446 research outputs found
Brain stimulation for treatment and enhancement in children: an ethical analysis
Davis (2014) called for “extreme caution” in the use of non-invasive brain stimulation (NIBS) to treat neurological disorders in children, due to gaps in scientific knowledge. We are sympathetic to his position. However, we must also address the ethical implications of applying this technology to minors. Compensatory trade-offs associated with NIBS present a challenge to its use in children, insofar as these trade-offs have the effect of limiting the child’s future options. The distinction between treatment and enhancement has some normative force here. As the intervention moves away from being a treatment toward being an enhancement—and thus toward a more uncertain weighing of the benefits, risks, and costs—considerations of the child’s best interests (as judged by the parents) diminish, and the need to protect the child’s (future) autonomy looms larger. NIBS for enhancement involving trade-offs should therefore be delayed, if possible, until the child reaches a state of maturity and can make an informed, personal decision. NIBS for treatment, by contrast, is permissible insofar as it can be shown to be at least as safe and effective as currently approved treatments, which are themselves justified on a best interests standard.Copyright © 2014 Maslen, Earp, Cohen Kadosh and Savulescu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms
Candida albicans colonization and dissemination from the murine gastrointestinal tract : the influence of morphology and Th17 immunity
This article is protected by copyright. All rights reserved. This work was supported by the Wellcome Trust (086558, 080088, 102705), a Wellcome Trust Strategic Award (097377) and a studentship from the University of Aberdeen. D.K. was supported by grant 5R01AI083344 from the National Institute of Allergy and Infectious Diseases and by a Voelcker Young Investigator Award from the Max and Minnie Tomerlin Voelcker Fund.Peer reviewedPublisher PD
Perception and recognition of faces in adolescence
Most studies on the development of face cognition abilities have focussed on childhood, with early maturation accounts contending that face cognition abilities are mature by 3–5 years. Late maturation accounts, in contrast, propose that some aspects of face cognition are not mature until at least 10 years. Here, we measured face memory and face perception, two core face cognition abilities, in 661 participants (397 females) in four age groups (younger adolescents (11.27–13.38 years); mid-adolescents (13.39–15.89 years); older adolescents (15.90–18.00 years); and adults (18.01–33.15 years)) while controlling for differences in general cognitive ability. We showed that both face cognition abilities mature relatively late, at around 16 years, with a female advantage in face memory, but not in face perception, both in adolescence and adulthood. Late maturation in the face perception task was driven mainly by protracted development in identity perception, while gaze perception abilities were already comparatively mature in early adolescence. These improvements in the ability to memorize, recognize and perceive faces during adolescence may be related to increasing exploratory behaviour and exposure to novel faces during this period of life
Neutrino Mass and from a Mini-Seesaw
The recently proposed "mini-seesaw mechanism" combines naturally suppressed
Dirac and Majorana masses to achieve light Standard Model neutrinos via a
low-scale seesaw. A key feature of this approach is the presence of multiple
light (order GeV) sterile-neutrinos that mix with the Standard Model. In this
work we study the bounds on these light sterile-neutrinos from processes like
\mu ---> e + \gamma, invisible Z-decays, and neutrinoless double beta-decay. We
show that viable parameter space exists and that, interestingly, key
observables can lie just below current experimental sensitivities. In
particular, a motivated region of parameter space predicts a value of BR(\mu
---> e + \gamma) within the range to be probed by MEG.Comment: 1+26 pages, 7 figures. v2 JHEP version (typo's fixed, minor change to
presentation, results unchanged
Candida albicans repetitive elements display epigenetic diversity and plasticity
Transcriptionally silent heterochromatin is associated with repetitive DNA. It is poorly understood whether and how heterochromatin differs between different organisms and whether its structure can be remodelled in response to environmental signals. Here, we address this question by analysing the chromatin state associated with DNA repeats in the human fungal pathogen Candida albicans. Our analyses indicate that, contrary to model systems, each type of repetitive element is assembled into a distinct chromatin state. Classical Sir2-dependent hypoacetylated and hypomethylated chromatin is associated with the rDNA locus while telomeric regions are assembled into a weak heterochromatin that is only mildly hypoacetylated and hypomethylated. Major Repeat Sequences, a class of tandem repeats, are assembled into an intermediate chromatin state bearing features of both euchromatin and heterochromatin. Marker gene silencing assays and genome-wide RNA sequencing reveals that C. albicans heterochromatin represses expression of repeat-associated coding and non-coding RNAs. We find that telomeric heterochromatin is dynamic and remodelled upon an environmental change. Weak heterochromatin is associated with telomeres at 30?°C, while robust heterochromatin is assembled over these regions at 39?°C, a temperature mimicking moderate fever in the host. Thus in C. albicans, differential chromatin states controls gene expression and epigenetic plasticity is linked to adaptation
See-saw neutrino masses and large mixing angles in the vortex background on a sphere
In the vortex background on a sphere, a single 6-dimensional fermion family
gives rise to 3 zero-modes in the 4-dimensional point of view, which may
explain the replication of families in the Standard Model. Previously, it had
been shown that realistic hierarchical mass and mixing patterns can be
reproduced for the quarks and the charged leptons. Here, we show that the
addition of a single heavy 6-dimensional field that is gauge singlet, unbound
to the vortex, and embedded with a bulk Majorana mass enables to generate 4D
Majorana masses for the light neutrinos through the see-saw mechanism. The
scheme is very predictive. The hierarchical structure of the fermion zero-modes
leads automatically to an inverted pseudo-Dirac mass pattern, and always
predicts one maximal angle in the neutrino see-saw matrix. It is possible to
obtain a second large mixing angle from either the charged lepton or the
neutrino sector, and we demonstrate that this model can fit all observed data
in neutrino oscillations experiments. Also, U_{e3} is found to be of the order
~0.1.Comment: 23 pages, 1 figur
The emergence of synaesthesia in a Neuronal Network Model via changes in perceptual sensitivity and plasticity
Synaesthesia is an unusual perceptual experience in which an inducer stimulus triggers a percept in a different domain in addition to its own. To explore the conditions under which synaesthesia evolves, we studied a neuronal network model that represents two recurrently connected neural systems. The interactions in the network evolve according to learning rules that optimize sensory sensitivity. We demonstrate several scenarios, such as sensory deprivation or heightened plasticity, under which synaesthesia can evolve even though the inputs to the two systems are statistically independent and the initial cross-talk interactions are zero. Sensory deprivation is the known causal mechanism for acquired synaesthesia and increased plasticity is implicated in developmental synaesthesia. The model unifies different causes of synaesthesia within a single theoretical framework and repositions synaesthesia not as some quirk of aberrant connectivity, but rather as a functional brain state that can emerge as a consequence of optimising sensory information processing
Proceedings of the 2nd Workshop on Flavor Symmetries and Consequences in Accelerators and Cosmology (FLASY12)
These are the proceedings of the 2nd Workshop on Flavor Symmetries and
Consequences in Accelerators and Cosmology, held 30 June 2012 - 4 July 2012,
Dortmund, Germany.Comment: Order 400 pages, several figures including the group picture v2:
corrected author list and contributio
Leptons in Holographic Composite Higgs Models with Non-Abelian Discrete Symmetries
We study leptons in holographic composite Higgs models, namely in models
possibly admitting a weakly coupled description in terms of five-dimensional
(5D) theories. We introduce two scenarios leading to Majorana or Dirac
neutrinos, based on the non-abelian discrete group which is
responsible for nearly tri-bimaximal lepton mixing. The smallness of neutrino
masses is naturally explained and normal/inverted mass ordering can be
accommodated. We analyze two specific 5D gauge-Higgs unification models in
warped space as concrete examples of our framework. Both models pass the
current bounds on Lepton Flavour Violation (LFV) processes. We pay special
attention to the effect of so called boundary kinetic terms that are the
dominant source of LFV. The model with Majorana neutrinos is compatible with a
Kaluza-Klein vector mass scale TeV, which is roughly the
lowest scale allowed by electroweak considerations. The model with Dirac
neutrinos, although not considerably constrained by LFV processes and data on
lepton mixing, suffers from a too large deviation of the neutrino coupling to
the boson from its Standard Model value, pushing TeV.Comment: 37 pages, 4 figures; v2: Note added in light of recent T2K and MINOS
results, figures updated with new limit from MEG, references added, various
minor improvements, matches JHEP published versio
Incongruence in number–luminance congruency effects
Congruency tasks have provided support for an amodal magnitude system for magnitudes that have a “spatial” character, but conflicting results have been obtained for magnitudes that do not (e.g., luminance). In this study, we extricated the factors that underlie these number–luminance congruency effects and tested alternative explanations: (unsigned) luminance contrast and saliency. When luminance had to be compared under specific task conditions, we revealed, for the first time, a true influence of number on luminance judgments: Darker stimuli were consistently associated with numerically larger stimuli. However, when number had to be compared, luminance contrast, not luminance, influenced number judgments. Apparently, associations exist between number and luminance, as well as luminance contrast, of which the latter is probably stronger. Therefore, similar tasks, comprising exactly the same stimuli, can lead to distinct interference effects
- …
