10,918 research outputs found
A stable, single-photon emitter in a thin organic crystal for application to quantum-photonic devices
Single organic molecules offer great promise as bright, reliable sources of
identical single photons on demand, capable of integration into solid-state
devices. It has been proposed that such molecules in a crystalline organic
matrix might be placed close to an optical waveguide for this purpose, but so
far there have been no demonstrations of sufficiently thin crystals, with a
controlled concentration of suitable dopant molecules. Here we present a method
for growing very thin anthracene crystals from super-saturated vapour, which
produces crystals of extreme flatness and controlled thickness. We show how
this crystal can be doped with a widely adjustable concentration of
dibenzoterrylene (DBT) molecules and we examine the optical properties of these
molecules to demonstrate their suitability as quantum emitters in nanophotonic
devices. Our measurements show that the molecules are available in the crystal
as single quantum emitters, with a well-defined polarisation relative to the
crystal axes, making them amenable to alignment with optical nanostructures. We
find that the radiative lifetime and saturation intensity vary little within
the crystal and are not in any way compromised by the unusual matrix
environment. We show that a large fraction of these emitters are able to
deliver more than photons without photo-bleaching, making them
suitable for real applications.Comment: 12 pages, 10 figures, comments welcom
Shape in an Atom of Space: Exploring quantum geometry phenomenology
A phenomenology for the deep spatial geometry of loop quantum gravity is
introduced. In the context of a simple model, an atom of space, it is shown how
purely combinatorial structures can affect observations. The angle operator is
used to develop a model of angular corrections to local, continuum flat-space
3-geometries. The physical effects involve neither breaking of local Lorentz
invariance nor Planck scale suppression, but rather reply on only the
combinatorics of SU(2) recoupling. Bhabha scattering is discussed as an example
of how the effects might be observationally accessible.Comment: 14 pages, 7 figures; v2 references adde
Quantum Dynamics without the Wave Function
When suitably generalized and interpreted, the path-integral offers an
alternative to the more familiar quantal formalism based on state-vectors,
selfadjoint operators, and external observers. Mathematically one generalizes
the path-integral-as-propagator to a {\it quantal measure} on the space
of all ``conceivable worlds'', and this generalized measure expresses
the dynamics or law of motion of the theory, much as Wiener measure expresses
the dynamics of Brownian motion. Within such ``histories-based'' schemes new,
and more ``realistic'' possibilities open up for resolving the philosophical
problems of the state-vector formalism. In particular, one can dispense with
the need for external agents by locating the predictive content of in its
sets of measure zero: such sets are to be ``precluded''. But unrestricted
application of this rule engenders contradictions. One possible response would
remove the contradictions by circumscribing the application of the preclusion
concept. Another response, more in the tradition of ``quantum logic'', would
accommodate the contradictions by dualizing to a space of
``co-events'' and effectively identifying reality with an element of this dual
space.Comment: plainTeX, 24 pages, no figures. To appear in a special volume of {\it
Journal of Physics A: Mathematical and General} entitled ``The Quantum
Universe'' and dedicated to Giancarlo Ghirardi on the occasion of his 70th
birthday. Most current version is available at
http://www.physics.syr.edu/~sorkin/some.papers/ (or wherever my home-page may
be
Recommended from our members
Suspicion of Motives Predicts Minorities' Responses to Positive Feedback in Interracial Interactions.
Strong social and legal norms in the United States discourage the overt expression of bias against ethnic and racial minorities, increasing the attributional ambiguity of Whites' positive behavior to ethnic minorities. Minorities who suspect that Whites' positive overtures toward minorities are motivated more by their fear of appearing racist than by egalitarian attitudes may regard positive feedback they receive from Whites as disingenuous. This may lead them to react to such feedback with feelings of uncertainty and threat. Three studies examined how suspicion of motives relates to ethnic minorities' responses to receiving positive feedback from a White peer or same-ethnicity peer (Experiment 1), to receiving feedback from a White peer that was positive or negative (Experiment 2), and to receiving positive feedback from a White peer who did or did not know their ethnicity (Experiment 3). As predicted, the more suspicious Latinas were of Whites' motives for behaving positively toward minorities in general, the more they regarded positive feedback from a White peer who knew their ethnicity as disingenuous and the more they reacted with cardiovascular reactivity characteristic of threat/avoidance, increased feelings of stress, heightened uncertainty, and decreased self-esteem. We discuss the implications for intergroup interactions of perceptions of Whites' motives for nonprejudiced behavior
Spatial Hypersurfaces in Causal Set Cosmology
Within the causal set approach to quantum gravity, a discrete analog of a
spacelike region is a set of unrelated elements, or an antichain. In the
continuum approximation of the theory, a moment-of-time hypersurface is well
represented by an inextendible antichain. We construct a richer structure
corresponding to a thickening of this antichain containing non-trivial
geometric and topological information. We find that covariant observables can
be associated with such thickened antichains and transitions between them, in
classical stochastic growth models of causal sets. This construction highlights
the difference between the covariant measure on causal set cosmology and the
standard sum-over-histories approach: the measure is assigned to completed
histories rather than to histories on a restricted spacetime region. The
resulting re-phrasing of the sum-over-histories may be fruitful in other
approaches to quantum gravity.Comment: Revtex, 12 pages, 2 figure
GINA - A Polarized Neutron Reflectometer at the Budapest Neutron Centre
The setup, capabilities and operation parameters of the neutron reflectometer
GINA, the recently installed "Grazing Incidence Neutron Apparatus" at the
Budapest Neutron Centre, are introduced. GINA, a dance-floor-type,
constant-energy, angle-dispersive reflectometer is equipped with a 2D
position-sensitive detector to study specular and off-specular scattering.
Wavelength options between 3.2 and 5.7 {\AA} are available for unpolarized and
polarized neutrons. Spin polarization and analysis are achieved by magnetized
transmission supermirrors and radio-frequency adiabatic spin flippers. As a
result of vertical focusing by the five-element (pyrolytic graphite)
monochromator the reflected intensity from a 20x20 mm sample has doubled. GINA
is dedicated to studies of magnetic films and heterostructures, but unpolarized
options for non-magnetic films, membranes and other surfaces are also provided.
Shortly after its startup, reflectivity values as low as 3x10-5 have been
measured on the instrument. The facility is now open for the international user
community, but its development is continuing mainly to establish new sample
environment options, the spin analysis of off-specularly scattered radiation
and further decrease of the background
- …
