1,044 research outputs found

    A model driven approach for software systems reliability

    Get PDF
    The reliability assurance of software systems from design to deployment level through transformation techniques and model driven approach, is described. Once the reliability mechanisms provided by current component-based development architectures (CBDA) are designed in a platform-independent way, platform-based design and implementation models must be extended. Current CBDAs, such as Enterprise Java Beans, address a considerable range of features to support system reliability. The evaluation aims to test maturity of the approach, its applicability, and the effectiveness of reliability models. The techniques such as process algebras are generally considered time consuming, in regard to software development

    Consistency checking of financial derivatives transactions

    Get PDF

    Algorithms for efficient symbolic detection of faults in context-aware applications.

    Get PDF
    Context-aware and adaptive applications running on mobile devices pose new challenges for the verification community. Current verification techniques are tailored for different domains (mostly hardware) and the kind of faults that are typical of applications running on mobile devices are difficult (or impossible) to encode using the patterns of ldquotraditionalrdquo verification domains. In this paper we present how techniques similar to the ones used in symbolic model checking can be applied to the verification of context-aware and adaptive applications. More in detail, we show how a model of a context-aware application can be encoded by means of ordered binary decision diagrams and we introduce symbolic algorithms for the verification of a number of properties

    Elective Modernism and the Politics of (Bio) Ethical Expertise

    Get PDF
    In this essay I consider whether the political perspective of third wave science studies – ‘elective modernism’ – offers a suitable framework for understanding the policy-making contributions that (bio)ethical experts might make. The question arises as a consequence of the fact that I have taken inspiration from the third wave in order to develop an account of (bio)ethical expertise. I offer a précis of this work and a brief summary of elective modernism before considering their relation. The view I set out suggests that elective modernism is a political philosophy and that although its use in relation to the use of scientific expertise in political and policy-making process has implications for the role of (bio)ethical expertise it does not, in the final analysis, provide an account that is appropriate for this latter form of specialist expertise. Nevertheless, it is an informative perspective, and one that can help us make sense of the political uses of (bio)ethical expertise

    Phase-field-crystal model for liquid crystals

    Full text link
    Based on static and dynamical density functional theory, a phase-field-crystal model is derived which involves both the translational density and the orientational degree of ordering as well as a local director field. The model exhibits stable isotropic, nematic, smectic A, columnar, plastic crystalline and orientationally ordered crystalline phases. As far as the dynamics is concerned, the translational density is a conserved order parameter while the orientational ordering is non-conserved. The derived phase-field-crystal model can serve for efficient numerical investigations of various nonequilibrium situations in liquid crystals

    Structure and electronic properties of the (3×3\sqrt{3}\times \sqrt{3})R30R30^{\circ} SnAu2_2/Au(111) surface alloy

    Full text link
    We have investigated the atomic and electronic structure of the (3×3\sqrt{3}\times \sqrt{3})R30R30^{\circ} SnAu2_2/Au(111) surface alloy. Low energy electron diffraction and scanning tunneling microscopy measurements show that the native herringbone reconstruction of bare Au(111) surface remains intact after formation of a long range ordered (3×3\sqrt{3}\times \sqrt{3})R30R30^{\circ} SnAu2_22/Au(111) surface alloy. Angle-resolved photoemission and two-photon photoemission spectroscopy techniques reveal Rashba-type spin-split bands in the occupied valence band with comparable momentum space splitting as observed for the Au(111) surface state, but with a hole-like parabolic dispersion. Our experimental findings are compared with density functional theory (DFT) calculation that fully support our experimental findings. Taking advantage of the good agreement between our DFT calculations and the experimental results, we are able to extract that the occupied Sn-Au hybrid band is of (s, d)-orbital character while the unoccupied Sn-Au hybrid bands are of (p, d)-orbital character. Hence, we can conclude that the Rashba-type spin splitting of the hole-like Sn-Au hybrid surface state is caused by the significant mixing of Au d- to Sn s-states in conjunction with the strong atomic spin-orbit coupling of Au, i.e., of the substrate.Comment: Copyright: https://journals.aps.org/authors/transfer-of-copyright-agreement; All copyrights by AP

    Binding between two-component bosons in one dimension

    Full text link
    We investigate the ground state of one-dimensional few-atom Bose-Bose mixtures under harmonic confinement throughout the crossover from weak to strong inter-species attraction. The calculations are based on the numerically exact multi-configurational time-dependent Hartree method. For repulsive components we detail the condition for the formation of a molecular Tonks-Girardeau gas in the regime of intermediate inter-species interactions, and the formation of a molecular condensate for stronger coupling. Beyond a critical inter-species attraction, the system collapses to an overall bound state. Different pathways emerge for unequal particle numbers and intra-species interactions. In particular, for mixtures with one attractive component, this species can be viewed as an effective potential dimple in the trap center for the other, repulsive component.Comment: 10 pages, 10 figure

    Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview

    Get PDF
    Here, we review the basic concepts and applications of the phase-field-crystal (PFC) method, which is one of the latest simulation methodologies in materials science for problems, where atomic- and microscales are tightly coupled. The PFC method operates on atomic length and diffusive time scales, and thus constitutes a computationally efficient alternative to molecular simulation methods. Its intense development in materials science started fairly recently following the work by Elder et al. [Phys. Rev. Lett. 88 (2002), p. 245701]. Since these initial studies, dynamical density functional theory and thermodynamic concepts have been linked to the PFC approach to serve as further theoretical fundaments for the latter. In this review, we summarize these methodological development steps as well as the most important applications of the PFC method with a special focus on the interaction of development steps taken in hard and soft matter physics, respectively. Doing so, we hope to present today's state of the art in PFC modelling as well as the potential, which might still arise from this method in physics and materials science in the nearby future.Comment: 95 pages, 48 figure
    corecore