389 research outputs found
Force-induced misfolding in RNA
RNA folding is a kinetic process governed by the competition of a large
number of structures stabilized by the transient formation of base pairs that
may induce complex folding pathways and the formation of misfolded structures.
Despite of its importance in modern biophysics, the current understanding of
RNA folding kinetics is limited by the complex interplay between the weak
base-pair interactions that stabilize the native structure and the disordering
effect of thermal forces. The possibility of mechanically pulling individual
molecules offers a new perspective to understand the folding of nucleic acids.
Here we investigate the folding and misfolding mechanism in RNA secondary
structures pulled by mechanical forces. We introduce a model based on the
identification of the minimal set of structures that reproduce the patterns of
force-extension curves obtained in single molecule experiments. The model
requires only two fitting parameters: the attempt frequency at the level of
individual base pairs and a parameter associated to a free energy correction
that accounts for the configurational entropy of an exponentially large number
of neglected secondary structures. We apply the model to interpret results
recently obtained in pulling experiments in the three-helix junction S15 RNA
molecule (RNAS15). We show that RNAS15 undergoes force-induced misfolding where
force favors the formation of a stable non-native hairpin. The model reproduces
the pattern of unfolding and refolding force-extension curves, the distribution
of breakage forces and the misfolding probability obtained in the experiments.Comment: 28 pages, 11 figure
Spatial Distribution of Competing Ions around DNA in Solution
The competition of monovalent and divalent cations for proximity to negatively charged DNA is of biological importance and can provide strong constraints for theoretical treatments of polyelectrolytes. Resonant x-ray scattering experiments have allowed us to monitor the number and distribution of each cation in a mixed ion cloud around DNA. These measurements provide experimental evidence to support a general theoretical prediction: the normalized distribution of each ion around polyelectrolytes remains constant when ions are mixed at different ratios. In addition, the amplitudes of the scattering signals throughout the competition provide a measurement of the surface concentration parameter that predicts the competition behavior of these cations. The data suggest that ion size needs to be taken into account in applying Poisson-Boltzmann treatments to polyelectrolytes such as DNA
Rapid and accurate determination of atomistic RNA dynamic ensemble models using NMR and structure prediction
Biomolecules form dynamic ensembles of many inter-converting conformations which are key for understanding how they fold and function. However, determining ensembles is challenging because the information required to specify atomic structures for thousands of conformations far exceeds that of experimental measurements. We addressed this data gap and dramatically simplified and accelerated RNA ensemble determination by using structure prediction tools that leverage the growing database of RNA structures to generate a con- formation library. Refinement of this library with NMR residual dipolar couplings provided an atomistic ensemble model for HIV-1 TAR, and the model accuracy was independently sup- ported by comparisons to quantum-mechanical calculations of NMR chemical shifts, com- parison to a crystal structure of a substate, and through designed ensemble redistribution via atomic mutagenesis. Applications to TAR bulge variants and more complex tertiary RNAs support the generality of this approach and the potential to make the determination of atomic-resolution RNA ensembles routine
Single-molecule experiments in biological physics: methods and applications
I review single-molecule experiments (SME) in biological physics. Recent
technological developments have provided the tools to design and build
scientific instruments of high enough sensitivity and precision to manipulate
and visualize individual molecules and measure microscopic forces. Using SME it
is possible to: manipulate molecules one at a time and measure distributions
describing molecular properties; characterize the kinetics of biomolecular
reactions and; detect molecular intermediates. SME provide the additional
information about thermodynamics and kinetics of biomolecular processes. This
complements information obtained in traditional bulk assays. In SME it is also
possible to measure small energies and detect large Brownian deviations in
biomolecular reactions, thereby offering new methods and systems to scrutinize
the basic foundations of statistical mechanics. This review is written at a
very introductory level emphasizing the importance of SME to scientists
interested in knowing the common playground of ideas and the interdisciplinary
topics accessible by these techniques. The review discusses SME from an
experimental perspective, first exposing the most common experimental
methodologies and later presenting various molecular systems where such
techniques have been applied. I briefly discuss experimental techniques such as
atomic-force microscopy (AFM), laser optical tweezers (LOT), magnetic tweezers
(MT), biomembrane force probe (BFP) and single-molecule fluorescence (SMF). I
then present several applications of SME to the study of nucleic acids (DNA,
RNA and DNA condensation), proteins (protein-protein interactions, protein
folding and molecular motors). Finally, I discuss applications of SME to the
study of the nonequilibrium thermodynamics of small systems and the
experimental verification of fluctuation theorems. I conclude with a discussion
of open questions and future perspectives.Comment: Latex, 60 pages, 12 figures, Topical Review for J. Phys. C (Cond.
Matt
mRNA Secondary Structures Fold Sequentially But Exchange Rapidly In Vivo
Self-cleavage assays of RNA folding reveal that mRNA structures fold sequentially in vitro and in vivo, but exchange between adjacent structures is much faster in vivo than it is in vitro
Conformational Proofreading: The Impact of Conformational Changes on the Specificity of Molecular Recognition
To perform recognition, molecules must locate and specifically bind their targets within a noisy biochemical environment with many look-alikes. Molecular recognition processes, especially the induced-fit mechanism, are known to involve conformational changes. This raises a basic question: Does molecular recognition gain any advantage by such conformational changes? By introducing a simple statistical-mechanics approach, we study the effect of conformation and flexibility on the quality of recognition processes. Our model relates specificity to the conformation of the participant molecules and thus suggests a possible answer: Optimal specificity is achieved when the ligand is slightly off target; that is, a conformational mismatch between the ligand and its main target improves the selectivity of the process. This indicates that deformations upon binding serve as a conformational proofreading mechanism, which may be selected for via evolution
- ā¦