenced to obtain flow rates and the temperature array may be used for temperatures. The specific heat values may be supplied as a temperature dependent curve or a constant value may be supplied. The user also identifies enthalpy curves for each side which may be generated from the specific heat curve with user subroutine CRVINT.

RESTRICTIONS:

HXEFF should be called in the VARIABLES 1 block. The value for EFF, the first argument must never be zero. $T_{\text {out } 1}$ and $T_{\text {out2 }}$ must be boundary nodes. CALLING SEQUENiL \quad HXEFF (EFF,W1,W2,CP1,CP2,TIN1,TIN2,TOUT1, TOUT2, H1, H2) where EFF - is (1) the effectiveness if real, (2) a curve number of a bivariant curve of effectiveness versus $W 1$ and $W 2$ if an array

WT,W2 - are the flow rates fol side 1 and 2 respectively. May reference the flow rate array, W (I) where I is the tube number

CP1,CP2 - are the specific heat value for side 1 and side 2 fluid respectively. Constant values may be input or arrays may be used for temperature dependent properties.

TIN1,TIN2 - are inlet lump temperatures - Usuãly T(IN1) and T(IN2) where IN1 and IN2 are the inlet lumps on side 1 and side 2

TOUT1,TOUT2 - are the outlet lamp temperature locations sides 1 and 2 where the calculated values will be stored. Must be boundary nodes.

H1,H2 - are arrays which give enthalpy vs temperature for sides 1 and 2 respectively.

PURPOSE:

This subroutine calculates the heat exchanger effectiveness using the relation described in Section 2.1.6.1, for a counter flow type exchanger. The value of $U A$ used in the calculations may be specified as a constant by supplying a real number or it may be specified as a bivariant function of the two flow rates by referencing an array number. The user supplies flow rates, specific heat values, inlet temperatures and a location for the outlet temperatures for each of the two sides. The flow rate array may be referenced to obtain flow rates and the temperature array may be used for temperatures. The specific heat values may be supplied as a temperature dependent curve or a constant value may be supplied. The user also identifies enthalpy curves for each side which may be generated from the specific heat curve with user subroutine CRVINT.

RESTRICTIONS:
HXCNT should be called in the VARIABLES 1 block. The value of UA, the first argument, must never be zero. $T_{\text {out }}$ and $T_{\text {out } 2}$ must be boundary nodes. CALLING SEQUENCE: HXCNT(UA, W1,W2,CP1,CP2,TIN1,TIN2,TOUT1,TOUT2,H1,H2)
where UA

W1,W2 are the flowrates for side 1 and side 2 respectively. May reference the flowrate array, W (I) where is the tube number. are the specific heat values for side 1 and 2 fluid respectively. Constant values may be input or arrays
may be used for temperature dependent properties.
TOUT1-TOUT2 are the outlet lump temperature locations (sides 1 and 2) where the calculated values will be stored. Must be boundary nodes.

H1,H2 are arrays which give enthalpy vs temperature for sides 1 and 2 respectively.

SUBROUTINE NAME: HXCOND
PURPOSE:
This subroutine performs thermal analysis on a condensing heat exchanger using relations described in section 2.1.6.5. Tre effectiveness may either be supplied as a constant or as a trivariant function of humidity, flow rate of the gas, and flow rate of the coolant. CRVINT may be used to integrate the specific heat curves to produce the enthalpy curves.

RESTRICTIONS:

HXCOND should be called in the VARIABLES 1 block. The value for EFF, the first argument, must never be zero. TGOUT, and TCONI must be boundary nodes.

CALLING SEQUENCE: HXCOND(EFF,WG,WC,NHG,NHC,TGIN,TCIN,PSIIN,P,XLAM,XMIMO, PSIOUT, WL, TGOUT,TCOUT)
v, nere EFF

WG is the flow rate of the gas
WC is the flow rate of the coolant
NHG is the enthalpy curve for the gas
NHC is the enthalpy curve for the coolant
TGIN is the temperature of the incoming gas
TCIN is the temperature of the incoming coolant
PSIIN is the humidity of the incoming gas
$P \quad$ is the total gas pressure
XLAM is the latent heat of vaporization
XMDMD \quad is the molecular weight ration M_{v} / M_{0}
PSIOUT is the outlet humidity

WL is the flow rate of the liquid
TGOUT is the temperature of the outgoing gas
TCOUT is the temperature of the outgoing coolant

PURPOSE:
This subroutine calculates the heat exchanger effectiveness using the relations described in Section 2.1.6.3, for a cross flow type exchanger. The value of UA used in the calculations may be specified as a constant by supplying a real number or $i t$. may be specified as a bivariant function of the two flow rates by referencing an array number. Any one of the following four types of cross flow exchangers may be analyzed.

1) Both streams unmixed
2) Both streams mixed
3) Stream with smallest MCp product urmixed
4) Stream with largest MCp product unmixed

The type is specified by the last argument in the call statement. The user supplies flow rates, specific heat values, inlet temperatures and a location for the outlet temperatures for both sides. The flow rate array may be referenced to obtain flow rates and the temperature array may be used for temperatures. The specific heat values may be supplied as a temperature dependent curve or a constant value may be supplied. The user also identifies enthalpy curves for each side which may be generated from the specific heat curve with user subroutine CRVINT.

RESTRICTIONS:

HXCROS should be called in the VARIABLES 1 block. The value for UA, the first argument, must never be zero. $T_{\text {out } 1}$ and $T_{\text {out } 2}$ must be boundary nodes. CALLING SEQUENCE: HXCROS(UA,W1,W2,CP1,CP2,TINT,TIN2,TOUT1,TOUT2,K,H1,H2) where UA is (1) the heat exchanger conductance if real, (2) a curve number of a bivariant curve of conductance versus W1 and W2 if an array. reference the flow rate array, W (I) where I is the tube number.

CP1,CP2 are the specific heat values for side 1 and side 2 fluid respectively. Constant values may be input or arrays may be used for temperature dependent properties

TIN1,TIN2 are inlet lump tenperatures - Usually T(IN1) and T(IN2) where IN1 and IN2 are the inlet lumps on side 1 and side 2

TOUT1, TOUT2 are the outlet lump temperature locations (sides 1 and 2) where the calculated values will be stored. Must be boundary nodes
K is the code specifying type of cross flow exchanger:
Both streams unmixed : K = 1
Botil streams mixed : K = 2
Stream with small WCp unmixed : $K=3$
Stream with large WCp unmixed : $K=4$
$\mathrm{H}, \mathrm{H} 2$ are arrays which give enthalpy vs temperature for sides 1 and 2 respectively

PURPOSE:

This subroutine calculates the heat exchanger effectiveness using the relations described in Section 2.1.6.2, for a parallel flow type exchanger. The value of UA used in the calculations may be specified as a constant by supplying a real number or it may be specified as a bivariant function of the two flow rates by referencing an array. The user supplies flow rates, specific heat values, inlet temperatures and a location for the outlet temperatures for each of the two sides. The flow rate array may be referenced to obtain flow rates and the temperature array may be used for temperatures. The specific heat values may be supplied as a temperature dependent curve or a constant value may be suppiied. The user also identifies enthalpy curves for each side which may be generated from the specific heat curve with user subroutine CRVINT.

RESTRICTIONS:
HXPAR should be called in the VARIABLES 1 block. The value for UA, the first argument, must never be zero. $T_{\text {out }}$ and $T_{\text {out2 }}$ must be boundary iemperatures. CALLING SEQUENCE: \quad HXPAR(UA,W1,W2,CP1,CP2,TIN1,TIN2,TOUT1,TOUT2, $\mathrm{H}_{1}, \mathrm{H} 2$)
where UA

W1,W2

CP1,CP2 are the specific heat values for side 1 and side 2 fluid respectively. Constant values may be input or arrays riay be used for temperatures dependent curves.

TINT,TIN2

TOUT1, TOUT2
$\mathrm{Hl}, \mathrm{H} 2$
are inlet lump temperatures - Usually T(IN1) and T(IN2) where IN1 and IN2 are the inlet lumps on side 1 and side 2 are the outlet lump temperature locations (sides 1 and 2) where the calculated values will be stored (should be boundary temperatures)
are arrays which give enthalpy vs temperature for sides 1 and 2 respectively

PURPOSE:
This subroutine calculates transient temperatures using an optimum mix between implicit and explicit methods of solution. The explicit stability criteria of each diffusion node, CSG, is calculated on each temperature iteration as the capacitance divided by the sum of the conductors. This criteria is then checked against the user supplied time increment, DTIMEL. The temperature of these nodes with CSG less than DTIMEL are calculated using the implicit method of solution. For these nodes with CSG greater than DTIMEL, the explicit method of solution is used.

The order of calculations is arranged such that energy is conserved in conductors between the implicit and explicit nodes. Calculations are made on the explici nodes first. Next, the temperatures of implicit and arithmetic nodes are calculated using the latest explicit temperatures in the calculations.

The implicit calculations are made using the methods described in Ref. 1. Using this method, temperatures of each node are made using the latest calculated adjacent temperatures. "Passes" are made repeatedly through the temperature calculations until all temperature changes (between passes) have satisfied the user input tolerances DRLXCA and ARLXCA which must te supplied by the user. When the tolerance is satisfjed for a node, the calculations of its temperature are temporarily suspendeo in the pass loop until all node tolerances are met. The calculation on all nodes are then resumed and the procedure is repeated until all node temperatures meet the toierances on two
successive passes. The calculations may be over-relaxed or damped using user constants DAMPD and DAMPA. The default values for these variables are 1.0 for each. The maximum number of passes allowed through the temperature calculation loop is supplied by the user constant NLOOP. Typical values for this variable are 500 to 1000.

The implicit calculations for diffusion nodes may be backward difference, mid difference, or anywhere between backward and mid-difference. The first argument of HYBRID, ALPHA, determines the point in the iteration for evaluating the heat flux. If ALPHA $=1.0$ or 0.0 (with a default value of 1.0) backward difference results. If $0 .<\alpha \leq 0.5$, ALPHA is set equal to 0.5 and mid-difference results. If ALPHA is between 0.5 and 1.0 , the heat rate is ALPHA times that at the end of the iteration plus (1-ALPHA) times that at the start of the iteration. A second argument, KOP, will give a checkout print if $\neq 0$. Be prepared for a considerable amount of output if KOP $\neq 0$.

The problem output is supplied at OUTPUT interval where OUTPUT is supplied as a user constant. The user may also supply a maximum allowable temperature change for the diffusion and arithematic nodes by supplying values for DTMPCA and ATMPCA. If t^{t} e changes are exceeded, the problem will be terminated. Default values for these are 1. $\times 10^{8}$.

RESTRICTIONS:
The LPCS option is required and control constants TIMEND, OUTPUT, DTIMEL, NLOOP, DRLXCA, and ARLXCA must be specified. Other control constants used or activated are: TIMEN, TIMEØ, TIMEM, CSGMIN, DTIMEU, DTMPCA, DTMPCC, ATMPCA, ATMPCC, DAMPD, DAMPA, DRLXCC, ARLXCC, LOOPCT, BACKUP, OPEITR, LINECT, PAGECT.

CALLING SEQUENCE : HYBRID(ALPHA, KOP)
DYNAMIC STORAGE REQUIREMENTS:
This routine utilizes two dynamic storage core locitions for each temperature node for non-flow problems or three dynamic storage locations for each temperature node for fluid flow problems.

SUBROUTINE NAME: INVRS

See description for usage of SINVRS.

SUBROUTINE NAME: QCOMB or ACOMB

PURPOSE:
QCOMB and ACOMB sum the interpolated value of the dependent variable: of two arrays, A1 and A2, after multiplying A1 by α_{1} and $A 2$ by α_{2} to form a third array, A3. For $\mathrm{QCOMB}, \mathrm{A} 3$ contains all the independent variable values of both A1 and A2 except where these values are equal. For ACOMB, the combined array will contain the independent variables of the Al array only. RESTRICTIONS:

Adequate space must be set aside in A3 but the space isn't required to be the exact amount needed by A3.

CALLING SEQUENCE:
$\operatorname{QComB}(A 3, \alpha 1, A 1, \alpha 2, A 2)$ or $\operatorname{ACOMB}(A 3, \alpha 1, A 1, \alpha 2, A 2)$
where $\quad A 3$ is a doublet array with dependent variable values given by

$$
A 3(i)=\alpha 1 * A 1(i)+\alpha 2^{* A 2(i)}
$$

$\alpha 1$ and $\alpha 2$ are constants to be multiplied times values of A1 and A2 at each point of A3

AI and A2 are doublet arrays
$c-2$

RADIR
PURPOSE:
RADIR calculates the script-F values for infrared radiation heat transfer within an enclosure and uses these values to obtain the heat transfer during the problem. Several temperature nodes may be combined on a single surface for radiation heat transfer purposes. Also, the user may analyze problems with specular, dfffuse or combinations of specular and diffuse radiation. See Section 2.7.8.1 for definitions and detailed description of methods.

RADIR calculates the script-F values on the initial call. This is performed by the procedure outlined in Section 2.7.8.7. These values replace the EFT values in the SC array for future use. The heat flux values are then calculated on all iterations by:
(1) Calculating the temperature of each surface
(2) Calculating the absorbed heat for each node

The value given by equation 38 is added to the conductor sum for each node so that the proper convergence time increment may be obtained. As many enclosures as desired may be analyzed by each enclosure but each enclosure requires a different call to RADIR. RADIR must be called in VARIABLES 1. RESTRICTIONS:

Must be called from VARIABLES 1 Surface nodes must be boundary nodes CALLING SEQUENCE:

RADIR (A(IC) , SIGMA, TZERO)
Where A is of the following format:
A(IC), SN, SE, SR, SC, NA, SP, END
SN, SE,SR,SC,NA, and SP are actual array numbers input using the *A procedure and are of the following formats

SE(IC), SE1,SE2-----SEn, END
SR (IC), SR1,SR2----SRn,END
SC(IC), SNF1,SNT1, EFT1,SNF2,SNT2,EFT2,---SNFm,SNTm,EFTm,END
$\operatorname{NA}(I C), N N O(1,1), A N(1,1), N N O(1,2), A N(1,2)-N N O(1, N N 1), A N(1, N N 1)$
$\operatorname{NNO}(2,1), \operatorname{AN}(2,1), \mathrm{NNO}(2,2), \operatorname{AN}(2,2)-\operatorname{NNO}(2, \mathrm{NN} 2), \operatorname{AN}(2, \mathrm{NN} 2)$

NNO $(n, 1)$, $\operatorname{AN}(n, 1)$, $N N O(n, 2), \operatorname{AN}(n, 2)--N N O(n, N N n), A N(n, N N n)$, END
SP (IC), SPACE, INSPACE, END

The following definitions apply in the above calling sequence:

A	Array idenitifcation for the array which identifies the other arrays containing the data
SN	Array number for the array containing surface numbers and areas
SE	Array number for the array containing the surface emissivities (may not be used in more than one call to RADIR)
SR	Array number for the array containing the surface reflectivities
SC	Array number for the array containing the surface connections data
NA	Array number for the array containing the temperature node numbers and areas
SP	Array number for the array contajning the space which is used for obtaining script FA values and for subsequent temperature calculations
n	The number of surfaces
SN1, SN2, .. SNn	Node number for surfaces - must be boundary nodes
SAT, SA2,SAn	Total area for each surface
NN1,NN2,NNn	Number of temperature nodes on each surface
SE1,SE2,SEn	Emissivity values for each surface
SR1, SR2,SRTi	Diffuse reflectivity values for each surface
SNF1,SNT1, EFT	Connections data: Surface number from, surface number to, E value from SNFI to SNT1, etc. (SNFT \neq SNTI)
NNO (X, Y)	Temperature node numbers on surfaces; Node number Y on surface X
AN(X,Y)	Area of node Y on surface X
NSPACE	Number of spaces needed to rore script-FA values. - NSPACE must be an integer values of $n * n(n+1) / 2$
n	The number of surfaces
SIGMA	Stefan-Boltzmann constant
TZERO	Temperature of absolute zero in problem units

PURPOSE:

RADSOL calculates a pseudo script-F for radiation from an external source entering an enclosure and uses these values to calculate the net heat transfer to each node due to the entering sourve. A number of temperature nodes may be combined on a single surface for radiation purposes. Also, problems with specular, diffuse, or combinations of specular and diffuse radiation may be analyzed. Section 2.1.8.2 should be consulted for definitions and descriptions of methods.

RADSOL calculates the pseudo script-F values on the initial call, as described in Section 2.1.8.2. The values are stored in the EFT values of the SC array supplied by the user. The heat flux values are then calculated on each iteration.

The user may analyze as many enclosures as desired by supplying a call statement for each enclosure. Also, a user may analyze several wave length bands by supplying a call to RADSOL for each wave length band.

RESTRICTIONS:

Must be called from VARIABLES I; Surface nodes must be boundray nodes

CALLING SEQUENCE:

RADSOL (A(IC))
Where the A array is of the following format:
$A(I C), S N, S E, S R, H T, S C, N A, S P, E N D$
SN, SE,SR,HT,SC,NA, and SP are actual array numbers input using the *A procedure and are of the following formats:

SE(IC), SET,SE2,-----SEn, END
SR(IC) ,SRT,SR2, -----SRn,END
HT (IC), SHT1,SHT2-…-SHTn, END
SC(IC),SNF1, SNT1, EFT1,SNF2,SNT2,EFT2, $\cdots-$-SNFm, SNTm, EFTm, END
$\operatorname{NA}(I C), \operatorname{lNNO}(1,1), \operatorname{AN}(1,1), \operatorname{NNO}(1,2), \operatorname{AN}(1,2)-\cdots \operatorname{NNO}(1, N N 1), \operatorname{AN}(1, N N 1)$,
$\operatorname{NNO}(2,1), \operatorname{AN}(2,1), \operatorname{NNO}(2,2), \operatorname{AN}(2,2) \cdots-\operatorname{NNO}(2, \operatorname{NN} 2), \operatorname{AN}(2, \operatorname{NN} 2)$,
$\operatorname{NNO}(n, 1), \operatorname{AN}(n, 1), \operatorname{NNO}(n, 2), \operatorname{AN}(n, 2)--N N O(n, N N n), A N(n, N N n), E N D$
SP(IC),SPACE, NSPACE,END

The following definitions apply in the above calling sequence

A	Array identification for the array which identifies the other arrays containing the data
SN	Array number for the array containing surface numbers and areas
SE	Array number for the array contajning the surface emissivities (may not be used in more than one call to RADSOL)
SR	Array number for the array containing the surface reflectivities
HT	Array number for the array containing the incident heat curves or constant heat flux values
SC	Array number for the array containing the surface connections data
NA	Array number for the array containing the temperature node numbers and areas
SP	Array number for the array containing the space which is used for obtaining script values and for subsequent temperature calculations
SNT, SN2,... SNn	Node number for surfaces; must be boundary nodes
SAl , SA2, ...SAn	Total area for each surface
NN1, NN2, ...NNn	Number of temperature nodes on each surface
SE1,SE2, ... SEn	Emissivity values for each surface
SR1, SR2, ... SRn	Diffuse reflectivity values for each surface
SHT1,SHT2, .. SHTn	Incident heat flow on surfaces; may identify curves containing incident values vs time
SNFT, SNTL , EFTl	Connections data: Surface number from surface number to, E value from SNF1 to SNTl, etc. (must include SNFI=SNTI)
NNO (X, Y)	Temperature node numbers on surfaces: Node number Y on surface X
AN (X, Y)	Area of node Y on surface X
NSPACE	Number of spaces needed to store script-FA values - NSPACE must be an integer values of $n(n+1) / 2$
n	Number of surfaces

SUBROUTINE NAME: REVPOL
PURPOSE:
This subroutine performs single variable linear interpolation on a doublet array of X, Y pairs in the same manner as DJDEGT except in reverse order. The array is interpolated in reverse order to obtain the value of independent variable, X, which corresponds to the input dependent variable, Y.

RESTRICTIONS:
All values must be floating point numbers.
CALL.ING SEQUENCE:
REVPOL ($Y, A(I C), X)$
where Y - input value of dependent variable
A - Doublet array of X, Y pairs
$X \quad-\quad$ output value of independent variable

SUBROUTINE NAME:
SINVRS or INVRS
PURPOSE:
These subroutines perform matrix inversion for symmetric, positive definite matrices using the efficient Square-Root or Symmetric Cholesky method. This method requires approximately half the computer time to obtain an inverse using the Gauss Elimination and Gauss-Jordan methods. Also, a significant increase in the accuracy has been observed. The symmetric matrix may be stored in half the square matrix space if desired. The inverse is returned in its original space of the A-matrix.

For SINVRS, the A matrix may be ejther a full square matrix or the upper triangular half of a square matrix. A check on the integer count relative to the matrix size is used to detemine whether $1 / 2$ matrix or full matrix is stored. INVRS assumes only the upper traingle of the symmetric matrix is stored. The (1,1) element is stored in the third data value of A for SINVRS and in the first data value of INVRS. The first data value of A contains the matrix size for SINVRS. RESTRICTIONS:

The half symmetric matrix must be stored as shown below for INVRS and for the half symmetric matrix option of SINVRS. Subroutine INVRS contains no error checks and should be used with extreme caution.

CALLING SEQUENCE: $\quad \operatorname{SINVRS}(A(I C), D)$ or $\operatorname{INVRS}(A(D V), N, D)$
where $\quad A$ is the matrix to be inverted and also, the inverse upon return
D is the determinant of the original matrix to be inverted
N is the matrix size
The formats for A are as follows for SINVRS:
(A) Full symetric matrix

$$
\left.\begin{array}{r}
\text { IC, } N, \operatorname{BLANK}, A(1,1), A(1,2), \cdots-A(1, N) \\
A(2,1), A(2,2), \cdots-A(2, N) \\
\vdots \\
A(N, 1), A(N, 2)
\end{array}\right) \cdots-A(N, N)
$$

(B) Half symmetric matrix

The format for A is as follows for INVRS

$$
\begin{array}{r}
A(1,1), A(1,2), A(1,3), \cdots-A(1, N) \\
A(2,2), A(2,3), \cdots-A(2, N) \\
\\
\\
\\
\\
A(N, N)
\end{array}
$$

SUBROUTINE NAME: TIMCHK

PURPOSE:
Subroutine TIMCHK compares the elapsed computer time against the requested computer time, RTIME, and terminates the run if RTIME is exceeded by the elapsed time. If the second argument, KODE, is non-zero an output of computer time used will be printed out on each call to TIMCHK. Thus, a call to TIMCHK in VARIABLES 2 should normally be with KODE $=0$. If the output of computer time used is desired, TIMCHK should be called from OUTPUT with KODE $f 0$. The most desirable procedure is to supply two calls to TIMCHK : (1) a call in VARIABLES 2 with KODE $=0$ and (2) a call in OUTPUT with KODE $\neq 0$.

RESTRICTIONS:
KODE should zero when called from VARIABLES 1 or 2.
CALLING SEQUENCE:
TIMCHK (RTIME, KODE)
where RTIME $=$ maximum computer time requested
KODE $\quad=$ print code: $=0$, computer time used is not printed out
$\neq 0$, computer time used is printed out on
each call to TIMCHK

SUBROUTINE NAME: WPRINT
PURPOSE:
Subroutine WPRINT will write all the values of the flowrates, pressure drops, pressures and valve positions. All values are printed out versus the actual numbers for which they occur.

RESTRICTIONS:

CALLING SEQUENCE:
Should be called from OUTCAL
WPRINT (K1,K2,K3,K4)

$$
\text { where: } \quad \begin{aligned}
K 1= & 0, \text { no flowrates will be printed } \\
= & 1, \text { flowrates will be printed }
\end{aligned} \quad \begin{aligned}
\mathrm{K} 2= & 0, \text { no pressure drops will be printed } \\
& 1, \text { pressure drops will be printed } \\
K 3= & 0, \text { no pressures will be printed } \\
& 1, \text { pressures will be printed } \\
\text { K4 }= & 0, \text { no valve positions will be printed } \\
& 1, \text { valve positions will be printed }
\end{aligned}
$$

DYNAMIC STORAGE REQUIREMENTS:
Dynamic storage required by WPRINT is $N W+N P R+N V$ where $N W$ is the number of tubes, NPR is the number of pressure nodes, and NV is the number of valves.

6.0

SAMPLE PROBLEM

A sample problem was prepared for the SINFLO routine to demonstrate the input and output for a typical thermal/flow analysis problem. A schematic of the problem is shown in Figure 9 . The problem consists of 8 two dimensional radiator panels, each modeled by two flow paths (one for the main panel of 11 tubes and one for the prime bypass tube). Contained in the system are a pump, a bypass valve (valve No. 1) and a stagnation valve between the two flow paths. The heat load to the radiator system comes through a counter flow heat exchanger which has a controlled inlet temperature of $40^{\circ} \mathrm{F}$. The fluid is Freon 21 in the radiator system and water on the cooled side of the heat exchanger. The nodal subdivision for the fluid system is shown in Figure 9 . The structural nodal subdivision is shown in Figure 10.

The sample problem was analyzed using the SNFRND solution routine. The input for the problem is listed in Table 6 and the printed output is listed in Table 7. A few selected items were plotted using the plot package described in Appendix C. The plots of these items are presented in Figures 11 thru 17. The same sample problem was analyzed using the other temperatire solution methods: CNFWBK, CNFWRD, CNFAST, HYBRID, CINDSS, SNFRWD FWDBCK, SNFRDL, CINDSL, and STDSTL.

x- Pressure Nodes
(X)- Tube numbers
vx - Valve numbers
FIGURE 9 FLUID MODEL OF THE SAMPLE PROBLEM

[^5]FIGURE TC STRUCTURE MODEL. FOR THE SAMPLE PROBLEM

listing of sample problem infut
TABLE 6

SIndA:SIHFLO PREPROcESSOR

SIADASSINFLO PREPROCESSOH

SJHDA'sinflo Preprocessom

_. SIMDA/SINFLO PREPROCESSOR

MPRINTIAIFL:II
TIMCHK(Ki:i)
END

- Divide check has occurarede -

DPHDIE \qquad

GFAEE DATA.

GADDIP SIHFEOAPROC

Pare

SAHPLE PROQLEK SNFATD

EHSTEMS IMPROVED NUHERICAL DIFFERENCIAG AAALYEER SAMALE MROBLEH / 5NFR日D

- COHPNTER TIME - ODO HINUTES

OIVIDE CHECK AT O23224

THE PROBLEH IDENTIFIED AS OH2HJE HAS BEEN STORED AT THIS POIAT

EhD of onta

- diyide check has occuraeo. .

品
:
:- :
$:-$
:~:
9.…; 品:
品:
:-
-
_ Snfang Plots

－ODO HRS．T
10

\qquad THE HISTORy TAPE \＆ABEL IS－

	$\begin{array}{r} 76.857 \\ 23.025 \\ 232.722 \end{array}$	$\begin{array}{r} 65.463 \\ 2499.868 \\ 209.138 \end{array}$	$\begin{array}{r} 70.000 \\ 2499.713 \\ 1.000 \end{array}$	LORDEか 66.107 $.2=0$	$\begin{array}{r} 801000 \\ 66.515 \\ 11190.568 \end{array}$	$\begin{aligned} & \text { HRS: } \\ & 77.230 \\ & 10970.183 \end{aligned}$	$\begin{array}{r} \text { LOOKING FOR } \\ 00.000 \\ 10763.199 \end{array}$	$\begin{array}{r} 3.00000 \\ 71.000 \\ .400 \end{array}$	MRS： $\begin{aligned} & 2499.996 \\ & 9926.684 \end{aligned}$	$\begin{aligned} & 7499.968 \\ & 2.308 .739 \end{aligned}$
				LOADLO	－42000	HRS．	LOOMING FOR			
	78.297	60.030	70．000	60.95	61.522	76S：263	Bo．dod	37．064	WH54． 2498986	
	＋025	2497.967	2499，719	－ 270	11179.351	10972，363	10742．803	－	9906.094	3.303.40
	2303．390	209．390	1．000	1．040						
－	74．953	54．8．35	70.000	LOADEO 55.741	.03000 $56,360$	HH5．	LOOKING FOR	3.00000	＋R5．	
	． 025	2499.969	2499.719	S． .250	11444.838	74.800 10935.038	60．000	63.570	2499.997	7494．969
	2305.285	209.556	1．000	1.000	1174．03a	10935.858	30．451	． 000		7305．313
				toaded	－104000	HRS：	LOORING Fon	3400040	HHS．	
	$\begin{array}{r} 73.529 \\ .023 \end{array}$	$\begin{array}{r} 50.123 \\ 2499.968 \end{array}$	$\begin{array}{r} 70.000 \\ 2499.717 \end{array}$	51．0u5	51.553 11131.114	$73: 452$ 10921897	400．000	50.711	2499．997	2499．968
	2307．140	209．727	14．100	.247 1.000	11131．114	0926．897	10712.673	－ 10	9R75．954	7307．159
				LOADEO	＊05000	HAS．	LOOKING For	3．00000	HES．	
	72．189	45.923	90．000	46.715	47.211	72．11．	90．400	54.597	2500．010	7409．970
	－ 025	2499.970	2499.710	＋230	11119．098	10909．845	14.90 .595	－Nu0	9\％63．773	2308.632
	2376.612	209．004	1.000	1.040						
				LOADEA	－106000	HR5．	LOOKING FOR	3．00．500	нR5：	
	70.979	42，214	70，000	42.917	43.350	70．914	8u， 000	$50+4 \times 0$	2499．905	2499．973
	．025	2409.973	2499．720	．200	11119．116	10909．862	10690．007	－טud	9月63．040	2309．786
	2309.766	209.972	1．000	1.040						
$\stackrel{\rightharpoonup}{\infty}$				LOADED	．07000	HR5．	LOOKING FOR	3．000ud	mis．	
			69.909	39.593	39．981	69.846	日u．000	47.022	2494．998	2409．973
	23.0 .025	$\begin{array}{r} 2499.073 \\ 214.057 \end{array}$	$\begin{array}{r} 2499.719 \\ 1.000 \end{array}$	$.240$	11108.580	10890．470	10681．174	－vuo	$9.44+191$	23104801
				$\begin{gathered} \text { IGDu } \\ \text { LOADLD } \end{gathered}$						
	68.962	36．110	69.909	36，671		60.911	LOOK ING FOR	3．00．400	mis．	
	． 025	2499．970	2448．731	51.259	11097.77	10713．397	10350.370	43.783	2499.997	2498．970
	2312，337	210．201	24．900	1，000	1104787	10713．397	10350．376	－tuc	9542，944	2322．547
				LOADED	．09000	HR5．	LOOKiNG for	1．00uvo	NR5．	
	68.231		69．539	34.741	34．972	68.192	8u．000	41.314	2499．990	2499，969
	23．3．025	2499.949 210.296	2373．364	126．6．15	10769．003	10300．880	9076．989	－u10	9113.537	2374．023
	2313．335	210．296	． 949	$\begin{aligned} & \text { I.OUD } \\ & \text { LOADED } \end{aligned}$	． 10000					23702 l
	67.722	3：．330	67．348	33.422	33．621	$67: 894$		3.00000 39.475	HRS．90909	
	20．439	2473.356	2245．130	216．201	10293．401	9780.677	927日．996	39.475 .040	7499.996 8522．790	2473.356
	22034252	212.035	.913	－969						2457．502
	87.263	29．295	64.289	204000 32.505	－11000	HR5： 250	LOOKSNG FOH	3．00000	HAS．	
	60.336	2439．658	21300312	32.505 313.457	33.054 964.764	9697．259	80．000	30．459	2499．907	2439．650
	2248.330	212.506	2．972	213．418	9644.76	9097．716	0450.581	．000	7A12．693	2507．050
				Londeo	． 12000	HR5．	LOOKIMG FOR	3.00040	NH5．	
	87.101	27．407	61．093	32．047	32．924	67：091	80．400	37.749	2449.907	2404．329
	95.665	2404．329	1994．456	413.051	8520.132	7864．721	7596．747	－vou	7r34．300	2757.370
	2162．941	211．057	＊ 828	＋902				－ 0	7 cJiJad	275．370
	67.150	25．607		LOAOCD	113000	HRS．	LOOKING FOH	3．Duvuo	HES．	
		25．607	80．449	गl．tal	33.134	67：153	00．000	37.031	24940990	2371．628
	178.360 $215 t .206$	2371．628	1865．830	515．847	900［1927	7488．114	6929．497	－प40	6446．57）	\％135．394
	2151．206	212.440	． 783	． 949						
				LOADED	－14090	HHSt	LOOKING Fon	3.00050	H45．	
	67.117	23．460	5.9 .002	11．7\％2	33.599	67.115	80．000	37.020	2449.984	7349.740
	155．256	2344．740	1738.014	614.742	7327.946	6021．37\％	6275．360	． 000	$5 \mathrm{ch1.04}$.	1350.738

SHFRMD PLOTS

$$
\begin{aligned}
& 25 \text { OATA VALVES HAVE GEEN SYORED FOAEACH OF } 101 \text { TIME POIMTS }
\end{aligned}
$$

SHFRHC PLOTS

	ITEH TYPE	
1	$-9 a$	$5 T$
2	106	$5 T$
3	114	$5 T$
4	115	$5 T$
5	-117	$5 T$
6	200	$5 T$
7	198	$S T$
9	189	$5 T$
9	-1	$F R$
10	2	$F R$
1	36	$F R$
12	-2	$F R$
13	3	$F R$
14	11	$F R$
15	-1	$P R$
16	2	$P h$
17	3	$P R$
18	24	$P R$
19	-4	$P R$
20	9	$P R$
21	18	$P R$
22	23	$P R$
23	-2	$V P$
24	3	$V P$

$\boldsymbol{Y}=\mathrm{HIN}$	Y-max	STATUS
-1.590*01	7.606.01	320
0.004	1.000	328
4.000	0.000	336
0.004	0.000	317
3.292* n 1	8.000*01	339
0.000	U.000	352
0.000	0.000	340
0.0 Oc	0.000	341
2,3ن)-nz	2.500*03	6.7
$0 \cdot \mathrm{OuO}$	4.000	64
1. Du0	-.000	102
2.471-ni	2.500*03	68
0.005	0. 000	69
0.0 d	0.000	71
U.Onu	1.1)1904	41
G.0ud	H. 000	42
$0 \cdot \mathrm{O}$	G.090	43
0.0 O0	0.900	64
2*083*n2	1.060*04	44
U.Ou0	0.000	47
4,00u	0.000	50
4.000	0.000	63
3.3310n1	1.000*00	65
0.060	0.000	86

SMFA苗え PLOTS

－9PD：

OM5G：H EHD DFI每3E

FIGURE 11

RADIATOR TEMPERATURE PLOTS

FIGURE 12
SYSTEM TEMPERATURES PLOTS

FIGURE 13
SYSTEM FLOW RATE PLOTS

FIGURE 14

RADIATOR FLOW RATE PLOTS

DRRGINAL PaGE IS
DOOR QUALITY

FIGURE 15

SYSTEM PRESSURE PLOTS

FIGURE 16

RADIATOR PRESSURE PLOTS

ORIGNAL PAGE IS OF POOR QUALIXH:

FIGURE 17
VALVE POSITION PLOTS
2.
3.
time - (hours)
1.

Echert, E.R.G., and Drake, R. M.; Heat and Mass Transfer, McGraw Hill, New York, 1959.
2.
3.
4.
5.
6.
7.
8.

Sparrow, E. M., and Cess, R. D., Radiation Heat Transfer, Brooks/Cole Publishing Co., Belmont, California, 1966.

APPENDIXX A

RADIATION INTERCHANGE ANALYSIS

Capabilities have been incorporated into subroutines for use with SINDA to facilitate the analysis of radiation heat transfer in an enclosure. The capabilities include the ability to:
(1) Analyze diffuse and/or specular infrared radiation in an enclosure
(2) Analyze diffuse and/or specular radiation from an external source for as many wave bands as desired
(3) Consolidate several temperature nodes into a singie surface to improve computational efficiency
A radiation surface is defined as a group of temperature nodes which may be assumed to have identical radiating properties, angle factors and interchange factors.

The subroutines account for the net radiation heat transfer between a number of surfaces due to the emitted radiation from each surface, reflected radiation from each surface, and radiation from any number of incident sources. The reflection of the energy originally emitted by another surface or from an external source may be either diffuse, specular, or any combination of the two.

Emitted Radjation In A Cavity
The radiosity of a surface is defined as the fTux of infrared radiation leaving that surface with a diffuse distribution (according to Lambert's Law). That energy leaving a surface which has been reflected in a specular manner does not contribute to the radiosity of that surface. The incident infrared radiosity is denoted by the symbol H . The reflectance ($1-\varepsilon$) of a surface is separated into two components, the diffuse reflectance (ρ), and the specular reflectance ($\rho{ }^{s}$). Here ε is the emittance of the surface and is equivalent to the absorptance for long wavelength radiation With the angle factors ($F i j$) defined in the normal way, there exist similar angle factors which relate the geometrical ability of surface i to radiate to surface j by means of a mirror-like reflection from specular surface k. Reference to Figure A-1 indicates the method of imagery which will enable the calculation of these reflected angl, factors. Here the angle factor to surface j is identical with the angle factor to the image of surface j. Also the angle factor is 1 imited by the ability of surface \mathfrak{i} to "see" through the "window" of surface k. With the specular surface angle factors so defined, an interchange factor $E_{i j}$ is defined similarly to reference 8 as follows:

FIGURE A-1 illustration of method used to determine specular surface reflected view factors

$$
\mathrm{E}_{\mathrm{ij}}=\sum_{k} \rho_{\mathrm{k}}^{\mathrm{s}} \mathrm{~F}_{\mathrm{ij}(\mathrm{k})}+\sum_{\mathrm{k}} \sum_{l}\left(\rho_{k}^{\mathrm{s}}\right)\left(\rho_{l}^{\mathrm{s}}\right) \mathrm{F}_{i j(k, 1)}+\cdots(A-1)
$$

Here $F_{i j}(k)$ is the angle factor from i to j as seen in the specular surface $k, F_{i, j}(k, l)$ is the angle factor from i to j as seen in the double specular reflection from k and 1 . There are an infinite number of possible combinations of these multi-reflections. It is evident that the interchange factors account for the specularly reflected radiant flux from the reflecting surface. This portion of total leaving flux is not a component of the radiosity of that surface. The radiosity may be written

$$
\begin{equation*}
B_{i}=\epsilon_{i} \sigma T_{i}^{4}+\rho_{i} H_{i} \tag{A-2}
\end{equation*}
$$

and, for ins surfaces,

$$
H_{i}=\frac{1}{A j} \sum_{j=1}^{n s} B_{j} A_{j} E_{j i}
$$

Now the interchange factors obey the reciprocity relation

$$
A_{i} E_{i j}=A_{j} E_{j i}
$$

So,

$$
H_{i}=\sum_{j} B_{j} E_{i j}
$$

Substitution into the equation for B results in

$$
\begin{equation*}
\sum_{j}\left(\delta_{i j}-p_{i} E_{i j}\right) B_{j}=\epsilon_{i} \sigma T_{i}^{4} \tag{A-3}
\end{equation*}
$$

This equation represents a set of linear, simultaneous, inhomogeneous algebraic equations for the unknowns (B_{j}). The symbol $\delta_{i j}$ is the Kronecker delta function which is 1 when $i=j$ and is 0 when $i \neq j$.

Note that the coefficients of B_{j} in equation ($\mathrm{A}-3$) do not form a symetric coefficient matrix since the off diagonal terms contain - $p_{i} E_{i j}$. This equation can be made symetric by multiplying each equation by A_{j} / ρ_{j}.

Substituting in for B_{j} from equation (A-5) into equation ($A-6$) gives

$$
\begin{align*}
Q_{i} & =\frac{A_{i} \epsilon_{i}}{\rho_{i}}\left\{\sum_{j=1}^{n s} \frac{e_{i j}^{-T} \epsilon_{j} A_{j} \sigma T_{j}^{4}}{\rho_{j}}-\left[\rho_{i}+\epsilon_{j}\right] \sigma T_{i}^{4}\right\} \\
& =\frac{A_{i} \epsilon_{i}}{\rho_{i}}\left\{\sum_{j=1}^{n s} \frac{e_{i j}^{-1} \epsilon_{j} A_{j}}{\rho_{j}} \sigma T_{j}^{4}-\left[\rho_{i}+\epsilon_{i}-\frac{e_{i j}^{-1} \epsilon_{i} A_{i}}{\rho_{i}}\right]^{\sigma T_{i}^{4}}\right\} \tag{A-7}
\end{align*}
$$

Since, in steady state, $Q_{i}=0$, and $T_{i}^{4}=T_{j}^{4}$ for all i and j we can ${ }^{4}$ froude that conclude that

$$
\rho_{i}+\epsilon_{i}-\frac{e_{i j}^{-1} \epsilon_{i} A_{i}}{\rho_{i}}=\sum_{j=1}^{n s} e_{i j}^{-1} \frac{\epsilon_{j} A_{j}}{\rho_{j}}
$$

Making the above substitution in equation $(A-7)$ gives

$$
\mathrm{Q}_{\mathrm{i}}=\sum_{\mathrm{j}=1}^{n s} \sigma \frac{\epsilon_{i} \epsilon_{j} A_{i} A_{j} e_{i j}^{-1}}{\rho_{i} \rho_{j}}\left[T_{j}^{4}-T_{i}^{4}\right]
$$

If we define な as

$$
\begin{align*}
& \sigma_{i j}=\frac{\varepsilon_{i} \epsilon_{j} A_{j} e_{i j}^{-1}}{\rho_{i} \rho_{j}} \quad i \neq j \tag{A-8}\\
& \mathscr{F}_{i j}=\frac{\varepsilon_{i} \varepsilon_{j} A_{i}}{\rho_{i} \rho_{j}}\left[e_{i j}^{-1}-\rho_{i} / A_{i}\right] \quad i=j
\end{align*}
$$

Then

$$
Q_{i}=\sum_{j=1}^{n s} \sigma q_{i j} A_{i}\left[T_{j}^{4}-T_{i}^{4}\right]
$$

This equation gives the heat flux between surfaces. However, each surface can contain several nodes. The heat absorbed by for each node is determined by:

$$
\begin{equation*}
Q_{n}=\frac{A_{n}}{A_{i}} \sum_{j=1}^{\text {ns }} \sigma \text { Fij}_{i j} A_{j}\left[T_{j}^{4}-T_{n}^{4}\right] \tag{A-9}
\end{equation*}
$$

Where $n=$ the node number on surface i
Prior to each iteration, the temperature of the surfaces are determined by

$$
\begin{equation*}
T_{i}^{4}=\frac{\sum_{n=1}^{n n} A_{n} T_{n}^{4}}{\sum_{n=1}^{n n} A_{n}}=\frac{\sum_{n=1}^{n n} A_{n}^{T}{ }_{n}^{4}}{A_{i}} \tag{A-10}
\end{equation*}
$$

Where $n n=$ the number of nodes on surface \mathfrak{i}
Since the heat transfer rate given by equation ($A-9)$ depenas on the node temperature, stability considerations must be taken into account. This is handled by storing the following relation into the array containing the sum of the conductors used for time increment calculation

$$
\begin{equation*}
\operatorname{con}_{n}=4{\frac{A_{n}}{A_{i}}}^{\sigma} T_{n}^{3} \quad \sum_{j=1}^{n c} \sigma A_{i j} \tag{A-11}
\end{equation*}
$$

Subroutine RADIR makes the calculations necessary to obtain Qn given by equation ($A-9$) and CoNn given by equation ($A-11$). The following is a summary of the calculations:
A. The following are performed the first time through RADIR:
T. From the user input values of $E_{i j}, A_{i}$, and ρ_{i}, the E matrix given by equation ($A-4$) is formed. Only half of the symetric matrix is stored to save space.
2. The E matrix is inverted in its own space to get E^{-1} with elements $e_{i j}{ }^{-1}$
3. The "f $A_{i j}$ values are determined from equation ($A-8$) and stored in the surface connections data.
B. The following calcutations are performed on each temperature iterations:

1. The temperature of each surface is calculated by equation (A-10).
2. The heat absorbed for each node is determined using equation ($A-9$) and is added to the Q array.

The routine utilizes data used for obtaining $\sigma_{\neq} A_{j j}$ in step A as working space for step B, thus, maximizing space utilization.

Radiation From External Source
As with the internally generated radiation, the solar (or any other external source radiation) interchange factor is defined by

$$
E_{i j}^{*}=F_{i j}+\sum_{k} \rho_{k}^{* S} F_{i j}(k)+\sum_{k} \sum_{l} \stackrel{P}{k}_{* S}^{p_{l}^{* S}} F_{i j}(k, l)+i_{11}
$$

Where $\rho_{k}^{* s}$ is the solar specular reflectance of surface K $F_{i j}(K)$ is the angle factor from i to j as seen in the $\mathrm{F}_{\mathrm{ij}}(K, l)$ is the angle factor from \mathfrak{i} to j as seen in a double
specular reflection from j to l to k back to i

The interchange factors as defined above accounts for the specularly flux reftected from the surface. Thus, since the specular component of the flux is assumed to go directly from surface i to surface j by the interchange factor, Eij, this portion of the total flux is not a component of the radiosity for the intermmedjate surfaces (k and i above). The radiosity of surface i is given by

$$
\begin{equation*}
B_{i}^{*}=P_{i}^{*} H_{i}^{*} \tag{A-12}
\end{equation*}
$$

Where B_{i}^{*} is the radiosity (energy leaving)
H_{i}^{*} is the incident energy
ρ_{i}^{*} is the diffuse reflectance
The energy incident upon a surface is given by

$$
\begin{equation*}
H_{i}=\sum_{j=1}^{n s} B_{j}^{*} E_{i j}^{*}+S_{i} \tag{A-13}
\end{equation*}
$$

Where S_{i} is the energy directly incident on surface i from an external source

Substituting equation ($A-12$) into $(A-13)$, multiplying by A_{i} / P_{i}^{*} and simnlifying gives the following relation for the radiosity

$$
\begin{equation*}
\left[\frac{A_{i}}{\rho_{i}^{*}}-E_{i i}^{*} A_{i}\right] B_{i}^{*}-\sum_{\substack{j=1 \\ J \neq i}}^{n} E_{i j}^{*} A_{i} B_{j}^{*}=S_{i} A_{i} \quad i=1, n \tag{A-14}
\end{equation*}
$$

This set of n equations can be written in matrix form as

$$
\begin{equation*}
E^{*} \mathrm{~B}^{*}=\mathrm{S} \tag{A-15}
\end{equation*}
$$

Note that the equations are written so that E^{*} is a symetric matrix, which has the solution for'B* .

$$
\begin{equation*}
B^{*}=E^{-1} S \text { or } \quad B_{i}=\sum_{J=1}^{n}\left[e_{i, 1}^{+1}\right]^{-1} S A_{j} \tag{A-76}
\end{equation*}
$$

Where $\left[e_{i j}^{*}\right]^{-1}$ is the ijth element of the inverse of the E^{*} matrix The heat flux absorbed by the i th surface is given by
But from equation (A-12) $\frac{Q_{i}^{*}}{A_{i}}=\alpha H_{i}$

$$
\begin{equation*}
H_{i}=\frac{B_{i}}{P_{i}^{*}} \tag{A-78}
\end{equation*}
$$

Combining equations ($A-16$), ($A-17$), and ($A-18$) gives

$$
\begin{equation*}
Q_{i}^{*}=\sum_{J=1}^{n} e_{i j}^{*-1} \frac{a_{i}}{\rho_{i}^{*}} A_{j} A_{i} S_{j} \tag{A-19}
\end{equation*}
$$

If we define

$$
\begin{equation*}
\sigma_{i, j}^{*}=e_{i j}^{*-1} \frac{a_{1}}{\rho *} A_{j} \tag{A-20}
\end{equation*}
$$

Then the absorbed heat flux is given by

$$
\begin{equation*}
Q_{i}^{*}=\sum_{j=1}^{n} \gamma_{i j}^{*} A_{i} S_{j} \tag{A-21}
\end{equation*}
$$

Equation (A-27) gives the heat absorbed by each surface, However, each surface may contain several temperature nodes. The absorbed heat for each node is given by:

$$
\begin{equation*}
Q_{n}^{*}=\frac{A_{n}}{A_{i}} Q_{i}^{*} \tag{A-22}
\end{equation*}
$$

Where A_{n} is the area of the node

Subroutine RADSDL was written to make necessary calculations to obtain Q_{n}^{*} given by equation ($A-22$). The following is a summary of the calculations:
A. The following calculations are made the first time through RADSOL:

1. From the user input values of $E_{i j}^{*}, \rho_{i}^{*}$, and $A i$, the E* matrix given by equation ($A-15$) is formed. onty one half is stored since E^{*} is symetric.
2. The E* matrix is inverted in its own space to get E^{*-7} with elements, ${ }^{\star}-1$.
3. The ซ夫*, A_{j} values are determined from equation ($A-20$) and stored in the surface connections data.
B. The following calculations are performed on each temperature iteration:
4. : The heat flux absorbed by each node is calculated by

$$
\frac{Q_{i}^{*}}{A_{i}}=\frac{1}{A_{i}} \sum_{J=1}^{n} \sigma_{i j}^{*} A_{i} S_{i}
$$

2. The net heat absorbed by this wavelength radiation is calculated for each temperature node on each surface by

$$
Q_{n}^{*}=A_{n} \frac{Q_{i}^{*}}{A_{i}}
$$

This quantity of absorbed heat is added to the Q array for node n.

APPENDIX B
 FLOW DATA STORAGE

The flow data which is input in the FLOW DATA block described in Section 4.1 is stored by the preprocessor in labled common arrays. These arrays will be included in the main processor phase routine and the routines generated from the four operation blocks (EXECTN, VARBLT, VARBL2; and OUTCAL). The arrays will be dimensioned in the main processor routine. The following is a list of the arrays:

1. Flow Data :/FLODAT/FLOW(ND), where ND is the amount of space required for the flow data array. This array includes tube connections data and tube data for all systems, specified pressure nodes, valve data, pump data and enthaipy curve
2. System Data : /SYSDAT/SYSTEM $(15, N S)$, where NS is the number of systems. Systems data include property data, solution parameters and specified pressures.
3. Fluid Lump Type Data : /TYPDAT/TYPE (10, NTP), where NTP is the number of fluid types.
4. Flowrates : /WDOT/W(LT), where LT is the largest input tube number.
5. Pressures : /PRESS/P(LP), where LP is the largest irput pressure node number.
6. Fiow Conductors : /FLOWG/GF(LT)
7. Valve Positions : /VALVP/VP(LV), where LV is the largest input valve number.
8. Imposed Flowrates : /WDOTI/WI(LP)
9. Added Flow Resistances : /FLOWR/AFR(LT)
10. Pressure Drops : /DELTAP/DP(LT)
11. Dimensions : /FDIMNS/NTYPE, NSYS, NTB, NP, NV, NFD
where NTYPE is given the value NTP (above)
NSYS is given the value NS
NTB is given the value LT
$N P$ is given the value LP
NV is given the value LV
NFD is given the value ND

The items to be stored in the above are discussed in more detail below.

1.0 FLOW Array

The FLOW array contains flow data that is not easily addressable by the user. Items contained are (1) the network and subnetwork connections data, (2) the tube data which includes the fluid lump/tube lump pairs and the fluid lump type, (3) the specified pressure nodes, (4) the valve data, (5) the network valve data, (6) the pump data, and (7) valve data locations. The format for storing each item is discussed below.

1.1 Network and Subnetwork Connections

The network and subnetwork connections data is stored in the following order for each network or subnetwork:
ICT, 'NAMET', LOCPRT, LOCV1, NTBT1; NFRMT1, NT011, LOCDI. 1 NTBT2, NFRM12, NTO12, LOCD12

NTB1n, NFRM1n, NTO1n, LOCDIn
IC2, 'NAMEn', LOCPR2, LOCV2, NTB21, NFRM21, NTO2T, LOCD21

NTB2n, NFRM2n, NTO2n, LOCD2n

1	\mathbf{t}		1	1
1	1		1	1
1	1	\ddots	i	\ddots

ICn, 'NAMEn', LOCPRn, LOCVn, NTBn1, NFRMnl, NTOn7, LOCDn1

NTBnn, NFRMnn, NTOnn, LOCDnn
where ICi is the integer count of the number of spaces in the connections data for the ith network or subnetwork
NAME i is the 4 character name of the ith network or subnetwork input on the heading card
LOCPRi is the location in the flow data array of the specified pressure nodes for the ith network or subnetwork
LOCV ${ }_{i}$ is the location of the ith network or subnetwork valve data (which is an array of locations of the actual valve data)
NTBij is the tube number of the j th tube of the ith network of subnetwork
NFRMij is the "from" pressure node for the j th tube of the ith network or subnetwork
NTOij is the "to" pressure node for the j th tube of the ith network or subnetwork
LOCDij is the location of tube data (or subnetwork connections) for the j th tube of the ith network or subnetwork If LOCD >0 it is the location of the tube data (fluid/tube lump pairs and type no's.)

If $L O C D<0$ it is the location of the subnetwork connections data for tube j

If $L O C D=0$, the user is supplying the flow resistance for tube j in the added flow resistance array, AFR

A sort is required on the connections data for each network or subnetwork. The connections must be arranged so that for each pressure node, all NTO references for that node must occur in the list prior to any NFRM references. The four data values (NTB, NFRM, NTO, LOCD) must remain intact as a group during the sort. Tubes whose "from" node, NFRM, is not referenced as a "to" node, NTO, should come first in the connections data.

1.2 Tube Data

The tube data portion of the FLOW array contains the fluid lumps, fluid Jump types and tube lumps for each tube. This data is referenced by the LOCD values in the connections data for each tube described in Section 4.7. The format for the tube data portion of the FLOW array is:

ICI, NFLMP11, NTYPEIT, NTBLMPIT, ---, NFLMPIn, NTYPE1n, NTBLMPIn

ICn, NFLMPn1, NTYPEnT, NTBLMPn1, ---, NFLMPnn, NTYPEnn, NTBLMPnn
where ICi is the integer count for the tube data for tube i (must be a multiple of 3)
NFLMPij is the relative fluid lump number of the j th fluid lump in tube i
NTYPEij is the type number of the jth fluid Tump in tube i NTBLMPij is the relative tube lump number for the j th fluid lump in tube $;$
Notice that NFLMP and NTBLMP are relative Tump numbers. Thus, during storage these numbers must be converted from actual numbers which are input to relative numbers.

7.3 Specified Pressure Node Data

The specified pressure node data is a list of the pressure nodes whose pressures are not calculated. One such list exists for each network in the problem and may also exist for any subnetwork if it contains any specifjed pressures. The format for each specified pressure node list is:

IC, NSP $_{1}$, NSP $_{2}-\cdots$ NSP $_{\text {IC }}$
where IC is the integer count which is also the number of specified pressure nodes in the network or subnetwork
NSP $_{i}$ is the ith specified pressure node

1.4 Valve Data

The value data described in Section 4.3 is stored in the FLOW array. The format for this is slightly different for the different types of valves. For the rate limited valve the format is:

IC, NV, NTS1, NTS2, MODE, XMIN, XMAK, E, TSEN1, TSEN2, DB, RF, RL
For the polynomial valve it is
IC, NY, NTS1, NTS2, MODE, XMIN, XMAX, E, TSEN1, TSEN2, CO, C1, C2, C3, C4, C5, VTC For the switching valve it is

IC, NV, NTS1, NTS2, MODE, XMIN, XMAX, E, NSEN, TT, T2
where the symbols are described in Section 4.3 The integer count for each is the number of data values and is 12 for a rate 1 imited valve, 16 for the polynomial and 10 for the switching valve.

1.5 Network Valve Locations

The network valve locations is a list of locations in the FLOW array for the valve data of the valves in a network or subnetwork. One such list is needed in the FLOW array for each network or subnetwork that contains valves. The location of the network valve data list is provided in the fourth location of the Network Connections Data.

The format of the network valve locations is:
IC, LOCVI, - - LOCVIC
where IC is the number of valves in the network
LOCV i is the location in the FLOW array of the valve data for the ith valve in the network
1.6 Flow Source Data

The flow source data lists are supplied in the Flow array for each flow specification statement input in the BCD FLOW SOURCE data block described in Section 4.4.. The input statements from the FLOW SOURCE data are transfered directly to the FLOW array except an integer count is added to each list and array numbers are converted from actual to relative numbers.

The formats for storage are as follows for the three types of flow sources:

$$
\frac{\text { Flow As A Function of Time }}{\text { IC, NPI, AW }}
$$

Pressure Rise As a Tabulated Function of Flowrate
IC, NPI, NPO, ADP
Pressure Rise As A Polynomial Function of Flowrate $\mathrm{IC}, \mathrm{NPI}, \mathrm{NPO}, \mathrm{CO}, \mathrm{C} 1, \mathrm{C} 2, \mathrm{C}, \mathrm{C} 4$
where IC is the integer count of the list (2, 3, and 7 respectively)
All other variables are described in Section 4.4. The actual numbers of arrays referenced by AW and ADP must be converted to relative locations prior to storage in the FLOW array. Only one flow source data list per network is to be stored in the FLOW array and the location is referenced from the SYSTEM array (to be discussed later).

An option on AW is that it may be input as an array or a real constank. If AW is supplied as a real constant, the flow source list is not stored in the FLOW array. Rather, the constant, AW, is stored in the imposed flowrate array, WI, (to be discussed later).
$1.7 \quad$ Valve Locations
The valve locations list is a list of locations of the valve data (whose input is described in Section 4.2 and storage is described in the Appendix) for all the valves in the problem in order of valve number. There is only one valve location list in the FLOW array and the location of this list is given as the seventh item in the FDIMNS fabled common block (described below).

The format for storage of the valve locations is
IC, LOCVI, LOCV2, - - - -, LOCVIC
where IC is the interger count and is the total number of valves in the problem
LOCVi is the location in the FLOW array for the valve data for valve number i

2.0 SYSTEM Array

The system array contains fluid property data (or locations of property data), the gravitational constant (ge), solution parameters, and the locations in the FLOW array for the flow source list, the network connections data and the enthalpy curve for each system. The SYSTEM array is a two dimensional array dimensioned to 15 by NSYS where NSYS is the number of systems. Thus 15 locations are allocated for each system (only 13 are currently used leaving 2 blank spaces per system). The system array is in the fabled common block SYSDAT.

The format for storage of the SYSTEM array is
 ACP $_{n}$, ARO $_{n}$, AMU $_{n}, A K T_{n}$, GC $_{n}$, MPASS $_{n}$, TOL $_{n}$, MXPASS $_{n}$, FRDF $_{n}$, KOP $_{n}$, LOCP $_{n}$, LOCNET $_{n}$, LOCH $_{n}, 0,0$ where $A C P_{i}, A R O_{i}, A M U_{i}$, and $A K T_{i}$ are the relative array numbers for the arrays or the values of the constant values for the specific heat, density, viscosity and thermal conductivity for the ith system GC $\begin{aligned} & \text { is the gravitational constant for the } i \text { th } \\ & \text { system } \\ & \text { MPASS }_{\mathbf{i}} \text { is the number of temperature iterations be- } \\ & \text { tween pressure solutions for system } i\end{aligned}$
MXPASS $_{\mathbf{i}}$ is the maximum number of passes in the
balancing loop permitted to obtain a pressure/

FRDF $_{j}$ is the flowrate damping factor for system i TOL_{j} is the solution tolerance on the fraction of change of flowrates from one pass in the flow solution to the next for system i
$K_{O O P}{ }_{i}$ is the check-out-print code for system i LOCP $_{i}$ is the location of the flow source data in the FLOW array for the ith system
LOCNET_{i} is the location of the network connections data in the FLOW array for the ith system
10 CH i is the location of the enthalpy curve in the FLOW array for the ith system

The values for ACP $_{i}$, ARO $_{i}$, AMU $_{i}$, AKT $_{i}$, GC $_{i}$, MPASS $_{i}$, MXPASS $_{i}$, FRDF $_{i}$, TOL $_{i}$ and $K O P_{i}$ are taken from the systems input supplied in the BDC 3NETWORK block except that array numbers are converted to relative array locations for ACP, ARO, AMU and AKT and default values are supplied for GC, MPASS, MXPASS, FRDF, TOL and KOP if no values are input (Default values are shown in Section 4.7. The values for LOCP, LOCNET and LOCH which are storage locations in the FLOW array are determined as the FLOW array is built during the preprocessor phase.
\square
3.0 Fluid Type Array

The fluid lump type data is stored in the TYPE array which is in the TYPDAT labied common block. This array contains the fluid lump type information which is input in the BCD 3FLUID LUMP DATA input block on the left of the equal sign for all type cards. The TYPE array is a two dimensional array, dimensioned to 10 by NTP, where NTP is the number of types. The format for the TYPE array is

$$
\begin{aligned}
& \mathrm{CSA}_{7}, \mathrm{WP}_{1}, \mathrm{FLL}_{1}, \mathrm{AHT}_{1}, \mathrm{NHL}_{1}, \mathrm{MFF}_{7}, \mathrm{FFC}_{1}, \mathrm{FI}_{1}, \mathrm{~F}_{1}, \frac{\mathrm{FLL}_{1}{ }^{*} \mathrm{WP}}{7} \\
& \begin{array}{cccccc}
\mathrm{CSA}_{2}, \mathrm{HP}_{2}, \mathrm{FLL}_{2}, \mathrm{AHT}_{2}, \mathrm{NHL}_{2}, \mathrm{MFF}_{2}, \mathrm{FFC}_{2}, \mathrm{FI}_{2}, \mathrm{FI}_{2}, & \mathrm{FLL}_{2}{ }^{* W P_{2}} \\
: & : & : & : & : & : \\
4.0^{*} \mathrm{CSA}_{2} \\
: & : & : & : & : & :
\end{array} \\
& \operatorname{CSA}_{n}, W P_{n}, F L L_{n}, A H T_{n}, N H L_{n}, M F F_{n}, F F C_{n}, F 1_{n}, F Z_{n}, \frac{F L L_{n} * U P P_{n}}{4.0^{*} \operatorname{CSA}}
\end{aligned}
$$

Where $\quad \operatorname{CSA}_{j}$ is the fluid flow cross sectional area for fluid lump type i W_{i} is the fluid wetted perimeter for fluid lump type \mathbf{i}
FLL $_{i}$ is the fluid lump length for fluid lump type i
AHT $_{\boldsymbol{i}}$ is the area for heat transfer for connection for fluid lump type ; (usually WP*FLL)
$\mathrm{NHL}_{\mathbf{i}}$ is the number of head losses for fluid lump type i if input as a real constant is stored as the relative location in the array date for the user input array of head losses vs Reynolds number if input as AXX where $X X$ is the array number
MFF $_{j}$ is the code to determine the method used for calculating friction factor for type \mathbf{i}. If MFF $=0$, the internal methods are used to calculate friction factor. If MFF = $A X X, X X$ is an array (the relative location is stored) of the Friction Factor vs Reynolds number.
FCC $\boldsymbol{i}_{\boldsymbol{i}}$ is a constant to be multiplied times the friction factor for type i
Fl is a code to determine the method for calculating convection heat transfer coefficient for type i. If Fl is real, the internal equation for flow in a tube is used and $F 1$ is the laminar fully developed coefficient. F2 is the laminar entry

length coefticient.
If $\mathrm{F} 1=\mathrm{l}, \mathrm{F} 2$ is $\mathrm{AXX}, \mathrm{XX}$ is an array(stored as the relative array location) of Stanton Number vs Reynolds number array. If $F 1=2, F 2$ is $A X X, X X$ is an array (stored as the relative array location) of an array giving heat transfer coefficient vs tube flowrate.
$F 2_{i} \quad$ is described under F 1 above
The tenth item in the list for each type is FLL*WP/(4.0*CSA) which is the L/D for the type. This item must be calculated and stored for each type during the preprocessor phase.

The TYPE array is shown in Table B-I for the sample problem.
4.0 Other Arrays

Eight arrays must be set up for the flow problem in addition to the three primary flow problem arrays discussed in Sections 1.0, 2.0, 3.0. These arrays are each in a separate labled common block to provide ready access to them for user input and output in the user logic block. The labeled common block and the array name for each is given below:

> /HDOT/W(LT) \quad - Array of flowrates per tube
> /PRESS/P(LP) - Array of pressures per pressure node
> /FLOWG/GF(LT) - Array of flow conductors per tube
> /VALVP/VP(LV) - Array of valve positions per valve
> /WDOTI/WI(LP) - Array of imposed flowrate per pressure node
> /FLOWR/AFR(LT) - Array of added flow resistance per tube
> /DELTAP/DP(LT) - Array of pressure drops per tube
> /FDIMNS/NTYPE,NSYS,NTB,NP,NV,NFD - Dimensions for the flow problem

The dimensions in the above arrays are as follows:
LT is the largest tube number
LP is the largest pressure node number
LV is the largest valve number

TABLE B-I FLUID TYPE ARRAY

CSA	WP	FLL	AHT	NHL	MFF	FFC	F1	F2	FLL/D*	
0.001008	0.1125	12.0	1.35	0.0	0	1.0	1.0	1.0	334.821	10
0.000938	0.36	3.25	1.17	117.0	0	1.0	1.0	1.0	311.834	20
0.001008	0.1125	5.0	.5625	0.0	0	1.0	1.0	1.0	139.509	30
$0.853 E-4$	0.0328	0.25	.0082	2.49	0	1.0	1.0	1.0	$.24 \mathrm{E}-6$	40
0.001008	0.1125	20.0	2.25	0.0	0	1.0	1.0	1.0	558.036	50
0.001008	0.1125	2.5	.281	0.0	0	1.0	1.0	1.0	69.75	60
0.001008	0.1125	50.0	5.62	0.0	0	1.0	1.0	1.0	1395.09	70
0.001008	0.1125	7.0	.7875	0.0	0	1.0	1.0	1.0	195.31	80
0.001008	0.1125	2.0	.225	0.0	0	1.0	1.0	1.0	55.80	90
$0.853 \mathrm{E}-4$	0.328	0.25	0.0	0.0	0	1.0	1.0	1.0	$.24 \mathrm{E}-6$	100

* $\mathrm{D}=4.0 \times \mathrm{CSA} / \mathrm{WP}$

The variables in the FDIMNS labeled common array indicate the size of various aspects of the total flow problem. The following values are assigned:

NTYPE - Number of types
NSYS - Number of systems
NTB - Number of tubes
NP - Number of pressure nodes
NV - Number of valves
NFD - Number of spaces in the FLOW array

APPENDIX C

USERS DESCRIPTION FOR PLOT PROGRAM

This Appendix presents user descriptions for a SINDA plotting routine, FLOPLT and a tape combining routine, MCOMB. Both routines are available on the ES3*SINDA Secure file. A brief description of the routines and the user input description is given below.

FLOPLT DESCRIPTION

The plot routine which is available on *SINDA can be used with a history file from a previous SINDA run to generate microfilm output. The items available for plotting are (1) pressure drop for each tube, (2) pressure for each pressure node, (3) valve positions for each valve, (4) flow rates for each tube, and (5) temperatures for each temperature lump. Each of these items may be plotted as a function of mission time. The user specifies the grid time range to be plotted, a time label, and the itmes to be plotted. A number of history files may be coinbined prior to plotting the results. The user has the option of averaging any portion of the plotted curve and of specifying the range of the ordinate axis.

The system control cards and the data input card for FLOPLT are described below:
SYSTEM CONTROL CARDS FOR FLOPLT
a RUN
© QUAL ES 3
$@ A S G, A$:SINDA
@ USE 7, XXX (First file to combined)
© USE $8, x \times X$ (Second file to be combined)
Add additional USE cards as required for files to be combined.
@ MAP *SINDA, SINFLOPLOT/MAP, TPF\$.RUN
© XQT RUN
Data cards
@ FIN

FLOPLT DATA CARDS

Columns	Format	Title	Description
Card 1 (Title Card)			
1-72	12A6	TITLEA	Any 72 alphammeric characters to be used as heading for each frame of plots
Card 2 (Parameter Card)			
1-10	F10.0	TA	First value of time to be plotted (hours).
11-20	F10.0	TZ	Last value of time to be plotted (hours).
21-30	F70.0	TPG	Time range for each grid. Number of grids drawn will be (TZ-TA)/TPG. (If TPG is left blank, the job will terminate.)
31-35	I5	ITMX	Time scale lable: $\begin{aligned} & =1, \text { "SECONDS" } \\ & =2, \text { "MINUTES" } \\ & =3, \text { "HOURS" } \end{aligned}$ Any other value, "*****"
36-40	I5	MPNT	Print control code $=1$, prints information to be plotted while loading the plot tape $\neq 1$, will not print information to be plotted
41-45	15	NTP	Number of tapes to be combined. Use a negative number if start and/or stop times are specified on Card 3 for any tape to be cambined.
46-50	15	$k T$	File number to which file to be plotted is assigned. If left blank, file 23 is assumed. The combined file is assigned to this unit.
51-55	I5	INC	$=1$, every time point and associated data value from the tanes to be combined will be transferred to the combined tape. $=2$, every second time point and associated data values will be transferred to the combined tape. etc.

COMBINE ROUTINE DESCRIPTION

The combine routine, MCOMB, can be used to combine history files into one history file prior to jts being plotted or being compared to another file. The combined file which is generated can be saved for future use if required. The user selects the frequency with which the time points and associated data values on the criginal files are added to the new file. That is, every time point on the original file can be added to the new file or every second, third, etc., point can be added depending on the requirements for the combined file.

The compine routine is a very useful feature if several history files are generated on a long mission run. By combining these files before plotting, a continuous plot of the mission can be obtained. The convenience of the combine routine can also be observed when mission runs made with different time increments are compared. Obviously, the run made with the smaller time increment will take more computer time than the run made with the larger time increment, and will probably require at least one "restart". In such a situation, there would be two history files with the smaller time increment to compare to one with the larger time increment. The two files with the smaller time increment can be combined and then compared to the file with the larger time increment on the same run.

The system control cards and the data input cards for MCOMB are described below:

SYSTEM CONTROL CARDS FOR MCOMB ROUTINE
a RUN
@ ASG, A ES $3 *$ SINDA
(0 USE $7, X X X$ (First file to be combined)
@ USE $8, X X X$ (Second file to be combined)

Add additional USE cards as required for files to be combined.
@ MAP ES3*SINDA, MCOMB/MAP,TPF\$.RUN
@ XQT RUN
Data cards
0 FIN
Columns Format Title \quad Description

Repeat XSTART and XSTOP in five columns fields for each file to be combined. Card 3 (Required only if KODE2 >0. See Card 1 columns 16-20
$1-10 \quad$ Flo.0 ADD
Time to be added to each time read from first file to be combined.
Repeat $A D D$ in 10 column fields for each file to be combined.

[^0]: *Contained in Volume II

[^1]: *Superscripts indicate reference numbers in Section 7.0

[^2]: TOL is the input pressure solution tolerance

[^3]: *See Reference 7 for input other than FLOW DATA block

[^4]: * Unique four character name for each NETWORK or SUBNETWORK

[^5]: xx - Structurè Lumps

