199 research outputs found

    A forward-backward splitting algorithm for the minimization of non-smooth convex functionals in Banach space

    Full text link
    We consider the task of computing an approximate minimizer of the sum of a smooth and non-smooth convex functional, respectively, in Banach space. Motivated by the classical forward-backward splitting method for the subgradients in Hilbert space, we propose a generalization which involves the iterative solution of simpler subproblems. Descent and convergence properties of this new algorithm are studied. Furthermore, the results are applied to the minimization of Tikhonov-functionals associated with linear inverse problems and semi-norm penalization in Banach spaces. With the help of Bregman-Taylor-distance estimates, rates of convergence for the forward-backward splitting procedure are obtained. Examples which demonstrate the applicability are given, in particular, a generalization of the iterative soft-thresholding method by Daubechies, Defrise and De Mol to Banach spaces as well as total-variation based image restoration in higher dimensions are presented

    F-transforms for the definition of contextual fuzzy partitions

    Get PDF
    Fuzzy partitions can be defined in many different ways, but usually, it is done taking into account the whole universe. In this paper, we present a method to define fuzzy partitions according to those elements in the universe holding certain fuzzy attribute. Specifically, we show how to define those fuzzy partitions by means of F-transforms.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech This work has been partially supported by the Spanish Ministry of Science by the projects TIN15-70266-C2-P-1 and TIN2016-76653-

    Risk-bounded formation of fuzzy coalitions among service agents.

    No full text
    Cooperative autonomous agents form coalitions in order ro share and combine resources and services to efficiently respond to market demands. With the variety of resources and services provided online today, there is a need for stable and flexible techniques to support the automation of agent coalition formation in this context. This paper describes an approach to the problem based on fuzzy coalitions. Compared with a classic cooperative game with crisp coalitions (where each agent is a full member of exactly one coalition), an agent can participate in multiple coalitions with varying degrees of involvement. This gives the agent more freedom and flexibility, allowing them to make full use of their resources, thus maximising utility, even if only comparatively small coalitions are formed. An important aspect of our approach is that the agents can control and bound the risk caused by the possible failure or default of some partner agents by spreading their involvement in diverse coalitions

    Local Analysis of Inverse Problems: H\"{o}lder Stability and Iterative Reconstruction

    Full text link
    We consider a class of inverse problems defined by a nonlinear map from parameter or model functions to the data. We assume that solutions exist. The space of model functions is a Banach space which is smooth and uniformly convex; however, the data space can be an arbitrary Banach space. We study sequences of parameter functions generated by a nonlinear Landweber iteration and conditions under which these strongly converge, locally, to the solutions within an appropriate distance. We express the conditions for convergence in terms of H\"{o}lder stability of the inverse maps, which ties naturally to the analysis of inverse problems

    Convergence and Perturbation Resilience of Dynamic String-Averaging Projection Methods

    Full text link
    We consider the convex feasibility problem (CFP) in Hilbert space and concentrate on the study of string-averaging projection (SAP) methods for the CFP, analyzing their convergence and their perturbation resilience. In the past, SAP methods were formulated with a single predetermined set of strings and a single predetermined set of weights. Here we extend the scope of the family of SAP methods to allow iteration-index-dependent variable strings and weights and term such methods dynamic string-averaging projection (DSAP) methods. The bounded perturbation resilience of DSAP methods is relevant and important for their possible use in the framework of the recently developed superiorization heuristic methodology for constrained minimization problems.Comment: Computational Optimization and Applications, accepted for publicatio

    Sharp and fuzzy observables on effect algebras

    Full text link
    Observables on effect algebras and their fuzzy versions obtained by means of confidence measures (Markov kernels) are studied. It is shown that, on effect algebras with the (E)-property, given an observable and a confidence measure, there exists a fuzzy version of the observable. Ordering of observables according to their fuzzy properties is introduced, and some minimality conditions with respect to this ordering are found. Applications of some results of classical theory of experiments are considered.Comment: 23 page

    Existence and approximation of fixed points of right Bregman nonexpansive operators

    Get PDF
    We study the existence and approximation of fixed points of right Bregman nonexpansive operators in reflexive Banach space. We present, in particular, necessary and sufficient conditions for the existence of fixed points and an implicit scheme for approximating them

    Smearing of Observables and Spectral Measures on Quantum Structures

    Full text link
    An observable on a quantum structure is any σ\sigma-homomorphism of quantum structures from the Borel σ\sigma-algebra of the real line into the quantum structure which is in our case a monotone σ\sigma-complete effect algebras with the Riesz Decomposition Property. We show that every observable is a smearing of a sharp observable which takes values from a Boolean σ\sigma-subalgebra of the effect algebra, and we prove that for every element of the effect algebra there is its spectral measure

    A Framework for Interpreting Bridging Anaphora

    Get PDF
    In this paper we present a novel framework for resolving bridging anaphora.We argue that anaphora, particularly bridging anaphora, is used as a shortcut device similar to the use of compound nouns. Hence, the two natural language usage phenomena would have to be based on the same theoretical framework. We use an existing theory on compound nouns to test its validity for anaphora usages. To do this, we used hu- man annotators to interpret indirect anaphora from naturally occurring discourses. The annotators were asked to classify the relations between anaphor-antecedent pairs into relation types that have been previously used to describe the relations between a modi er and the head noun of a compound noun. We obtained very encouraging results with an average Fleiss's value of 0.66 for inter-annotation agreement. The results were evaluated against other similar natural language interpretation annota- tion experiments and were found to compare well. In order to determine the prevalence of the proposed set of anaphora relations we did a detailed analysis of a subset 20 newspaper articles. The results obtained from this also indicated that a majority (98%) of the relations could be described by the relations in the framework. The results from this analysis also showed the distribution of the relation types in the genre of news paper article discourses
    corecore