1,793 research outputs found

    A population of high-velocity absorption-line systems residing in the Local Group

    Full text link
    Aims. We aim to investigate the ionisation conditions and distances of Galactic high-velocity clouds (HVCs) in the Galactic halo and beyond in the direction of the Local Group (LG) barycentre and anti-barycentre, by studying spectral data of 29 extragalactic background sources obtained with Cosmic Origins Spectropgraph (COS) installed on the Hubble Space Telescope (HST). Methods. We model column-densities of low, intermediate, and high ions, such as Si II, C II, Si III, Si IV, and C IV and use this to construct a set of Cloudy ionisation models. Results. In total, we found 69 high-velocity absorption components along the 29 lines of sight. The ones in the direction of the LG barycentre span the entire range of studied velocities, 100 \lesssim |v_{LSR}|\lesssim 400 km s^-1, while the anti-barycentre sample has velocities up to about 300 km s^-1. For 49 components, we infer the gas densities. In the direction of the LG barycentre, the gas densities exhibit a large range between log n_H=-3.96 to -2.55, while in the anti-barycentre direction the densities are systematically higher, log n_H>-3.25. The barycentre absorbers can be split into two groups based on their density: a high density group with log n_H>-3.54, which can be affected by the Milky Way radiation field, and a low density group (log n_H \leq -3.54). The latter has very low thermal pressures of P/k<7.3 K cm^-3. Conclusions. Our study shows that part of the absorbers in the LG barycentre direction trace gas at very low gas densities and thermal pressures. Such properties indicate that these absorbers are located beyond the virial radius of the Milky Way. Our study also confirms results from earlier, single-sightline studies, suggesting the presence of a metal-enriched intragroup medium filling the LG near its barycentre.Comment: Accepted for publication in A&A. 12 pages, 11 figure

    Building Blocks in Hierarchical Clustering Scenarios and their Connection with Damped Lyα\alpha Systems

    Get PDF
    We carried out a comprehensive analysis of the chemical properties of the interstellar medium (ISM) and the stellar population (SP) of current normal galaxies and their progenitors in a hierarchical clustering scenario. We compared the results with observations of Damped Lyman-α\alpha systems (DLAs) under the hypothesis that, at least, part of the observed DLAs could originate in the building blocks of today normal galaxies. We used a hydrodynamical cosmological code which includes star formation and chemical enrichment. Galaxy-like objects are identified at z=0z=0 and then followed back in time. Random line-of-sights (LOS) are drawn through these structures in order to mimic Damped Lyman α\alpha systems. We then analysed the chemical properties of the ISM and SP along the LOS. We found that the progenitors of current galaxies in the field with mean L<0.5LL <0.5 L^* and virial circular velocity of 100250km/sec100-250 {\rm km/sec} could be the associated DLA galaxies. For these systems we detected a trend for to increase with redshift.(Abridged)Comment: 15 pages, 11 Postscript figures. Accepted to MNRA

    Pengaruh Otonomi Daerah Terhadap Percepatan Pembangunan Infrastruktur Di Kabupaten Bolaang Mongondow Utara

    Full text link
    North Bolaang Mongondow Regency formed as a result of the nuances of reform and regional autonomy. North Bolaang Mongondow with its existence as an expansion are after the implementation of regional autonomy, the maters that were examined in this study was: how much influence among the variables of human resources, financial resources/funding, policy development to variable acceleration of infrastructure development in North Bolaang Mongondow. The research method used was research using both primary and secondary data, by dividing the questionnaire and secondary data collection agencies. Inference and descriptive statistics used in this research is simple regression and multiple regressions. Respondents totaled 75 people, drawn by simple random sampling. The results of this study show that there are significant human resource affect toward infrastructure acceleration; the higher the human resource, then, the better the acceleration of the development. there are significant financial resources impact on infrastructure acceleration; the higher the financial resources, then, the faster the infrastructure acceleration is. There are significant effects of the development policy toward the infrastructure acceleration; the higher the development policy, then, the better the infrastructure acceleration. It is advised that human resource should be improved and developed through civil service recruitment with accurate competition and qualification, technical tutor related to infrastructure acceleration, and incentive to existing employees. Besides, there should be researches done in relation to financial resources aspects in North Bolaang Mongondow Region in order to infrastructure development acceleration. There also should be further researches especially about divisions of development policies between the development done by both legislative and executive government

    Chemo-Archaeological Downsizing in a Hierarchical Universe: Impact of a Top Heavy IGIMF

    Get PDF
    We make use of a semi-analytical model of galaxy formation to investigate the origin of the observed correlation between [a/Fe] abundance ratios and stellar mass in elliptical galaxies. We implement a new galaxy-wide stellar initial mass function (Top Heavy Integrated Galaxy Initial Mass Function, TH-IGIMF) in the semi-analytic model SAG and evaluate its impact on the chemical evolution of galaxies. The SFR-dependence of the slope of the TH-IGIMF is found to be key to reproducing the correct [a/Fe]-stellar mass relation. Massive galaxies reach higher [a/Fe] abundance ratios because they are characterized by more top-heavy IMFs as a result of their higher SFR. As a consequence of our analysis, the value of the minimum embedded star cluster mass and of the slope of the embedded cluster mass function, which are free parameters involved in the TH-IGIMF theory, are found to be as low as 5 solar masses and 2, respectively. A mild downsizing trend is present for galaxies generated assuming either a universal IMF or a variable TH-IGIMF. We find that, regardless of galaxy mass, older galaxies (with formation redshifts > 2) are formed in shorter time-scales (< 2 Gyr), thus achieving larger [a/Fe] values. Hence, the time-scale of galaxy formation alone cannot explain the slope of the [a/Fe]-galaxy mass relation, but is responsible for the big dispersion of [a/Fe] abundance ratios at fixed stellar mass.We further test the hyphothesis of a TH-IGIMF in elliptical galaxies by looking into mass-to-light ratios, and luminosity functions. Models with a TH-IGIMF are also favoured by these constraints. In particular, mass-to-light ratios agree with observed values for massive galaxies while being overpredicted for less massive ones; this overprediction is present regardless of the IMF considered.Comment: 24 pages, 15 figures, 2 tables. (Comments most welcome). Summited to MNRA

    Ejection of Supermassive Black Holes from Galaxy Cores

    Get PDF
    [Abridged] Recent numerical relativity simulations have shown that the emission of gravitational waves during the merger of two supermassive black holes (SMBHs) delivers a kick to the final hole, with a magnitude as large as 4000 km/s. We study the motion of SMBHs ejected from galaxy cores by such kicks and the effects on the stellar distribution using high-accuracy direct N-body simulations. Following the kick, the motion of the SMBH exhibits three distinct phases. (1) The SMBH oscillates with decreasing amplitude, losing energy via dynamical friction each time it passes through the core. Chandrasekhar's theory accurately reproduces the motion of the SMBH in this regime if 2 < ln Lambda < 3 and if the changing core density is taken into account. (2) When the amplitude of the motion has fallen to roughly the core radius, the SMBH and core begin to exhibit oscillations about their common center of mass. These oscillations decay with a time constant that is at least 10 times longer than would be predicted by naive application of the dynamical friction formula. (3) Eventually, the SMBH reaches thermal equilibrium with the stars. We estimate the time for the SMBH's oscillations to damp to the Brownian level in real galaxies and infer times as long as 1 Gyr in the brightest galaxies. Ejection of SMBHs also results in a lowered density of stars near the galaxy center; mass deficits as large as five times the SMBH mass are produced for kick velocities near the escape velocity. We compare the N-body density profiles with luminosity profiles of early-type galaxies in Virgo and show that even the largest observed cores can be reproduced by the kicks, without the need to postulate hypermassive binary SMBHs. Implications for displaced AGNs and helical radio structures are discussed.Comment: 18 pages, The Astrophysical Journal, in press. Replaced with revised versio

    Dynamical friction and the evolution of satellites in virialized halos: the theory of linear response

    Get PDF
    The evolution of a small satellite inside a more massive truncated isothermal spherical halo is studied using both the Theory of Linear Response for dynamical friction and N-Body simulations. The analytical approach includes the effects of the gravitational wake, of the tidal deformation and the shift of the barycenter of the primary, so unifying the local versus global interpretation of dynamical friction. Sizes, masses, orbital energies and eccentricities are chosen as expected in hierarchical clustering models. We find that in general the drag force in self-gravitating backgrounds is weaker than in uniform media and that the orbital decay is not accompanied by a significant circularization. We also show that the dynamical friction time scale is weakly dependent on the initial circularity. We provide a fitting formula for the decay time that includes the effect of mass and angular momentum loss. Live satellites with dense cores can survive disruption up to an Hubble time within the primary, notwithstanding the initial choice of orbital parameters. Dwarf spheroidal satellites of the Milky Way, like Sagittarius A and Fornax, have already suffered mass stripping and, with their present masses, the sinking times exceed 10 Gyr even if they are on very eccentric orbits.Comment: 27 pages including 9 figures. Accepted for publication in the Astrophysical Journal. Part 2, issue November 10 1999, Volume 52

    Calibration of semi-analytic models of galaxy formation using Particle Swarm Optimization

    Get PDF
    We present a fast and accurate method to select an optimal set of parameters in semi-analytic models of galaxy formation and evolution (SAMs). Our approach compares the results of a model against a set of observables applying a stochastic technique called Particle Swarm Optimization (PSO), a self-learning algorithm for localizing regions of maximum likelihood in multidimensional spaces that outperforms traditional sampling methods in terms of computational cost. We apply the PSO technique to the SAG semi-analytic model combined with merger trees extracted from a standard Λ\LambdaCDM N-body simulation. The calibration is performed using a combination of observed galaxy properties as constraints, including the local stellar mass function and the black hole to bulge mass relation. We test the ability of the PSO algorithm to find the best set of free parameters of the model by comparing the results with those obtained using a MCMC exploration. Both methods find the same maximum likelihood region, however the PSO method requires one order of magnitude less evaluations. This new approach allows a fast estimation of the best-fitting parameter set in multidimensional spaces, providing a practical tool to test the consequences of including other astrophysical processes in SAMs.Comment: 11 pages, 4 figures, 1 table. Accepted for publication in ApJ. Comments are welcom

    The Role of Gas in the Merging of Massive Black Holes in Galactic Nuclei. I. Black Hole Merging in a Spherical Gas Cloud

    Full text link
    Using high-resolution SPH numerical simulations, we investigate the effects of gas on the inspiral and merger of a massive black hole binary. This study is motivated by both observational and theoretical work that indicate the presence of large amounts of gas in the central regions of merging galaxies. N-body simulations have shown that the coalescence of a massive black hole binary eventually stalls in a stellar background. However, our simulations suggest that the massive black hole binary will finally merge if it is embedded in a gaseous background. Here we present results in which the gas is assumed to be initially spherical with a relatively smooth distribution. In the early evolution of the binary, the separation dimishes due to the gravitational drag exerted by the background gas. In the later stages, when the binary dominates the gravitational potential in its vicinity, the medium responds by forming an ellipsoidal density enhancement whose axis lags behind the binary axis, and this offset produces a torque on the binary that causes continuing loss of angular momentum and is able to reduce the binary separation to distances where gravitational radiation is efficient. Assuming typical parameters from observations of Ultra Luminous Infrared Galaxies, we predict that a black hole binary will merge within 10710^{7}yrs; therefore these results imply that in a merger of gas-rich galaxies, any massive central black holes will coalescence soon after the galaxies merge. Our work thus supports scenarios of massive black hole evolution and growth where hierarchical merging plays an important role. The final coalescence of the black holes leads to gravitational radiation emission that would be detectable up to high redshift by LISA. We show that similar physical effects are important for the formation of close binary stars.Comment: 38 pages, 14 figures, submitted to Ap

    A fitting formula for the merger timescale of galaxies in hierarchical clustering

    Full text link
    We study galaxy mergers using a high-resolution cosmological hydro/N-body simulation with star formation, and compare the measured merger timescales with theoretical predictions based on the Chandrasekhar formula. In contrast to Navarro et al., our numerical results indicate, that the commonly used equation for the merger timescale given by Lacey and Cole, systematically underestimates the merger timescales for minor mergers and overestimates those for major mergers. This behavior is partly explained by the poor performance of their expression for the Coulomb logarithm, \ln (m_pri/m_sat). The two alternative forms \ln (1+m_pri/m_sat) and 1/2\ln [1+(m_pri/m_sat)^2] for the Coulomb logarithm can account for the mass dependence of merger timescale successfully, but both of them underestimate the merger time scale by a factor 2. Since \ln (1+m_pri/m_sat) represents the mass dependence slightly better we adopt this expression for the Coulomb logarithm. Furthermore, we find that the dependence of the merger timescale on the circularity parameter \epsilon is much weaker than the widely adopted power-law \epsilon^{0.78}, whereas 0.94*{\epsilon}^{0.60}+0.60 provides a good match to the data. Based on these findings, we present an accurate and convenient fitting formula for the merger timescale of galaxies in cold dark matter models.Comment: 16 pages, 14 figures, accepted for publication in ApJ, minor changes in the last few sentences of the discussio
    corecore