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ABSTRACT

We present a fast and accurate method to select an optimal set of parameters in semi-analytic models of galaxy
formation and evolution (SAMs). Our approach compares the results of a model against a set of observables
applying a stochastic technique called Particle Swarm Optimization (PSO), a self-learning algorithm for localizing
regions of maximum likelihood in multidimensional spaces that outperforms traditional sampling methods in terms
of computational cost. We apply the PSO technique to the SAG semi-analytic model combined with merger trees
extracted from a standard Lambda Cold Dark Matter N-body simulation. The calibration is performed using a
combination of observed galaxy properties as constraints, including the local stellar mass function and the black
hole to bulge mass relation. We test the ability of the PSO algorithm to find the best set of free parameters of the
model by comparing the results with those obtained using a MCMC exploration. Both methods find the same
maximum likelihood region, however, the PSO method requires one order of magnitude fewer evaluations. This
new approach allows a fast estimation of the best-fitting parameter set in multidimensional spaces, providing a
practical tool to test the consequences of including other astrophysical processes in SAMs.

Key words: galaxies: evolution – galaxies: formation – methods: numerical – methods: statistical

1. INTRODUCTION

The combination of numerical methods and computational
resources provides one of the best tools to study the origin and
evolution of structures in the universe. The Lambda Cold Dark
Matter (ΛCDM) scenario for the growth of dark matter (DM)
structures has been extensively studied using numerical N-body
simulations, which follow the evolution of such structures from
shortly after decoupling to the present-day over a large
dynamical range (Springel et al. 2005; Boylan-Kolchin
et al. 2009; Klypin et al. 2011; Angulo et al. 2012).

Studying the evolution of baryonic matter is more complex
due to the highly non-linear effects of gas, making it impossible
(with the current state-of-the-art) to perform a fully self-
consistent numerical simulation that resolves all the scales
relevant to the physics of galaxy formation in a large volume.
In addition, physical processes in the sub-grid scale, such as the
star formation (SF) process and different feedback mechanisms
are still poorly understood due to their intrinsic complexity.
This is why semi-analytic models of galaxy formation (SAMs)
play a fundamental role, since they can produce large samples
of galaxies at a low computational cost which can be used to
study properties such as SF, luminosity, colors and chemical
evolution by following the evolution of baryons in a simplified
way (Baugh 2006; Benson 2010; Frenk & White 2012; Silk &
Mamon 2012).

A downside of using SAMs is that they depend on a large
number of free parameters which are included in the
implementations of the different physical processes modeled;
these parameters are usually calibrated by choosing a set of

observables that the simulated galaxies are expected to
reproduce. Kampakoglou et al. (2008) and Henriques et al.
(2009) introduced the Monte Carlo Markov Chains (MCMC)
technique to carry out a statistical exploration of the multi-
dimensional parameter space of a SAM. Since this technique is
well known, MCMC quickly became a popular tool for
calibrating the free parameters of SAMs, using as observational
constraints not only z = 0 data (Henriques et al. 2009;
Henriques & Thomas 2010; Lu et al. 2011, 2012) but also
observed or inferred properties at higher redshifts (Henriques
et al. 2013, 2014; Mutch et al. 2013a, 2013b).
More refined Bayesian techniques for determining the value

of the free parameters in SAMs were introduced by Bower
et al. (2010) with the Gaussian model emulator technique (ME;
see e.g., Kennedy & O’Hagan 2001), an approach based in
building a statistical predictor for the results from a given
model based on a limited set of model runs. The ME technique
was also implemented by Gómez et al. (2012, 2014) to study
the impact of formation histories on the final satellite
population of Milky Way-sized galaxies.
The increasing complexity of SAMs motivate the search for

computationally more effective and fast methods to perform
calibrations. In this work we apply for the first time another
machine learning inspired sampling method, called Particle
Swarm Optimization (PSO; Kennedy & Eberhart 1995) to
select the optimal set of parameters for a SAM. In high-
dimensional spaces, such as the SAM parameter space
analyzed here, the PSO technique can outperform the
traditional methods in terms of computational cost in the
search for an adequate solution. Such increased search
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performance was reported by Prasad & Souradeep (2012) who
applied this technique for cosmological parameter estimations
using the WMAP7 cosmic background data. The aim of this
paper is to introduce the PSO technique as a fast calibrator of
SAMs. A detailed comparison of the performance between
PSO and other techniques such as MCMC is studied in Prasad
& Souradeep (2012). In this work, we further explore this issue
demonstrating that the PSO technique is very competitive in
comparison to MCMC, reaching much more rapidly a
physically equivalent convergence region. The plan of this
paper is as follows. In Section 2, we introduce the details of the
semi-analytic model used, SAG (acronym for Semi-Analytic
Galaxies, Cora 2006; Lagos et al. 2008; Padilla et al. 2014;
Gargiulo et al. 2015), specifying the relevant free parameters to
be explored. We also present the DM N-body simulation used
to construct the merger trees which are fed into SAG to
construct the galaxy population. In Section 3, we describe the
PSO implementation used to find the best set of SAG
parameters and the methodology used to estimate the
corresponding errors. The observational constraints and like-
lihood function used to perform the calibration are described in
Section 4. In Section 5 we present and discuss the results of a
calibration, and the suitability of the PSO approach for SAM
parameter estimations, demonstrating its advantage over
MCMC. Finally, in Section 6 we summarise the main results
of this work.

2. THE SIMULATED GALAXY POPULATION

The galaxy populations used in this work were generated
using a semi-analytic model of galaxy formation that computes
the evolution of the baryonic component taking as input DM
halo merger trees extracted from a numerical N-body simula-
tion. In this section we describe this procedure.

2.1. N-body Simulation

We use a DM-only N-body simulation in the standard
ΛCDM scenario, run with Gadget-2 (Springel 2005) using
6403 particles in a cubic box of comoving sidelength
= -L 150 hr Mpc1 . For the cosmological parameters we adopt

the values =Ω 0.28m , =Ω 0.046b , =LΩ 0.72, h = 0.7,
n = 0.96, s = 0.828 , corresponding to the WMAP7 cosmology
(Jarosik et al. 2011). The mass of a DM particle is

= ´ -
m M1 10 hrdm

9 1 . The initial conditions were generated
using GRAFIC2 (Bertschinger 2001). The simulation was
evolved from z = 61.2 to the present epoch, storing 100 outputs
equally spaced in alog ( )10 between z = 20 and z = 0 (Benson
et al. 2012).

DM halos were identified in the simulation outputs using a
friends-of-friends (FoF) algorithm, and then self-bound sub-
structures (subhalos) are extracted using SUBFIND (Springel
et al. 2001). We consider only (sub)halos with at least 10
particles. The position and velocity of the most-bound particle
in each subhalo is stored, as these are used by the SAM to trace
the positions and velocities of galaxies within FoF halos,
assuming that galaxies trace the DM distribution.

With the aim of speeding-up the calibration process, we
follow a scheme similar to that implemented by (Henriques
et al. 2009, 2013). We split the simulation into 64 sub-boxes
that contain complete merger-trees. From these 64 sub-boxes,
we select 4 that sample different simulation environments to
perform the calibration (with both PSO and MCMC methods).

Once the model is calibrated, we run SAG using all the merger-
trees of the simulation. We do not find any bias when
comparing the results obtained from the sample of 4 sub-boxes
with those of the whole simulation.

2.2. Semi-analytic Model of Galaxy Formation SAG

We use the semi-analytic model SAG based on the Munich
semi-analytic model described by Springel et al. (2001) and
further modified and developed by Cora (2006), Lagos et al.
(2008), Padilla et al. (2014) and Gargiulo et al. (2015).
Subhalo merger trees are used as inputs for SAG; galaxies are

assumed to form in the center of DM subhalos. A fraction of
the hot gas in the halo loses energy via radiative cooling and
settles in the center, forming a gaseous disc with an exponential
density profile. SF begins when the density of this cold gas disc
becomes high enough. The most massive subhalo within a FoF
halo hosts the central galaxy, which we call a type 0 galaxy.
Cold gas in galaxies of this class can be replenished by infall of
cooling gas from the intergalactic medium.
Galaxies in smaller subhalos of the same FoF halo are

considered as satellites and labeled as type 1. If the satellites
subhalos are not longer identified by the SUBFIND halo finder,
then the galaxy contained within are not assumed to be
destroyed but preserved until eventually merges with the
central galaxy of its host subhalo after a dynamical friction
timescale. These galaxies are labeled as type 2 satellites.
When a galaxy becomes a satellite of either type, all of its

hot gas halo is removed and transferred to the hot gas
component of the corresponding type 0 galaxy; consequently,
gas cooling is suppressed in all satellites. Only galaxies of
types 0 and 1 can continue accreting stars and gas from
merging satellites. In major mergers, characterised by a satellite
with baryonic mass larger than 30% that of the central galaxy,
the stellar disc of the remnant is transfered to the bulge, while
in minor mergers only the stars of the merging satellite are
transferred to the bulge component of the central galaxy.
Mergers and disc instabilities trigger starbursts which con-
tribute to the formation of a bulge component. These starbursts
are characterised by a certain timescale in which the cold gas
that has been transfered to the bulge is gradually consumed
(Gargiulo et al. 2015). We consider the disc instability criterion
to evaluate the triggering of bursts in the remnant galaxy after a
merger. This condition is inspired in the fact that the material
accreted onto the galactic disc has misaligned angular momenta
(Padilla et al. 2014). The flips in angular momenta seen in the
DM haloes are assumed to be the same for the cold baryons,
but we assume a loss of specific angular momentum of the disc
such that it entails an inhibition of growth of the disc angular
momentum due to slews and flips. As a result of the drop in
their dimensionless spin parameter, galactic discs become
slightly smaller, which impacts the quiescent SF rate in the
discs and the frequency of disc instability events.
SF is regulated by energetic feedback from supernova (SNe)

explosions and active galactic nuclei (AGNs) as implemented
by Lagos et al. (2008). The former induces transfer of gas and
metals from the cold to the hot gas phase, while the latter,
which are a consequence of the growth of supermassive black
holes (SMBHs) in galaxy centers, suppress gas cooling in
central galaxies. For this work we consider an scheme where
the material expelled from the galactic disc by SNe is ejected to
an external reservoir and reincorporated later to the hot gas
phase (“ejection” scheme). This is supported by observed

2

The Astrophysical Journal, 801:139 (10pp), 2015 March 10 Ruiz et al.



dependence of the baryon fraction on halo virial mass (De
Lucia et al. 2004). The mass reincorporated in our model
includes a dependence on the virial velocity as in Guo
et al. (2011).

The recycling process as a result of stellar mass loss and SNe
explosions contributes to the chemical enrichment of the
different baryonic components, as is described in detail in Cora
(2006). In the current version of the model, we adopt the yields
of Karakas (2010) to follow the production of chemical
elements generated by low- and intermediate-mass stars (mass
interval M1–8 ). Yields resulting from mass loss of pre-
supernova stars and explosive nucleosynthesis are taken from
Hirschi et al. (2005) and Kobayashi et al. (2006), respectively.
This combination of stellar yields are in accordance with the
large number of constraints for the Milky Way (Romano
et al. 2010). For the ejecta from type Ia supernovae (SNe Ia),
we consider the nucleosynthesis prescriptions from the updated
model W7 by Iwamoto et al. (1999). The SNe Ia rates are
estimated using the single degenerate model (Greggio &
Renzini 1983; Lia et al. 2002). This model involves the fraction
of binary systems whose components have masses between 0.8
and 8M which are progenitors of SNe Ia, for which we adopt
a value of 0.04 that gives a rate which evolves with redshift in
good agreement with the compilation of data given by
Melinder et al. (2012). The return timescale of mass losses
and ejecta from all sources considered are estimated using the
Stellar lifetime given by Padovani & Matteucci (1993). Stellar
winds from low and intermediate mass stars, core-collapse SNe
and SNe Ia contribute to the metal enrichment of the cold gas
from which different generations of stars form. Each star
forming event is characterised by a Chabrier initial mass
function (IMF; Chabrier 2003). The chemical contamination of
the hot gas through SNe feedback also affects the metal-
dependent gas cooling rate, estimated by considering the total
radiated power per chemical element given by Foster
et al. (2012).

This version of SAG has several free parameters that have to
be tuned to reproduce observational data. It allows to test the
ability of the PSO algorithm presented here to find the best set
of parameters.

2.3. Free Parameters of SAG

We choose to explore the behaviour of the SAG model by
tuning seven free parameters keeping the rest fixed at a given
value. We describe here the role played by these seven free
parameters. They are as follow.

i. α—SF efficiency. This parameter is involved in the SF
process, which is implemented following Croton et al.
(2006). A galaxy forms stars only when its cold gas
exceeds a critical mass Mcold,crit, with a rate as follow:

 a=
-dM

dt

M M

t
, (1)

cold cold,crit

dyn

with

= ´
æ
è
ççç

ö
ø
÷÷÷
æ

è
ççç

ö

ø
÷÷÷÷- M

V R
M3.8 10

200 km s

3

10kpc
, (2)cold,crit

9 vir

1

disc

where =t V R3dyn vir disc is the dynamical time of the
galaxy, Vvir is the circular velocity at the virial radius and
Rdisc the disc scale length given by l=R R( 2 )disc vir,

being λ the spin parameter of the host halo (Mo
et al. 1998).

ii. disc—SNe feedback efficiency associated to the SF taking
place in the disc. This controls the amount of cold gas
reheated by the energy released by SNe generated from
quiescent SF that occurred in the disc. The reheated mass
produced by a star forming event which generates a stellar
mass DM is assumed to be

 
h

D = DM
E

V
M

4

3
, (3)reheated disc

vir
2

where =E 1051 erg s−1 is the energy generated by each
supernova, and η is the number of SNe per each solar mass
of stars formed, computed from the assumed IMF
normalised between 0.1 and 100 M .

iii. bulge—SNe feedback efficiency associated to the SF taking
place in the bulge. This controls the amount of bulge cold
gas reheated by SNe formed in the bulge when a starburst
is triggered. Since the cold gas transfered from the disc to
the bulge is gradually consumed, it can also be affected by
SNe feedback. The reheated mass is also given by
Equation (3), but with the efficiency disc replaced by
bulge.

iv. fBH—fraction of cold gas accreted onto the central SMBH.
A SMBH grows via gas flows to the galactic core triggered
by the perturbations to the gaseous disc which result from
galaxy mergers or disc instabilities. When a merger occurs,
central SMBHs are assumed to merge instantaneously. The
mass of cold gas accreted by the resulting SMBH is given
by

D =
+

+ -( )
M f

M

M

M M

V1 280 km s
, (4)BH BH

sat

cen

cold,sat cold,cen

1
vir

2

where Mcen and Msat are the masses of the merging central
and satellite galaxies, and Mcold, cen and Mcold,sat are their
corresponding cold gas masses. In the case of disc
instabilities, only the host galaxy is involved.

v. kAGN—efficiency of cold gas accretion onto the SMBH
during gas cooling. The cold gas accretion during gas
cooling occurs once a static hot gas halo has formed
around the central galaxy, and is assumed to be
continuous. It is given by

k=
æ
è
ççç

ö
ø
÷÷÷-



dM

dt

M

M

f V

10 0.1 200 km s
, (5)BH

AGN
BH

8

hot vir

1

2

where =f M Mhot hot vir, being Mhot and Mvir the hot gas
and virial masses, respectively.8

vi. Dpert—factor involved in the distance scale of perturbation
to trigger disc instability. A galactic disc that becomes
unstable and is also perturbed by a neighbouring galaxy
will undergo a starburst; stars created in this event
contribute to the bulge formation. The stellar disc is also
transfered to the bulge. The stability to bar formation is

8 We now consider the mass accretion rate to depend on the square of the
virial velocity, instead of on the cube of the velocity as in Lagos et al. (2008).
The old prescription caused the SMBHs at the center of cluster-dominant
galaxies to grow unrealistically large, at the expense of the intracluster medium.
With this change, the accretion is consistent with a Bondi-type accretion
(Bondi 1952).
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lost when

⩽
( )

V

GM R
, (6)disc

disc disc
1 2 thresh

where Mdisc is the mass of the disc (cold gas plus stars),
and Vdisc is the maximum circular velocity of the disc. In
our model we adopt a value of  = 1thresh , in agreement
with the theoretical motivation for Equation (6)
(Efstathiou et al. 1982). We assume a galaxy to suffer
the effects of the interaction when the mean distance
between galaxies sharing the same DM halo is smaller than
Dpert times the disc scale length of the unstable galaxy. The
effect of disc instability in the calibration process is
regulated by Dpert.

vii. freinc—fraction of ejected reheated cold gas that is
reincorporated into the hot halo gas. In the ejection
scheme used here, the cold gas reheated by SNe explosions
is expelled from the galactic disc and stored in an external
reservoir. This material that leaves the halo is reincorpo-
rated into the hot halo gas on a timescale which depends
on the virial velocity of the host halo. It is given by

=
æ
è
ççç

ö
ø
÷÷÷-

dM

dt
f

M

t

V

220 km s
, (7)reinc

reinc
ejec

dyn,h

vir

1

where Mejec is the mass of the reheated cold gas that is
ejected, and =t R Vdyn,h vir vir is the dynamical time of the
halo. We introduce the factor that involves the virial
velocity following Guo et al. (2011), thus taking into
account the fact that the mass ejected by lower mass
systems is likely more difficult to be re-accreted since the
wind velocities are higher relative to the escape velocity.

3. THE PSO METHOD

3.1. The Algorithm

PSO is a computational technique originally introduced by
Kennedy & Eberhart (1995) to optimise multidimensional
parameter explorations. If = ¼X x x x{ , , , }1 2 D is a point inD

and F(X) is a fitness (or optimization) function which is a
measure of the “quality” of point X, the PSO algorithm
computes F(X) simultaneously at different points in the
multidimensional space using a set of “particles” which share
information, thus determining new exploratory positions from
both their individual and collective knowledge. This process
can be visualised as a swarm of particles exploring iteratively
the multidimensional space, exchanging information as they do
so. In the following, we introduce some definitions in order to
describe the PSO implementation used in this work.

Particles: the “computational agents” which explore the
multidimensional space. Each particle has an identification
number = ¼i N1, , p, where Np is a free parameter of the PSO
algorithm. At every step t the particles have a “position” Xi(t)
and a “velocity” Vi(t) in the multidimensional space.

Fitness function F(X): a function which evaluates the
“quality” of a point X, that is, the likelihood of the model
reproducing a particular constraint using that set of values as
input. In this work we simply use a c2 statistic (described in
more detail in Section 4).

Best individual value: if F t( )i
max is the best value of F(X)

found by the ith particle at step t, we label as Bi(t) the position
X( ) of that point in the multidimensional parameter space, so

that

t t= ⩾ ⩽[ ] [ ]F t F B t F X t( ) ( ) ( ) ; . (8)i i i
max

Best global value: if we define =F t( ) maxmax

= ¼F t{ ( )}i i N
max

1, , p
as the best value of F(X) found for all

the particles at step t, the position of that point is labelled as G
(t) and satisfies

= = ¼⩾ [ ]F t F G t F B t i N( ) [ ( )] ( ) ; 1, , . (9)i
max

p

3.1.1. Dynamics

In a new time step, particle positions are updated following

+ = + +X t X t V t( 1) ( ) ( 1), (10)i i i

and the velocity is computed according to

x

x

+ = + -

+ -

[ ]
[ ]

V t wV t c B t X t

c G t X t

( 1) ( ) ( ) ( )

( ) ( ) . (11)

i i i i

i

1 1

2 2

The coefficient w is the so-called inertial weight, c1 and c2 are
the acceleration constants which determine the contribution to
the velocity due to individual and collective learning,
respectively, and x1 and x2 are random numbers drawn from a
uniform distribution between 0 and 1.
The first term on the right hand side of Equation (11) moves

the particle along a straight line, whereas the second and third
terms accelerate it toward positions Bi(t) and G(t). There are
several different implementations of the PSO algorithm for
astrophysical problems with different choices for the para-
meters w, c1 and c2, or even with extra parameters (Skokos
et al. 2005; Wang & Mohanty 2010; Rogers & Fiege 2011).
For this work, we choose the set of parameters used by Prasad
& Souradeep (2012), which are the values suggested in the
PSO Standard 20069 (PSOS06), that is

= »w
1

2 ln (2)
0.72, (12)

= = + »c c 0.5 ln (2) 1.193. (13)1 2

Adopting different values for these parameters do not change
or improve the results of the explorations, as was also noted by
Prasad & Souradeep (2012); these parameters have impact
mainly on convergence times. The standard values adopted
allow us to obtain fast and accurate results.

3.1.2. Initial Conditions

Usually the initial positions and velocities of the particles are
assigned randomly, according to

x= = + -( )X t X X X( 0) , (14)i min max min

x= =V t V( 0) , (15)i max

where ξ is a uniform random number between 0 and 1 and
X X[ , ]min max are the limits of the search space. However, in this
work we generate the initial positions of the particles using a
Maximin Latin Hypercube (MLH; Stein 1987). The MLH is an
extension of the traditional Latin Hypercube (LH; McKay
et al. 1979), a technique that samples a multidimensional space
more efficiently than a random distribution. To construct a LH

9 www.particleswarm.info/Standard_PSO_2006.c
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of Np points, the search range of each parameter must be
divided into Np equal parts; the points are then randomly
selected so that two points do not occupy the same interval for
each of the parameters. A MLH run consists in generating
thousands of LHs and selecting the one with the greatest
distance between any two points. We use a MLH instead of a
random distribution to initialize the position of the particles
motivated by the adoption of a small number of particles to
sample a multidimensional space and to avoid repeated
sampling of given regions. By construction, the MLH ensures
that all particles are well spatially separated without clustering
and allowing for best initial guess of the behaviour (quan-
tified, in our case, by the fitness function used) of the whole
parameter space. An example for a two-dimensional parameter
space is shown in Figure 1. For velocities, we adopt a random
distribution as given by Equation (15).

3.1.3. Maximum Velocity

In order to avoid particles from reaching arbitrarily high
velocities, it is convenient to limit the maximum velocity they
can acquire. For this reason, we define the maximum velicity as

= -V X X0.5( )max max min and impose the following restriction

=
ì
í
ïï

îïï

>
- <

v t
v v t v

v v t v
( )

when ( )

when ( )
(16)k i

k k i k

k k i k
,

,max , ,max

,max , ,max

where v t( )k i, is the kth component of the velocity for the ith
particle at timestep t and vk,max is the kth component of the
maximum velocity defined above. With this condition, the
maximum “jump” that a particle can make is equal to half the
search space in each dimension.

3.1.4. Boundary Conditions

We assume reflecting boundary conditions, where the
particle reverses the component of its velocity which is
perpendicular to the boundary when it tries to cross it, i.e.,

= -v t v t( ) ( ) (17)k i k i, ,

and

=
ì
í
ïï

îïï

>
<

x t
x x t x

x x t x
( )

when ( )

when ( )
(18)k i

k k i k

k k i k
,

,max , ,max

,min , ,min

where x t( )k i, and v t( )k i, are the kth component of the position
and velocity for the ith particle at timestep t, respectively, and
xk,min and xk,max are the kth component of the boundary
vectors.

3.1.5. Convergence Criterion

In all stochastic methods used to explore multidimensional
spaces, the convergence to the region of maximum likelihood is
guaranteed only in the asymptotic limit. For that reason, any
practical implementation of a stochastic method must include a
convergence criterion in order to stop the exploration, thus
assuring that the values of the free parameters have reached the
convergence region.
PSO particles explore the multidimensional space by finding

different values of G(t) as the number of time steps increases.
After a certain number of steps, the value of G(t) becomes
stationary and the particles cannot find a best global value that
is significantly different to the current one. One can take
advantage of this and stop the exploration when the following
criterion is satisfied:

D -⩽( )log ¯ 2.0, (19)10

where

D =
-

= ¼

x t g t

g t
¯ ¯ ( ) ( )

( )
, (20)

k k

k k 1, ,D

and

=
= ¼

x t x t¯ ( ) ( ) , (21)k k i i N, 1, , p

where x t( )k i, is the kth component of the ith particle at step t,
and gk(t) is the kth component of G(t) at step t.

3.2. Estimating Errors and Degeneracies

The PSO technique is very efficient to find the region of
maximum likelihood, but it does not provide a detailed
description of the neighborhood of the best global value,
which is needed in order to compute errors and degeneracies.
For this reason, to estimate errors we follow the approach
presented by Prasad & Souradeep (2012). The procedure
involves taking the subset = ¼j M1, , of sampled points
around the final best global position which satisfy

Q < Q =
-X t G t

G t
0.10 with

( ) ( )

( )
, (22)j j

j f f

f

where tf is the final step. In this neighborhood of the best-fitting
point, the fitness function can be approximated by

æ
è
ççç- Q Q

ö
ø
÷÷÷ RF t F( ) (t ) exp

1

2
, (23)j j jf

max
f

T

where R is the D × D curvature matrix. The inverse of this
matrix is the covariance matrix C, which can be used to
estimate the error and degeneracies of the parameters around

Figure 1. Examples of a Latin Hypercube (LH; left) and a Maximin Latin
Hypercube (MLH; right) for a 2D space. The range of each parameter has been
divided into =N 10p equally spaced intervals, and each point has been located
so that any column or row does not contain more than one point. Both designs
satisfy the LH condition, but the MLH design generates a better, less clustered,
sampling of the space.
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the best global value (Jungman et al. 1996). Taking

D = -
é

ë
ê
ê

ù

û
ú
ú = Q QR

F t

F t
2 ln

( )

( )
, (24)j

j
j j

2 f

max
f

T

a D-dimensional paraboloid can be fitted to the D
= ¼{ }j j M

2

1, ,

subset to obtain the D(D+1)/2 independent coefficients of the
matrix R. The covariance matrix is then computed taking the
inverse of the curvature matrix, i.e. = -C R 1. The error sk of
the kth parameter is computed using the diagonal elements of
C,

s = g t C( ) , (25)k k kk

and the off-diagonal elements are used to approximate the
possible degeneracies between parameters.

4. CONSTRAINTS FOR THE CALIBRATIONS

4.1. Observational Data

To calibrate SAG using the PSO method, we compare the
properties of the simulated galaxies with two observationally-
determined statistics focused on the stellar mass content and
central SMBH masses of galaxies, both at z = 0. These
constraints are the stellar mass function (SMF) and the BH
mass to bulge mass relation (BHB):

1. The SMF at z = 0. We calibrate with the data used by
Henriques et al. (2014), which is a combination of the
SMF of the Sloan Digital Sky Survey (SDSS) from Baldry
et al. (2008) and Li & White (2009), and of the Galaxy
And Mass Assembly (GAMA) from Baldry et al. (2012).

2. The BHB relation. We combine the datasets from
McConnell & Ma (2013) and Kormendy & Ho (2013).
The data points used are the average of the BH mass
computed over several bulge mass bins, with errors
estimated as the dispersion around that average.

The use of SMF to constrain parameters of SAMs is standard
practice (Henriques et al. 2013, 2014; Mutch et al. 2013a,
2013b; Benson 2014). The local SMF is an ideal constraint to
evaluate the impact of the physical processes included in
galaxy formation models. In particular, the low mass end
reflects the effect of SNe feedback, whereas the break and high
mass end are directly associated with the impact of AGN
feedback (e.g., Benson et al. 2003; Bower et al. 2006; Lagos
et al. 2008). Additionally, if a prescription for AGN feedback is
implemented (as is the case in SAG), the BHB relation is a
necessary constraint that must also be satisfied.

4.2. Likelihood Function

As mentioned in Section 3, for a given position X (i.e., a
particular parameter set) and a given observational property,
the likelihood of the model is computed according to

cµ -( )F X( ) exp 0.5 , (26)2

with

åc
s s

=
-

+=

( )y y
(27)

i

N i i

i i

2

1

sag, obs,

2

sag,
2

obs,
2

bin

where Nbin is the number of data bins and y isag, and y iobs, are the

ith values of a given constraint for the SAG model and
observations, respectively. The values of s isag, and s iobs, are the
errors for the ith bin for SAG and the observations, where s isag,
is computed as a Poisson error.
The final likelihood assigned to a position X is given by the

product of the likelihoods of all Nc constraints used in a
particular calibration,

åcµ
æ

è
çççç
-

ö

ø
÷÷÷÷=

F X( ) exp 0.5 (28)
i

N

i
1

2
c

It is important to note that when we take the direct sum of the
c2 to the different constraints to compute the final likelihood,
for the sake of simplicity we are not taking into account the
correlation between bins and observables, which may be non-
negligible (Benson 2014).

5. RESULTS

5.1. Best-fit Values

We consider the observational constraints described in
Section 4 to calibrate the SAG model. We use =N 30p
particles to search for the best fit according to the observational
constraints in the chosen seven-dimensional parameter space.
As mentioned in Section 3, the number of particles Np is a free
parameter of the PSO algorithm and there is no particular
criterion to choose a value. In PSOS06, the suggestion for the
number of particles of the swarm is given by = +N 10 2 Dp ,
where D is the dimension of the space. According to this, we
obtain ~N 15p for our study. We choose to increase the value
to 30 to have a better sampling of the parameter space and
ensure that similar results—in terms of the best-fitting value—
are obtained when identical calibrations are performed.
The top panel of Figure 2 shows an example of the evolution

of the best global value G(t) (solid line) and the corresponding
average value

=
X t( )i i N1, p

(dashed line) of all PSO particles as

a function of the step t for one of the free parameters, freinc. A
small difference between the global and the average values
indicates convergence to the best set of parameters. We define
the accuracy of convergence for each parameter in terms of the
relative difference between the average parameter of all the
particles and the final best-fitting global value G(t). The
relative difference among all parameters (black line in bottom
panel of Figure 2) is used as the convergence criterion; the PSO
exploration stops when this difference is smaller than 10−2%.
We can see that the parameters converge in ∼150 steps, which
corresponds to ∼4500 evaluations of the SAG model.
The global best-fitting values found for the calibration done

with the PSO technique are listed in Table 1 together with the
search ranges X X[ , ]min max and the error estimates obtained
according to the method described in Section 3.2. The reduced
chi-square obtained for the SMF is c = 0.5232 and for the
BHB relation is c = 0.2082 .
Figure 3 shows the results given by the calibrated model for

the statistics involved in the calibration process compared with
the corresponding observational data. As expected, both
observational constraints (SMF at z = 0 and BHB relation)
are well reproduced. The discrepancies with observational data
at the low and high mass end of the z = 0 SMF denote some
drawbacks in the model related with the SNe feedback and/or
the ejection-reincorporation scheme, whose effects impact the
low mass end, and the AGN feedback that has strong influence

6

The Astrophysical Journal, 801:139 (10pp), 2015 March 10 Ruiz et al.



on the high mass end. The latter aspect is also reflected in the
BHB relation obtained from the model, which appears to depart
from the observed data for galaxies with high bulge masses.
Since the SMF constraint is stronger than the one imposed by
the BHB relation, the model generates BH with somewhat
larger masses than observed for a galaxy with a given bulge
mass in order to produce a larger AGN feedback that can bring
the high mass end of the SMF in better agreement with
observations. However, taking into consideration the high
amount of scatter present in the observational data of the BHB
relation, the calibration can be said to reproduce it
satisfactorily.

These results show the good performance of the PSO method
when applied to the calibration process of a SAM. In order to
evaluate the advantages of this technique with respect to
MCMC, we implement the latter method to calibrate our model

using the same set of free parameters and observational
constraints. For this work we run a MCMC of ∼30,000 steps
using the Metropolis–Hastings algorithm (Metropolis
et al. 1953; Hastings 1970), where the tipical length for SAMs
calibrations is between 104 and 105 steps in order to achieve
some level of convergence to the maximum likelihood region
(Henriques et al. 2009, 2013; Mutch et al. 2013b). This
MCMC allows us to explore the parameter space with more
detail (see Section 5.2). The resulting best-fit value found by
the MCMC is also presented in Table 1, with the corresponding
s2 confidence levels. In this case, the reduced chi-square
obtained for the SMF is c = 0.5132 and for the BHB relation is
c = 0.2122 . As can be seen, the parameter values and the final
likelihood do not differ significantly from those found with the
PSO algorithm, being statistically consistent. This fact is
reflected in the left panel of Figure 3, where the SMF at z = 0
resulting from the MCMC calibration is also shown. As can be
seen, the SMF predicted by PSO and MCMC are indistinguish-
able. The principal difference between these two results are the
errorbars, being those obtained with MCMC significantly
larger. At this point we need to emphasize that for the PSO
method we estimate errors according to the fitting procedure
described in Section 3.2, therefore, the errors in the PSO
method must be interpreted just as an approximation of the true
uncertainties.
With this comparison, we demonstrate that the PSO method

gives a definite advantage with respect to MCMC showing
convergence to the same region of maximum likelihood in a
considerably smaller computing time. This is reaffirmed
through the analysis of the parameter space in the next section.

5.2. The Parameter Space

As mentioned in Section 3.2, the PSO algorithm is extremely
efficient at finding the region of maximum likelihood of a
multidimensional parameter space, but at the expense of not
providing a detailed description of the neighborhood of this
region. However, the fitting procedure presented in Section 3.2
allows us to obtain an estimation of the parameter degeneracies.
In Figure 4 we show the 2D projections of the multi-

dimensional Gaussian fit (black thin curves) applied in the
neighborhood of the best-fitting parameters found with PSO.
The two concentric contours represent the 0.01 and 0.5 levels
of the normalised Gaussian (see Equation (23)). In addition,
gray thick curves show the 68 and 95% preferred regions of the
MCMC exploration performed. It is clear from this figure that
the fitting procedure gives us a decent approximation of the
degeneracies in the parameter space: all the degeneracies
present in the projected Gaussians (with the exception of the

-fBH bulge degeneracy) agree with the true ones found with
the MCMC sampling. It is important to recall that the contours
of the projected Gaussians do not represent the same
information that the contours of the MCMC (the second is a
true sampling of the parameter space while the first responds to
a fitted curvature matrix in a limited subsample of points of the
region of maximum likelihood), therefore, as we mentioned in
Section 5.1, this projected fit must be interpreted just as a merit
figure of the true topology of the parameter space.
The previous considerations demonstrate that the PSO

method, combined with the fitting procedure of Section 3.2,
also allows us to infer information about the parameter
degeneracies with no extra evaluations of the model. However,
it is important to emphasize that if an exhaustive exploration of

Figure 2. In the top panel we show an example of the temporal evolution of the
best global value G(t) (solid lines) and the average

= ¼
X t( )i i N1, , p

(dashed

lines) for the freinc parameter. The y-axis corresponds to the range explored.
Bottom panel shows the relative difference between the average particle
parameters and the best global value, which is used as convergence criterion.

Table 1
Best-fitting Parameters Found With the PSO and MCMC Techniques

Parameter Xmin Xmax PSO MCMC

α 0.001 1.0 0.023 ± 0.004 -
+0.022 0.006

0.003

disc 0.001 1.0 0.19 ± 0.01 -
+0.21 0.05

0.07

 bulge 0.001 1.0 0.19 ± 0.03 -
+0.22 0.09

0.07

fBH 0.01 1.0 0.078 ± 0.005 -
+0.08 0.03

0.03

k103
AGN 0.001 10.0 0.08 ± 0.01 -

+0.08 0.04
0.08

Dpert 0.0 60.0 47 ± 3 -
+49 6

5

freinc 0.0 1.0 0.70 ± 0.02 -
+0.66 0.22

0.15
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Figure 3. Comparison between the results of the calibrated model and the observational constraints used. Left panel: SMF at z = 0 obtained from the SAG model
calibrated with PSO (red solid line) and with MCMC (red dotted line); black symbols depict the data compilation of Henriques et al. (2014). Right panel: BHB
relation obtained from SAG galaxies calibrated with PSO (gray contours); results of the calibration with MCMC are not showed for clarity. The contours represent the
normalized density of the total population of model galaxies that contain a black hole. Symbols represent the data from McConnell & Ma (2013; green squares) and
Kormendy & Ho (2013; red rhombus).

Figure 4. 2D projections of the multidimensional Gaussian fit described in Section 3.2 (black thin lines; concentric contours represent the 0.01 and 0.5 levels of the
normalised Gaussian), and the 68 and 95% preferred regions of the MCMC (thick gray lines). The projections allow us to infer information about the degeneracies
present between the free parameters of the model.
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the parameter space is needed, the PSO method must be used
only to locate the region of the maximum likelihood, and the
complementary exploration should be done using other
additional exploration tools, as for instance a localised MCMC.

6. CONCLUSIONS

Semi-analytic models of galaxy formation are characterised
by a set of free parameters that regulate the effect of the
physical processes involved in shaping the properties of the
galaxy population. We have shown that the PSO technique can
be successfully employed to find the best-fitting set of
parameters for a SAM. For the particular calibration performed
in this work, the PSO method find the same region of
maximum likelihood with 1 order of magnitude less evalua-
tions than using the traditional MCMC methods, as it has been
already reported by Prasad & Souradeep (2012). In this work,
we apply the PSO technique to the SAG galaxy formation
model (Cora 2006; Lagos et al. 2008; Gargiulo et al. 2015;
Padilla et al. 2014), but this method could be applied to any
other SAM.

We test the PSO algorithm on SAG by performing a
calibration of seven free parameters of the model using two
observational constraints at z = 0: the SMF and the black hole
to bulge mass relation. Once the PSO converges to the best
parameter set (i.e., the region of maximum likelihood), we
estimate errors and degeneracies between parameters using the
fitting procedure described in Section 3.2. To validate these
results, we also perform a MCMC exploration, finding the
same results not only in terms of parameter and likelihood
values (Figure 3 and Section 5.1), but also in terms of the
insights of the topology of the parameter space (Figure 4 and
Section 5.2). The principal advantage of the PSO algorithm
over the traditional MCMC explorations is the computational
cost: while the PSO algorithm needs ∼4500 valuations, the
MCMC requires ∼1 order of magnitude more. However, it is
fair to remark that the PSO algorithm is a suitable tool to locate
“maximum values,” whereas the MCMC provides a full
exploration method of the parameter space.

It should be noted that in this work we have only explored
parameters related to the baryonic physics, assuming a fixed
cosmological background. However, this SAM calibration will
very likely change if the cosmological parameters (i.e., Ωm, Ωb,
s8, etc.) are modified. Recently, useful techniques to scale the
cosmology of (sub)halo catalogs extracted from N-body
simulations were introduced, such as Angulo & White
(2010), Ruiz et al. (2011) and Mead & Peacock (2014).
Using these techniques, the parameter space of SAMs can be
further extended in order to include both baryonic and
cosmological parameters. As the parameter space of galaxy
formation models grows, it becomes even more complicated to
calibrate such models by hand; therefore, calibration methods
such as the one introduced in this paper become a necessity. In
further works we will explore such extended parameter spaces
with the new capabilities provided by the efficient PSO
method.
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