1,312 research outputs found

    Chiral metamaterials with negative refractive index based on four "U" split ring resonators

    Get PDF
    A uniaxial chiral metamaterial is constructed by double-layered four "U" split ring resonators mutually twisted by 90 degrees. It shows a giant optical activity and circular dichroism. The retrieval results reveal that a negative refractive index is realized for circularly polarized waves due to the large chirality. The experimental results are in good agreement with the numerical results.Comment: 4 pages, 4 figures, Published as cover on AP

    Transmission enhancement through deep subwavelength apertures using connected split ring resonators

    Get PDF
    Cataloged from PDF version of article.We report astonishingly high transmission enhancement factors through a subwavelength aperture at microwave frequencies by placing connected split ring resonators in the vicinity of the aperture. We carried out numerical simulations that are consistent with our experimental conclusions. We experimentally show higher than 70,000-fold extraordinary transmission through a deep subwavelength aperture with an electrical size of lambda/31x lambda/12 (width x length), in terms of the operational wavelength. We discuss the physical origins of the phenomenon. Our numerical results predict that even more improvements of the enhancement factors are attainable. Theoretically, the approach opens up the possibility for achieving very large enhancement factors by overcoming the physical limitations and thereby minimizes the dependence on the aperture geometries. (C) 2010 Optical Society of Americ

    Frequency dependent steering with backward leaky waves via photonic crystal interface layer

    Get PDF
    Cataloged from PDF version of article.A Photonic Crystal (PC) with a surface defect layer (made of dimers) is studied in the microwave regime. The dispersion diagram is obtained with the Plane Wave Expansion Method. The dispersion diagram reveals that the dimer-layer supports a surface mode with negative slope. Two facts are noted: First, a guided (bounded) wave is present, propagating along the surface of the dimer-layer. Second, above the light line, the fast traveling mode couple to the propagating spectra and as a result a directive (narrow beam) radiation with backward characteristics is observed and measured. In this leaky mode regime, symmetrical radiation patterns with respect to the normal to the PC surface are attained. Beam steering is observed and measured in a 70 degrees angular range when frequency ranges in the 11.88-13.69GHz interval. Thus, a PC based surface wave structure that acts as a frequency dependent leaky wave antenna is presented. Angular radiation pattern measurements are in agreement with those obtained via numerical simulations that employ the Finite Difference Time Domain Method (FDTD). Finally, the backward radiation characteristics that in turn suggest the existence of a backward leaky mode in the dimer-layer are experimentally verified using a halved dimer-layer structure. (C) 2009 Optical Society of Americ

    Solar flare prediction using advanced feature extraction, machine learning and feature selection

    Get PDF
    YesNovel machine-learning and feature-selection algorithms have been developed to study: (i) the flare prediction capability of magnetic feature (MF) properties generated by the recently developed Solar Monitor Active Region Tracker (SMART); (ii) SMART's MF properties that are most significantly related to flare occurrence. Spatio-temporal association algorithms are developed to associate MFs with flares from April 1996 to December 2010 in order to differentiate flaring and non-flaring MFs and enable the application of machine learning and feature selection algorithms. A machine-learning algorithm is applied to the associated datasets to determine the flare prediction capability of all 21 SMART MF properties. The prediction performance is assessed using standard forecast verification measures and compared with the prediction measures of one of the industry's standard technologies for flare prediction that is also based on machine learning - Automated Solar Activity Prediction (ASAP). The comparison shows that the combination of SMART MFs with machine learning has the potential to achieve more accurate flare prediction than ASAP. Feature selection algorithms are then applied to determine the MF properties that are most related to flare occurrence. It is found that a reduced set of 6 MF properties can achieve a similar degree of prediction accuracy as the full set of 21 SMART MF properties

    La cantidad de madera muerta y sus tasas de descomposición asociadas en reservas forestales y bosques manejados en el noroeste de Turquía

    Get PDF
    This study describes the state of coarse dead wood (CDW) in the Forest Reserve and the Managed Forest zones of northern conifer-broadleaved mixed forest. The results showed mean total CDW volumes in the ranges 30,05±11,06 m3/ha in the Forest Reserve (6,33±2,98% of the LW volume), and 9,31±2,84 m3/ha in the Managed Forest (1,96±0,84% of the LW volume). The total CDW volume was 3,22 times higher in the Forest Reserve than in the Managed Forest. The CDWlog1 and CDWsnag1 were the most abundant CDW decay classes, whilst CDWlog2 and CDWsnag2 were the lowest. Comparisons of ratios between the Managed Forest and the Forest Reserve with abundant decay classes CDWlog1 and CDWsnag1 indicated large differences. The CDWlog1 volume was 4,09 times higher, and the CDWsnag1 volume was 3,68 times greater in the Forest Reserve than in the Managed Forest. The ratio of different CWD classes in the Managed Forest to CWD classes in the Reserve Forest confirms the pattern. In both Managed and Reserve Forest zones there is balance between total CDWlogs and total CDWsnags, but the differences between total CDWlogs and total CDWsnags was not statistically significant. The total CDW volume was significantly dependent on the forest management system. The system influenced amount and diversity of CDW. In commercially managed forest the abundance and structure of CDW retained is a compromise between the needs of timber production and nature conservation.Este estudio describe el estado de la madera muerta en la zona de reserva forestal y zonas de bosques manejados de coníferas del norte de bosques mixtos de frondosas. Los resultados mostraron que la media total de los volúmenes de madera muerta es igual a 30,05 ± 11,06 m3 / ha en la Reserva Forestal (6,33 ± 2,98% del volumen de madera en pie), y 9,31 ± 2,84 m3 / ha en los bosques manejados (1,96 ± 0,84% del volumen de LW). El volumen total de madera muerta fue de 3,22 veces mayor en la Reserva Forestal de que en el bosque administrado. Las clases de decaimiento de madera muerta más abundantes eran CDWlog1 y CDWsnag1, mientras que CDWlog2 y CDWsnag2 fueron los menos abundantes. Las comparaciones de las proporciones entre el bosque manejado y la Reserva Forestal con las clases de decaimiento más abundantes (CDWlog1 y CDWsnag1) indican grandes diferencias ente las dos zonas. El volumen CDWlog1 fue 4,09 veces mayor, y el volumen CDWsnag1 fue 3,68 veces mayor en la Reserva Forestal de que en el bosque manejado. La relación de las diferentes clases de decaimiento entre los bosques manejados y la Reserva Forestal confirma el patrón. En ambos casos, bosque manejado y zonas de reserva forestal, existe un equilibrio entre CDWlogs total y CDWsnags total, pero las diferencias entre CDWlogs total y CDWsnags total no fue estadísticamente significativa. El volumen total de madera muerta depende significativamente del sistema de gestión forestal. El sistema de manejo influye sobre la cantidad y diversidad de madera muerta. En una gestión comercial de los bosques, la abundancia y estructura de madera muerta presente es un compromiso entre las necesidades de la producción de madera y la conservación de la naturaleza

    Genetic and phenotypic characterization of NKX6‐2‐related spastic ataxia and hypomyelination

    Get PDF
    Background and purpose Hypomyelinating leukodystrophies are a heterogeneous group of genetic disorders with a wide spectrum of phenotypes and a high rate of genetically unsolved cases. Bi‐allelic mutations in NKX6‐2 were recently linked to spastic ataxia 8 with hypomyelinating leukodystrophy. Methods Using a combination of homozygosity mapping, exome sequencing, and detailed clinical and neuroimaging assessment a series of new NKX6‐2 mutations in a multicentre setting is described. Then, all reported NKX6‐2 mutations and those identified in this study were combined and an in‐depth analysis of NKX6‐2‐related disease spectrum was provided. Results Eleven new cases from eight families of different ethnic backgrounds carrying compound heterozygous and homozygous pathogenic variants in NKX6‐2 were identified, evidencing a high NKX6‐2 mutation burden in the hypomyelinating leukodystrophy disease spectrum. Our data reveal a phenotype spectrum with neonatal onset, global psychomotor delay and worse prognosis at the severe end and a childhood onset with mainly motor phenotype at the milder end. The phenotypic and neuroimaging expression in NKX6‐2 is described and it is shown that phenotypes with epilepsy in the absence of overt hypomyelination and diffuse hypomyelination without seizures can occur. Conclusions NKX6‐2 mutations should be considered in patients with autosomal recessive, very early onset of nystagmus, cerebellar ataxia with hypotonia that rapidly progresses to spasticity, particularly when associated with neuroimaging signs of hypomyelination. Therefore, it is recommended that NXK6‐2 should be included in hypomyelinating leukodystrophy and spastic ataxia diagnostic panels

    A comparison of flare forecasting methods, I: results from the “All-clear” workshop

    Get PDF
    YesSolar flares produce radiation which can have an almost immediate effect on the near-Earth environ- ment, making it crucial to forecast flares in order to mitigate their negative effects. The number of published approaches to flare forecasting using photospheric magnetic field observations has prolifer- ated, with varying claims about how well each works. Because of the different analysis techniques and data sets used, it is essentially impossible to compare the results from the literature. This problem is exacerbated by the low event rates of large solar flares. The challenges of forecasting rare events have long been recognized in the meteorology community, but have yet to be fully acknowledged by the space weather community. During the interagency workshop on “all clear” forecasts held in Boulder, CO in 2009, the performance of a number of existing algorithms was compared on common data sets, specifically line-of-sight magnetic field and continuum intensity images from MDI, with consistent definitions of what constitutes an event. We demonstrate the importance of making such systematic comparisons, and of using standard verification statistics to determine what constitutes a good prediction scheme. When a comparison was made in this fashion, no one method clearly outperformed all others, which may in part be due to the strong correlations among the parameters used by different methods to characterize an active region. For M-class flares and above, the set of methods tends towards a weakly positive skill score (as measured with several distinct metrics), with no participating method proving substantially better than climatological forecasts.This work is the outcome of many collaborative and cooperative efforts. The 2009 “Forecasting the All-Clear” Workshop in Boulder, CO was sponsored by NASA/Johnson Space Flight Center’s Space Radiation Analysis Group, the National Center for Atmospheric Research, and the NOAA/Space Weather Prediction Center, with additional travel support for participating scientists from NASA LWS TRT NNH09CE72C to NWRA. The authors thank the participants of that workshop, in particular Drs. Neal Zapp, Dan Fry, Doug Biesecker, for the informative discussions during those three crazy days, and NCAR’s Susan Baltuch and NWRA’s Janet Biggs for organizational prowess. Workshop preparation and analysis support was provided for GB, KDL by NASA LWS TRT NNH09CE72C, and NASA Heliophysics GI NNH12CG10C. PAH and DSB received funding from the European Space Agency PRODEX Programme, while DSB and MKG also received funding from the European Union’s Horizon 2020 research and in- novation programme under grant agreement No. 640216 (FLARECAST project). MKG also acknowledges research performed under the A-EFFort project and subsequent service implementation, supported under ESA Contract number 4000111994/14/D/MPR. YY was supported by the National Science Foundation under grants ATM 09-36665, ATM 07-16950, ATM-0745744 and by NASA under grants NNX0-7AH78G, NNXO-8AQ90G. YY owes his deepest gratitude to his advisers Prof. Frank Y. Shih, Prof. Haimin Wang and Prof. Ju Jing for long discussions, for reading previous drafts of his work and providing many valuable comments that improved the presentation and contents of this work. JMA was supported by NSF Career Grant AGS-1255024 and by a NMSU Vice President for Research Interdisciplinary Research Grant

    Loss of UGP2 in brain leads to a severe epileptic encephalopathy, emphasizing that bi-allelic isoform-specific start-loss mutations of essential genes can cause genetic diseases.

    Get PDF
    Developmental and/or epileptic encephalopathies (DEEs) are a group of devastating genetic disorders, resulting in early-onset, therapy-resistant seizures and developmental delay. Here we report on 22 individuals from 15 families presenting with a severe form of intractable epilepsy, severe developmental delay, progressive microcephaly, visual disturbance and similar minor dysmorphisms. Whole exome sequencing identified a recurrent, homozygous variant (chr2:64083454A > G) in the essential UDP-glucose pyrophosphorylase (UGP2) gene in all probands. This rare variant results in a tolerable Met12Val missense change of the longer UGP2 protein isoform but causes a disruption of the start codon of the shorter isoform, which is predominant in brain. We show that the absence of the shorter isoform leads to a reduction of functional UGP2 enzyme in neural stem cells, leading to altered glycogen metabolism, upregulated unfolded protein response and premature neuronal differentiation, as modeled during pluripotent stem cell differentiation in vitro. In contrast, the complete lack of all UGP2 isoforms leads to differentiation defects in multiple lineages in human cells. Reduced expression of Ugp2a/Ugp2b in vivo in zebrafish mimics visual disturbance and mutant animals show a behavioral phenotype. Our study identifies a recurrent start codon mutation in UGP2 as a cause of a novel autosomal recessive DEE syndrome. Importantly, it also shows that isoform-specific start-loss mutations causing expression loss of a tissue-relevant isoform of an essential protein can cause a genetic disease, even when an organism-wide protein absence is incompatible with life. We provide additional examples where a similar disease mechanism applies

    The inhibition of FGF receptor 1 activity mediates sorafenib-induced antiproliferative effects in human mesothelioma tumor-initiating cells

    Get PDF
    Tumor-initiating cells (TICs), the subset of cells within tumors endowed with stem-like features, being highly resistant to conventional cytotoxic drugs, are the major cause of tumor relapse. The identification of molecules able to target TICs remains a significant challenge in cancer therapy. Using TIC-enriched cultures (MM1, MM3 and MM4), from 3 human malignant pleural mesotheliomas (MPM), we tested the effects of sorafenib on cell survival and the intracellular mechanisms involved. Sorafenib inhibited cell-cycle progression in all the TIC cultures, but only in MM3 and MM4 cells this effect was associated with induction of apoptosis via the down-regulation of Mcl-1. Although sorafenib inhibits the activity of several tyrosine kinases, its effects are mainly ascribed to Raf inhibition. To investigate the mechanisms of sorafenib-mediated antiproliferative activity, TICs were treated with EGF or bFGF causing, in MM3 and MM4 cells, MEK, ERK1/2, Akt and STAT3 phosphorylation. These effects were significantly reduced by sorafenib in bFGF-treated cells, while a slight inhibition occurred after EGF stimulation, suggesting that sorafenib effects are mainly due to FGFR inhibition. Indeed, FGFR1 phosphorylation was inhibited by sorafenib. A different picture was observed in MM1 cells, which, releasing high levels of bFGF, showed an autocrine activation of FGFR1 and a constitutive phosphorylation/activation of MEK-ERK1/2. A powerful inhibitory response to sorafenib was observed in these cells, indirectly confirming the central role of sorafenib as FGFR inhibitor. These results suggest that bFGF signaling may impact antiproliferative response to sorafenib of MPM TICs, which is mainly mediated by a direct FGFR targeting

    Peptide Cross-Linked Poly(2-oxazoline) as a Sensor Material for the Detection of Proteases with a Quartz Crystal Microbalance

    Get PDF
    Inflammatory conditions are frequently accompanied by increased levels of active proteases, and there is rising interest in methods for their detection to monitor inflammation in a point of care setting. In this work, new sensor materials for disposable single-step protease biosensors based on poly(2-oxazoline) hydrogels cross-linked with a protease-specific cleavable peptide are described. The performance of the sensor material was assessed targeting the detection of matrix metalloproteinase-9 (MMP-9), a protease that has been shown to be an indicator of inflammation in multiple sclerosis and other inflammatory conditions. Films of the hydrogel were formed on gold-coated quartz crystals using thiol–ene click chemistry, and the cross-link density was optimized. The degradation rate of the hydrogel was monitored using a quartz crystal microbalance (QCM) and showed a strong dependence on the MMP-9 concentration. A concentration range of 0–160 nM of MMP-9 was investigated, and a lower limit of detection of 10 nM MMP-9 was determined
    corecore