402 research outputs found
Covalent vs. non-covalent redox functionalization of C-LiFePO4 based electrodes
During high rate utilization of porous Li battery, Li+ refuelling from the electrolyte limits the discharge kinetics of positive electrodes. In the case of thick electrodes a strategy to buffer the resulting sharp drop of Li+ concentration gradient would be to functionalize the electrode with anionic based redox molecules (RMR) that would be therefore able to relay intercalation process. The occurrence of these RMR in the electrode should not however, induce adverse effect on Li intercalation processes. In this respect, this work studies the effect of functionalizing LFPC based electrodes by either covalent or non-covalent chemistry, on Li intercalation kinetics. To do so, model molecules containing a nitro group were introduced at the surface of both carbon conducting additives and active material (C-LiFePO4). It is shown that presumably due to formation of sp(3) defects, covalent anchoring using diazonium chemistry inhibits the intercalation kinetics in C-FePO4. On the contrary, if molecules such as pyrene derivatives are immobilized by pi-staking interactions, Li intercalation is not impeded. Therefore non-covalent functionalization of pyrene based RMR appears as a promising route to relay Li intercalation reaction during high power demand. The framework for future development of this strategy is discussed. (C) 2013 Elsevier B.V. All rights reserved
New Concept to Boost Energy and Power Peformance of Practical Electrochemical Devices
International audienc
Optimization of Electronic Transport at the Nanoscale through the Formation of Molecular Junctions within Composite Electrodes for Li-battery
National audienc
In situ redox functionalization of composite electrodes for high power-high energy electrochemical storage systems via a non-covalent approach
The growing demand for new global resources of clean and sustainable energy emerges as the greatest challenge in today\u27s society. For numerous applications such as hybrid vehicles, electrochemical storage systems simultaneously require high energy and high power. For this reason, intensive researches focus on proposing alternative devices to conventional Li battery and supercapacitors. Here, we report a proof of concept based on non-covalent redox functionalization of composite electrodes that may occur either during the calendar life or during the device functioning. The active material, a multi-redox pyrene derivative, is initially contained in the electrolyte. No additional benchmarking step is therefore required, and it can, in principle, be readily applied to any type of composite electrode (supercapacitors, battery, semi-solid flow cell etc.). Accordingly, a practical carbon fiber electrode that is 10 mg cm(-2) loaded can deliver up to 130 kW kg(electrode)(-1) and 130 Wh kg(electrode)(-1) with negligible capacity loss over the first 60 000 charge/discharge cycles
Improving Li-ion batteries by molecular wiring of metal oxides and MWCNT at the cathode using a terthiophene derivative α,ω-difunctionalized with pyrene and phosphonic acid
New concept and electrochemistry of in situ non-covalent immobilization of redox molecules for energy storage applications
International audienc
Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering.
Conventional row crop agriculture for both food and fuel is a source of carbon dioxide (CO2) and nitrous oxide (N2O) to the atmosphere, and intensifying production on agricultural land increases the potential for soil C loss and soil acidification due to fertilizer use. Enhanced weathering (EW) in agricultural soils-applying crushed silicate rock as a soil amendment-is a method for combating global climate change while increasing nutrient availability to plants. EW uses land that is already producing food and fuel to sequester carbon (C), and reduces N2O loss through pH buffering. As biofuel use increases, EW in bioenergy crops offers the opportunity to sequester CO2 while reducing fossil fuel combustion. Uncertainties remain in the long-term effects and global implications of large-scale efforts to directly manipulate Earth's atmospheric CO2 composition, but EW in agricultural lands is an opportunity to employ these soils to sequester atmospheric C while benefitting crop production and the global climate
First principles electronic structure of spinel LiCr2O4: A possible half-metal?
We have employed first-principles electronic structure calculations to
examine the hypothetical (but plausible) oxide spinel, LiCr2O4 with the d^{2.5}
electronic configuration. The cell (cubic) and internal (oxygen position)
structural parameters have been obtained for this compound through structural
relaxation in the first-principles framework. Within the one-electron band
picture, we find that LiCr2O4 is magnetic, and a candidate half-metal. The
electronic structure is substantially different from the closely related and
well known rutile half-metal CrO2. In particular, we find a smaller conduction
band width in the spinel compound, perhaps as a result of the distinct topology
of the spinel crystal structure, and the reduced oxidation state. The magnetism
and half-metallicity of LiCr2O4 has been mapped in the parameter space of its
cubic crystal structure. Comparisons with superconducting LiTi2O4 (d^{0.5}),
heavy-fermion LiV2O4 (d^{1.5}) and charge-ordering LiMn2O4 (d^{3.5}) suggest
the effectiveness of a nearly-rigid band picture involving simple shifts of the
position of E_F in these very different materials. Comparisons are also made
with the electronic structure of ZnV2O4 (d^{2}), a correlated insulator that
undergoes a structural and antiferromagnetic phase transition.Comment: 9 pages, 7 Figures, version as published in PR
- …
