139 research outputs found
Characteristic of x-ray tomography performance using CdTe timepix detector
X-ray Computed Tomography (CT) is a non-destructive technique for visualizing interior features within solid objects, and for obtaining digital information on their 3-D geometries and properties. The selection of CdTe Timepix detector has a sufficient performance of imaging detector is based on quality of detector performance and energy resolution. The study of Modulation Transfer Function (MTF) shows a 70% contrast at 4 lp/mm was achieved for the 55 µm pixel pitch detector with the 60 kVp X-ray tube and 5 keV noise level. No significant degradation in performance was observed for X-ray tube energies of 20 – 60 keV. The paper discusses the application of the CdTe Timepix detector to produce a good quality image of X-ray tomography imaging
Mobile gamma Spectrometry Measurements of Coneyside Beach, Cumbria
<p>Environmental radioactivity arises from natural and anthropogenic sources: 238U, 232Th and their decay products, and 40K in differing concentrations in rocks and soils; natural materials transformed by industrial processes to enhance the concentrations of some radioactive
isotopes; materials discharged from some nuclear processes; fallout from nuclear accidents and weapons testing; radioactive sources that may have been lost or stolen; and radiation shine from sites using nuclear technology. Mobile gamma spectrometry provides powerful methods of measuring the distribution of radioactivity in the environment; airborne platforms allow the rapid survey of large areas, and ground based platforms more detailed surveys of smaller areas.</p>
<p>Airborne surveys in 1990 (conducted to produce a baseline data set for the Sellafield site) and 2000 (as part of a large study on spatial and temporal aspects of airborne measurements) showed several radiometric features along the coast, including elevated 137Cs activity along a beach in West Cumbria between St Bees and Nethertown, in an environment comprising pebbles and gravel where this was unexpected. An additional short survey of this area was
conducted during the 2000 survey, at reduced ground clearance and speed, to verify the existence of these unexpected signals. With increased interest in the search and recovery of particulate activity from the beaches in the vicinity of Sellafield, this data was reviewed in 2008 to illustrate the use of airborne methods in locating potential particulate activity on beaches and to aid in the planning of further ground based investigations. SUERC conducted an exploratory ground based survey in June 2010; to investigate whether the features observed in the airborne surveys were still present, to define the spatial distribution of activity more precisely, and to attempt to assess the form of the activity and whether it had been redistributed since 2000. This report presents the 2000 airborne measurements reviewed in 2008, with the results of the June 2010 survey.</p>
<p>A portable gamma spectrometry system has been developed at SUERC. This consists of a 3x3” NaI(Tl) detector with digital spectrometer, a GPS receiver and netbook computer. The system is lightweight, easy to use and can be carried over terrain that would be inaccessible to vehicular systems. By holding the detector close to the ground the extent of any observed enhanced activity feature can be determined more precisely. Two of these systems have been
field tested on the 22-23rd June 2010 along this beach.</p>
<p>The exploratory survey has clearly demonstrated the utility of the SUERC backpack system in producing detailed maps of the distribution of radioactive materials in the environment. A survey using two systems successfully mapped an area of approximately 50x200m with very high density measurements in a period of approximately 2h.</p>
<p>It has shown that the enhanced 137Cs activity is still present on the beach, in locations that are consistent with the earlier airborne measurements. The more detailed survey shows a pattern of patches of enhanced 137Cs activity. Samples collected from some of these had concentrations of 50 Bq kg-1, which would account for the observed 137Cs count rate. The nature of the material that carries this activity is at present unknown.</p>
Investigation of charge collection in a CdTe-Timepix detector
Energy calibration of CdTe detectors is usually done using known reference sources disregarding the exact amount of charge that is collected in the pixels. However, to compare detector and detector model the quantity of charge collected is needed. We characterize the charge collection in a CdTe detector comparing test pulses, measured data and an improved TCAD simulation model [1]. The 1 mm thick detector is bump-bonded to a TIMEPIX chip and operating in Time-over-Threshold (ToT) mode. The resistivity in the simulation was adjusted to match the detector properties setting a deep intrinsic donor level [2]. This way it is possible to adjust properties like trap concentration, electron/hole lifetime and mobility in the simulation characterizing the detector close to measured data cite [3]
Exploring transmission Kikuchi diffraction using a Timepix detector
Electron backscatter diffraction (EBSD) is a well-established scanning electron microscope (SEM)-based technique [1]. It allows the non-destructive mapping of the crystal structure, texture, crystal phase and strain with a spatial resolution of tens of nanometers. Conventionally this is performed by placing an electron sensitive screen, typically consisting of a phosphor screen combined with a charge coupled device (CCD) camera, in front of a specimen, usually tilted 70° to the normal of the exciting electron beam. Recently, a number of authors have shown that a significant increase in spatial resolution is achievable when Kikuchi diffraction patterns are acquired in transmission geometry; that is when diffraction patterns are generated by electrons transmitted through an electron-transparent, usually thinned, specimen. The resolution of this technique, called transmission Kikuchi diffraction (TKD), has been demonstrated to be better than 10 nm [2,3]. We have recently demonstrated the advantages of a direct electron detector, Timepix [4,5], for the acquisition of standard EBSD patterns [5]. In this article we will discuss the advantages of Timepix to perform TKD and for acquiring spot diffraction patterns and more generally for acquiring scanning transmission electron microscopy micrographs in the SEM. Particularly relevant for TKD, is its very compact size, which allows much more flexibility in the positioning of the detector in the SEM chamber. We will furthermore show recent results using Timepix as a virtual forward scatter detector, and will illustrate the information derivable on producing images through processing of data acquired from different areas of the detector. We will show results from samples ranging from gold nanoparticles to nitride semiconductor nanorods
Low Gain Avalanche Detectors (LGAD) for particle physics and synchrotron applications
A new avalanche silicon detector concept is introduced with a low gain in the region of ten, known as a Low Gain Avalanche Detector, LGAD. The detector's characteristics are simulated via a full process simulation to obtain the required doping profiles which demonstrate the desired operational characteristics of high breakdown voltage (500 V) and a gain of 10 at 200 V reverse bias for X-ray detection. The first low gain avalanche detectors fabricated by Micron Semiconductor Ltd are presented. The doping profiles of the multiplication junctions were measured with SIMS and reproduced by simulating the full fabrication process which enabled further development of the manufacturing process. The detectors are 300 μm thick p-type silicon with a resistivity of 8.5 kΩcm, which fully depletes at 116 V. The current characteristics are presented and demonstrate breakdown voltages in excess of 500 V and a current density of 40 to 100 nAcm−2 before breakdown measured at 20oC. The gain of the LGAD has been measured with a red laser (660 nm) and shown to be between 9 and 12 for an external bias voltage range from 150 V to 300 V
Positron detection in silica monoliths for miniaturised quality control of PET radiotracers
We demonstrate the use of the miniaturised Medipix positron sensor for detection of the clinical PET radiotracer, [⁶⁸Ga]gallium-citrate, on a silica-based monolith, towards microfluidic quality control. The system achieved a far superior signal-to-noise ratio compared to conventional sodium iodide-based radio-HPLC detection and allowed real-time visualisation of positrons in the monolith
Medipix3 Demonstration and understanding of near ideal detector performance for 60 & 80 keV electrons
In our article we report first quantitative measurements of imaging
performance for the current generation of hybrid pixel detector, Medipix3, as
direct electron detector. Utilising beam energies of 60 & 80 keV, measurements
of modulation transfer function (MTF) and detective quantum efficiency (DQE)
have revealed that, in single pixel mode (SPM), energy threshold values can be
chosen to maximize either the MTF or DQE, obtaining values near to, or even
exceeding, those for an ideal detector. We have demonstrated that the Medipix3
charge summing mode (CSM) can deliver simultaneous, near ideal values of both
MTF and DQE. To understand direct detection performance further we have
characterized the detector response to single electron events, building an
empirical model which can predict detector MTF and DQE performance based on
energy threshold. Exemplifying our findings we demonstrate the Medipix3 imaging
performance, recording a fully exposed electron diffraction pattern at 24-bit
depth and images in SPM and CSM modes. Taken together our findings highlight
that for transmission electron microscopy performed at low energies (energies
<100 keV) thick hybrid pixel detectors provide an advantageous and alternative
architecture for direct electron imagin
Diffractive triangulation of radiative point sources
We describe a general method to determine the location of a point source of waves relative to a twodimensional
single-crystalline active pixel detector. Based on the inherent structural sensitivity of
crystalline sensor materials, characteristic detector diffraction patterns can be used to triangulate the
location of a wave emitter. The principle described here can be applied to various types of waves,
provided that the detector elements are suitably structured. As a prototypical practical application of
the general detection principle, a digital hybrid pixel detector is used to localize a source of electrons
for Kikuchi diffraction pattern measurements in the scanning electron microscope. This approach
provides a promising alternative method to calibrate Kikuchi patterns for accurate measurements of
microstructural crystal orientations, strains, and phase distributions
Depth of interaction and bias voltage depenence of the spectral response in a pixellated CdTe detector operating in time-over-threshold mode subjected to monochromatic X-rays
High stopping power is one of the most important figures of merit for X-ray detectors. CdTe is a promising material but suffers from: material defects, non-ideal charge transport and long range X-ray fluorescence. Those factors reduce the image quality and deteriorate spectral information. In this project we used a monochromatic pencil beam collimated through a 20μm pinhole to measure the detector spectral response in dependance on the depth of interaction. The sensor was a 1mm thick CdTe detector with a pixel pitch of 110μm, bump bonded to a Timepix readout chip operating in Time-Over-Threshold mode. The measurements were carried out at the Extreme Conditions beamline I15 of the Diamond Light Source. The beam was entering the sensor at an angle of \texttildelow20 degrees to the surface and then passed through \texttildelow25 pixels before leaving through the bottom of the sensor. The photon energy was tuned to 77keV giving a variation in the beam intensity of about three orders of magnitude along the beam path. Spectra in Time-over-Threshold (ToT) mode were recorded showing each individual interaction. The bias voltage was varied between -30V and -300V to investigate how the electric field affected the spectral information. For this setup it is worth noticing the large impact of fluorescence. At -300V the photo peak and escape peak are of similar height. For high bias voltages the spectra remains clear throughout the whole depth but for lower voltages as -50V, only the bottom part of the sensor carries spectral information. This is an effect of the low hole mobility and the longer range the electrons have to travel in a low field
Phase-contrast imaging using radiation sources based on laser-plasma wakefield accelerators : state of the art and future development
Both the laser-plasma wakefield accelerator (LWFA) and X-ray phase-contrast imaging (XPCi) are promising technologies that are attracting the attention of the scientific community. Conventional X-ray absorption imaging cannot be used as a means of imaging biological material because of low contrast. XPCi overcomes this limitation by exploiting the variation of the refraction index of materials. The contrast obtained is higher than for conventional absorption imaging and requires a lower dose. The LWFA is a new concept of acceleration where electrons are accelerated to very high energy (~150 MeV) in very short distances (mm scale) by surfing plasma waves excited by the passage of an ultra-intense laser pulse (~1018 Wcm-2) through plasma. Electrons in the LWFA can undergo transverse oscillation and emit synchrotron-like (betatron) radiation in a narrow cone around the propagation axis. The properties of the betatron radiation produced by LWFA, such as source size and spectrum, make it an excellent candidate for XPCi. In this work we present the characterization of betatron radiation produced by the LWFA in the ALPHA-X laboratory (University of Strathclyde). We show how phase contrast images can be obtained using the betatron radiation in a free-space propagation configuration and we discuss the potential and limitation of the LWFA driven XPCi
- …
