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Abstract Some properties of convergence for archimedean t-conorms and t-norms
are investigated and a definition of independence for events, evaluated by a decompos-
able measure, is introduced. This definition generalizes the concept of independence
provided by Kruse and Qiang for λ-additive fuzzy measures. Finally, we derive the
two Borel–Cantelli lemmas in the context of the general framework considered.
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1 Introduction

Alternatives approaches to one offered by the classical probability theory have been
introduced in the literature in order to handle partial information and to obviate some
difficulties due to the application of the classic model; see, for instance, Dempster–
Shafer Belief functions (Shafer 1976), Possibility measures (Dubois and Prade 1990),
Qualitative probability (Fine 1973), Plausibility measures (Friedman and Halpern
2001) and ⊥-decomposable measures (Weber 1984).
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30 B. Cavallo et al.

The notion of independence plays a critical role in reasoning about uncertainty and
the Borel–Cantelli lemmas are instrumental in proving strong laws of large numbers
and the law of iterated logarithm. Ever since theoretical formulations different from
the classical probability theory have been introduced, several alternative approaches
to the concept of independence have been considered (see, for example Dubois et al.
1994; Fine 1973; Goldszmidt and Pearl 1992). Kruse (1987) defines the concept of
independence of two events with respect to the λ-additive fuzzy measures introduced
by Sugeno (1974); Qiang extends this concept to a finite or infinite class of events
and derives two theorems that correspond to the two Borel–Cantelli lemmas of the
classical probability theory.

We focus on the class of set functions that are decomposable with respect to a
t-conorm ⊥, ⊥-decomposable measures for short. These measures are fuzzy mea-
sures including the λ-additive measures; they have been widely investigated by Weber
(1984), who defines a new integration theory extending the one due to Lebesque;
other scholars have provided results for convergence and investigated the coherence of
assessments (D’Apuzzo et al. 1991; Squillante et al. 1989; Squillante and Ventre 1998).

In this context, we derive a strict t-norm •, from a non-strict archimedean
t-conorm ⊥, in such a way that

([0, 1],⊥, •) is a conditionally distributive semiring.
Then we provide a suitable concept of independence for events, that generalizes the one
introduced by Kruse and Qiang and derive more general Borel–Cantelli like lemmas.

The paper is organized as follows: in Sect. 2 we recall definitions and results related
to t-conorms, t-norms, ⊥-decomposable measures and introduce some new concepts
and results that will turn useful in the sequel; in Sect. 3 we prove the First Borel–
Cantelli like lemma for a σ -⊥-decomposable measure; in Sect. 4 we assume that ⊥ is
a non-strict archimedean t-conorm over [0, 1] and we define a strict t-norm • linked to
⊥; in Sect. 5 we introduce, by means of the t-norm •, a concept of m⊥-independence
for events, then we prove Second Borel–Cantelli like lemma.

2 Preliminaries

From now on we will denote with:

– J the real interval [0,1];
– ⊥ : (a, b) ∈ J → ⊥(a, b) = a⊥b ∈ J a triangolar conorm (t-conorm for short);
– � : (a, b) ∈ J → �(a, b) = a�b ∈ J a triangolar norm (t-norm for short);
– x ′ the ⊥-complement of x ∈ J , that is

x ′ = in f {y : ⊥(x, y) = 1} (1)

– (X,A) a measurable space;
– Ac the complement set X − A, for A ∈ A;
– m : A → J a set function verifying the conditions: m(∅) = 0 and m(X) = 1.

Let us recall that ⊥ and � are commutative semigroup operations over J that are non-
decreasing in each argument and have 0 and 1 as unit , respectively. Each one of them
is called strict if and only if it is continuous and (strictly) increasing in (0, 1) × (0, 1)

(Klement et al. 2000).
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Independence and convergence in non-additive settings 31

The triple (J,⊥,�) is called a conditionally distributive semiring if and only if the
� is conditionally distributive over ⊥, that is (Klement et al. 2000):

a�(b⊥c) = (a�b)⊥(a�c) whenever b⊥c < 1 (conditional distributivity).

Let g : J → [0,+∞] and θ : J → J be continuous, strictly increasing functions,
such that g(0) = 0 and θ(1) = 1. By g(−1) and θ(−1) we will denote the pseudo-inverse
of g and the pseudo-inverse of θ defined by

g(−1) : y ∈ [0,+∞] → g−1(min {y, g(1)}),
θ(−1) : y ∈ [0, 1] → θ−1(max {y, θ(0)}).

Hence

g(−1)(y) =
{

g−1(y) for y ∈ g(J ) = [0, g(1)]
1 for y ∈ [g(1),+∞] ,

and g(−1) = g−1 if and only if g(1) = +∞;

θ(−1)(y) =
{

θ−1(y) for y ∈ θ(J ) = [θ(0), 1]
0 for y ∈ [0, θ(0)] ,

and θ(−1) = θ−1 if and only if θ(0) = 0.

2.1 About t-conorms and t-norms

By definition of t-conorm and t-norm

a = a⊥0 = 0⊥a, a = a�1 = 1�a. (2)

Furthermore the following boundary conditions can be deduced, for each a ∈ [0, 1]:

1 = 1⊥a = a⊥1, 0 = 0�a = a�0. (3)

So 0 and 1 are idempotent elements for both ⊥ and �: they are called the trivial
idempotent elements. As a consequence of (2) and the property of monotonicity we
get

a�b ≤ min{a, b} ≤ max{a, b} ≤ a⊥b. (4)

Because of the associative property, the operations ⊥ and � can be extended by
induction to n-ary operations by setting

⊥n
i=1xi = (⊥n−1

i=1 xi )⊥xn, �n
i=1xi = (�n−1

i=1 xi )�xn . (5)

123



32 B. Cavallo et al.

Due to monotonicity, for each sequence (xn)n∈N of elements of J , the following
limits can be considered:

⊥+∞
i=1 xi = limn⊥n

i=1xi , �+∞
i=1 xi = limn�n

i=1xi . (6)

If xi = x ∀i = 1, 2, ..., n, then we set

x (n)
⊥ = ⊥n

i=1xi , x (n)
� = �n

i=1xi . (7)

With regard to the limits (6) for each n ∈ N we consider the remainder terms:

Rn = ⊥i>n xi = ⊥+∞
i=n+1xi , Qn = �i>n xi = �+∞

i=n+1xi . (8)

Definition 1 Given a sequence (xn)n∈N of elements of J , we say that:

1. ⊥+∞
n=1xn is strongly equal to 1 and we set

⊥+∞
n=1xn ≡ 1,

if and only if Rn = 1 for each n;
2. �+∞

n=1xn is strongly equal to 0 and we set

�+∞
n=1xn ≡ 0,

if and only if Qn = 0 for each n.

2.1.1 Archimedean t-conorms and t-norms and representation theorems

Following (Butnariu and Klement 1993) and (Weber 1984) we define the archimedean
property of t-conorms and t-norms:

Definition 2 ⊥ is called archimedean if and only if it is continuous and

⊥(a, a) = a⊥a > a ∀a ∈ (0, 1); (9)

� is called archimedean if and only if it is continuous and

�(a, a) = a�a < a ∀a ∈ (0, 1). (10)

Proposition 1 Let ⊥ and � be continuous. Then ⊥ and � are archimedean if and
only if they satisfy the limit properties

lim
n

x (n)
⊥ = 1 ∀ x ∈]0, 1]; (11)

lim
n

x (n)
� = 0 ∀ x ∈ [0, 1[. (12)

Proof By (Klement et al. 2000) Proposition 2.15. ��
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Independence and convergence in non-additive settings 33

Remark 1 In (Klement et al. 2000) (see Definition 2.9, Theorem 2.12 and Remark
2.20) the archimedean property is defined without the assumption of continuity: a
t-conorm ⊥ is archimedean if and only if it satisfies the limit property (11), whereas a
t-norm � is archimedean if and only if it satisfies the limit property (12). By the limit
properties, ⊥ and � have only trivial idempotent elements, and, by monotonicity prop-
erty, verify (9) and (10). Proposition 1 states the equivalence between the conditions
(9) and (10) and the limit properties, in case of continuous t-conorms and t-norms.

Proposition 2 Let ⊥ and � be archimedean. Then:

1. x ∈ [0, 1[ and x⊥b = x ⇒ b = 0;
2. x ∈]0, 1] and x�b = x ⇒ b = 1.

Proof Let us prove the implication 1. It is straightforward that 0⊥b = 0 ⇒ b = 0.
Let x ∈]0, 1[ and x⊥b = x . By applying the associative property, we get x⊥b(n)

⊥ =
x ∀n ≥ 1 and as a consequence

x⊥ lim
n

b(n)
⊥ = x .

So that limn b(n)
⊥ < 1 because of the first boundary condition in (3) and, as a conse-

quence b < 1. Then, by the limit property (11), b = 0.
The assertion 2 can be proved by an analogous reasoning. ��
Proposition 3 Let ⊥ and � be archimedean and (xn)n∈N a sequence of elements
of J . Then

1. ⊥+∞
i=1 xi < 1 ⇒ limn Rn = 0;

2. �+∞
i=1 xi > 0 ⇒ limn Qn = 1.

Proof To prove the first implication let us set s = ⊥+∞
i=1 xi and, for every n, sn =

⊥n
i=1xi . Then s = sn⊥Rn for all n ≥ 1 and

s = lim
n

(sn⊥Rn) = s⊥ lim
n

Rn . (13)

As Rn ≤ s < 1 (see (4)), by (13) and Proposition 2, we get limn Rn = 0.
Let us now set p = �+∞

i=1 xi and pn = �n
i=1xi . Then p = pn�Qn for each n and item

2 follows by the equality p = limn(pn�Qn) = p�(limn Qn) and Proposition 2. ��
Representation theorems have been stated for archimedean t-conorms and t-norms

(Klement et al. 2000; Ling 1965; Schweizer and Sklar 1963; Weber 1984); we recall
the following theorems providing an additive generator for a t-conorm and a multipli-
cative generator for a t-norm.

Theorem 1 (Weber 1984) The two following assertions are equivalent:

(i) ⊥ is archimedean;
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34 B. Cavallo et al.

(ii) ⊥ has a continuous additive generator, i.e. there exists a continuous, strictly
increasing function g : J → [0,+∞] with g(0) = 0 such that, for all (x, y)

∈ J 2,

x⊥y = g(−1)(g(x) + g(y)).

The function g is uniquely determined up to a positive multiplicative constant; more-
over ⊥ is strict if and only if g(1) = +∞.

If the archimedean t-conorm ⊥ is non-strict, then there is an additive generator ḡ,
verifying the condition ḡ(1) = 1. The function ḡ is called normed generator of ⊥
and it is obtained by an additive generator g by setting ḡ(x) = g(x)/g(1) for each
x ∈ [0, 1].
Theorem 2 (Klement et al. 2000) The two following assertions are equivalent:

(i) � is archimedean;
(ii) � has a continuous multiplicative generator, i.e. there exists a continuous, strictly

increasing function θ : J → J with θ(1) = 1 such that, for all (x, y) ∈ J 2,

x�y = θ(−1)(θ(x) · θ(y)).

The function θ is uniquely determined up to a positive constant exponent; moreover,
� is strict if and only if θ(0) = 0.

Example 1 ⊥(a, b) = a + b − ab is a strict archimedean t-conorm and an additive
generator is g(x) = − ln(1 − x).

Example 2 For λ > −1, the operation Uλ(a, b) = min(a +b−λab, 1) is a non-strict
archimedean t-conorm and an additive generator is gλ(x) = 1

λ
ln(1 + λx) (Sugeno

1974; Weber 1984). The normed generator is gλ(x) = log1+λ(1 + λx).

Example 3 �(a, b) = a · b is a strict archimedean t-norm and a multiplicative gener-
ator is the identity function θ(x) = x .

Example 4 �(a, b) = max(a + b − 1, 0) is a non-strict archimedean t-norm and a
multiplicative generator is θ(x) = ex−1.

By the representation theorems, if ⊥ and � are archimedean, then for each h ∈ N
and for each n ∈ N ∪ {+∞}, n > h:

⊥n
i=h xi = g(−1)

(
n∑

i=h

g(xi )

)

, �n
i=h xi = θ(−1)

(
n∏

i=h

θ(xi )

)

. (14)

Proposition 4 Let ⊥ and �be archimedean. Then

1. ⊥+∞
i=1 xi < 1 ⇔ ∑+∞

i=1 g(xi ) < g(1);
2. ⊥+∞

i=1 xi = 1 ⇔ ∑+∞
i=1 g(xi ) ≥ g(1);
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Independence and convergence in non-additive settings 35

3. ⊥+∞
i=1 xi ≡ 1 ⇒ ∑+∞

i=1 g(xi ) = +∞;
4. �+∞

i=1 xi > 0 ⇔ ∏+∞
i=1 θ(xi ) > θ(0);

5. �+∞
i=1 xi = 0 ⇔ ∏+∞

i=1 θ(xi ) ≤ θ(0);
6. �+∞

i=1 xi ≡ 0 ⇒ ∏+∞
i=1 θ(xi ) = 0.

Proof Items 1, 2, 4 and 5 follow by (14) and the definitions of g(−1) and θ(−1).
Item 3 follows by item 2, for which

Rn = 1 ∀n ⇔
∑

i>n

g(xi ) ≥ g(1) ∀n,

and the implication

+∞∑

i=1

g(xi ) < +∞ ⇒ lim
n

∑

i≥n

g(xi ) = 0.

Item 6 follows by the equivalence

Qn = 0 ∀n ⇔
∏

i>n

θ(xi ) ≤ θ(0) ∀n,

derived from item 5, and the implication

+∞∏

i=1

θ(xi ) = p > 0 ⇒ lim
n

∏

i≥n

θ(xi ) = 1,

that is the implication 2 in Proposition 3 applied to the t-norm in Example 3. ��
Corollary 1 Let ⊥ and � be archimedean. If ⊥ and � are non-strict, then

⊥+∞
i=1 xi ≡ 1 ⇔

+∞∑

i=1

g(xi ) = +∞, (15)

�+∞
i=1 xi ≡ 0 ⇔

+∞∏

i=1

θ(xi ) = 0. (16)

If ⊥ and � are strict, then

⊥+∞
i=1 xi = 1 ⇔

+∞∑

i=1

g(xi ) = +∞, (17)

�+∞
i=1 xi = 0 ⇔

+∞∏

i=1

θ(xi ) = 0. (18)
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Proof Under the assumption that ⊥ is non-strict, it is g(x) < +∞ for each x ∈ J
and, as a consequence,

∑+∞
i=1 g(xi ) = +∞ ⇔ ∑

i>n g(xi ) = +∞ ∀n; so, by
(14), the implication in Item 3 of Proposition 4 becomes the equivalence (15). Under
the assumption that � is non-strict, θ(x) > 0 ∀x ∈ J and

∏+∞
i=1 θ(xi ) = 0 ⇔∏

i>n θ(xi ) = 0 ∀n. So (16) follows by (14) and item 6 of Proposition 4.
The assertions related to a strict t-conorm and a strict t-norm follow by the equalities

g(1) = +∞, θ(0) = 0 and items 2 and 5 in Proposition 4. ��

Corollary 2 Let ⊥ and � be strict and archimedean.

1. if (xi )i∈N is a sequence of elements of [0, 1[, then

⊥+∞
i=1 xi = 1 ⇔ ⊥+∞

i=1 xi ≡ 1. (19)

2. if (xi )i∈N is a sequence of elements of ]0, 1], then

�+∞
i=1 xi = 0 ⇔ �+∞

i=1 xi ≡ 0. (20)

Proof Let us prove item 1. As xi �= 1 ∀i ∈ N , we get g(xi ) �= +∞ ∀i ∈ N and∑+∞
i=1 g(xi ) = +∞ ⇔ ∑+∞

i>n g(xi ) = +∞ ∀n. Therefore, by Eq. 17, we get (19).
Item 2 is proved by an analogous reasoning. ��

Proposition 5 Let ⊥ be a non-strict archimedean t-conorm and g one of its additive
generators.

Then 0′ = 1, 1′ = 0, (x ′)′ = x, and

x ′ = g−1(g(1) − g(x)) = g−1(1 − g(x)). (21)

As a consequence x⊥x ′ = 1 for each x ∈ J . If ⊥ is strict, then x ′ = 1 for every
x ∈ [0, 1[ and 1′ = 0.

Proof For the statement related to the case ⊥ non-strict (see Weber 1984). For the
statement related to the case ⊥ strict, it is enough to stress that g(x) < g(1) = +∞
for x ∈ [0, 1[ and x⊥y = g−1(g(x) + g(y)) = 1, if and only if g(x) + g(y) =
+∞. ��

Proposition 6 Let ⊥ be a non-strict archimedean t-conorm. Then, for a and b in J it
results:

(a⊥b)′ ≤ min{a′, b′} ≤ a′⊥b′. (22)

Proof By the associative property of ⊥, by Proposition 5 and (3), a′⊥(a⊥b) =
(a′⊥a)⊥b = 1, b′⊥(a⊥b) = a⊥(b⊥b′) = 1. So the assertion follows by (1)
and the monotonicity of ⊥. ��
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Independence and convergence in non-additive settings 37

2.2 ⊥-decomposable measures

Definition 3 The set function m is:

1. a ⊥-decomposable measure if and only if m(A ∪ B) = m(A)⊥m(B), for each pair
(A, B) of disjoint sets (Weber 1984);

2. a σ -⊥-decomposable measure if and only if m(
⋃

k∈N Ak) = ⊥+∞
k=1m(Ak), for each

sequence (Ak)k∈N of disjoint sets (Weber 1984);
3. continuous from below or above resp. if and only if, for a monotone sequence of

sets,
(

Ak
)

k∈N, it results limk m(Ak) = m(A) for Ak ↑ A or Ak ↓ A resp.

(Weber 1984);
4. a ⊥-subdecomposable measure if and only if m(A ∪ B) ≤ m(A)⊥m(B);
5. a σ -⊥-subdecomposable measure if and only if m(

⋃
k∈N Ak) ≤ ⊥+∞

k=1m(Ak).

Theorem 3 (Weber 1984)

(i) m is a ⊥-decomposable measure ⇒ m is monotone;
(ii) m is a ⊥-decomposable measure ⇔ m(A ∪ B)⊥m(A ∩ B) = m(A)⊥m(B);

(iii) m is a σ -⊥-decomposable measure ⇔ m is ⊥-decomposable and continuous
from below.

Corollary 3
(j) m is a ⊥-decomposable measure ⇒ m is ⊥-subdecomposable;

(jj) m is a σ -⊥-decomposable measure ⇒ m is σ -⊥-subdecomposable.

Proof The assertion (j) follows by implication (ii) of Theorem 3 and by monotonicity
of ⊥, for which m(A ∪ B)⊥0 ≤ m(A ∪ B)⊥m(A ∩ B). In order to prove the implica-
tion (jj) let us assume that

(
Ak

)
k∈N is a sequence of measurable subsets and denote,

for every k, with Bk the set Ak − ⋃k−1
i=1 Ai . Then (Bk)k∈N is a sequence of disjoint

sets and m(
⋃

k∈N Ak) = m(
⋃

k∈N Bk) = ⊥+∞
k=1m(Bk); so the assertion (jj) follows by

(iii) and (i) in Theorem 3. ��
The following proposition will be useful in reaching the results of the last section.

Proposition 7 Let m be a ⊥-decomposable measure and A ∈ A. Then

m(Ac) = 0 ⇒ m(A) = 1. (23)

Moreover, if ⊥ is archimedean, then:

1. ⊥ non-strict ⇒ m(Ac) = (m(A))′;
2. ⊥ strict and m(A) �= 1 ⇒ m(Ac) = (m(A))′ = 1.

Proof By the ⊥-decomposability

m(A)⊥m(Ac) = m(A ∪ Ac) = 1, (24)

so (23) because 0 is the unit of ⊥. The item 1 follows by (21), and the equality
g(m(X − A)) = 1 − g(m(A)). The item 2 follows by Proposition 5, ensuring that
m(A)′ = 1, by (24) and (1), for which m(Ac) ≥ m(A)′. ��
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Definition 4 (Sugeno 1974) The set function m is a λ-additive fuzzy measure if and
only if it is continuous from below or above and:

A, B ∈ A, A ∩ B = ∅ ⇒ m(A ∩ B) = m(A) + m(B) + λm(A)m(B).

In the sequel mλ will denote a λ-additive fuzzy measure.

Remark 2 Let mλ be a λ-additive fuzzy measure, with λ > −1. Then mλ is decom-
posable respect to the t-conorm Uλ in the Example 2.

3 First Borel–Cantelli lemma

In this section we assume that ⊥ is an archimedean t-conorm.

Proposition 8 Let m be a non-decreasing σ -⊥-subdecomposable measure,
(

Ak
)

k∈N
a sequence of measurable events and

A = lim sup Ak =
⋂

n≥1

⋃

k≥n

Ak . (25)

Then

⊥+∞
k=1m(Ak) < 1 ⇒ m(A) = 0. (26)

Proof By the monotonicity and the σ -⊥-subdecomposibilty of m, we get:

m(A) ≤ m

⎛

⎝
⋃

k≥n

Ak

⎞

⎠ ≤ ⊥k≥nm(Ak) ∀n.

As a consequence m(A) ≤ limn ⊥k≥nm(Ak) and the claim follows by
Proposition 3. ��
Theorem 4 (1st Borel–Cantelli like Lemma) Let m be a σ -⊥-decomposable measure,(

Ak
)

k∈N a sequence of events and A the event (25). Then the implication (26) holds.

Proof By Theorem 3 and Corollary 3 m is monotone and σ - ⊥- subdecomposable;
then, by Proposition 8, the assertion is achieved. ��

4 The strict product t-norm associated to a non-strict
archimedean t-conorm

From now on we will assume that ⊥ is a non-strict archimedean t-conorm, g is one of
its additive generators and g its normed additive generator.

Then, for (x, y) ∈ J × J

g−1
(g(x)g(y)

g(1)

)
= ḡ−1(ḡ(x)) · ḡ(y)).
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Independence and convergence in non-additive settings 39

So the binary operation • over J defined by

x • y = ḡ−1(ḡ(x)) · ḡ(y)) (27)

can be built starting from each additive generator of ⊥.

Proposition 9 The operation • is a strictly archimedean t-norm and ḡ is its multipli-
cative generator.

Proof By Theorem 2 it is enough to observe that ḡ : [0, 1] → [0, 1] is a continuous,
strictly increasing function and ḡ(1) = 1, ḡ(0) = 0. ��
Definition 5 The operation • in (27) is called the product norm associated to ⊥.

The equalities in (5), (6) and (8) can be written, for � = •, as follows:

•n
i=1xi = (•n−1

i=1 xi ) • xn, •+∞
i=1 xi = limn •n

i=1 xi , Qn = •i>n xi = •+∞
i=n+1xi .

Example 5 Let ⊥ coincide with Uλ(a, b) = min(a + b − λab, 1). Then gλ(x) =
log1+λ(1 + λx) is its normed generator and the product t-norm • associated to Uλ is:

a • b = (1 + λa)log1+λ(1+λb) − 1

λ
.

Proposition 10 The product norm (27) verifies the following conditions:

1. a • b = 0 if and only if either a = 0 or b = 0;
2. if a ∈]0, 1[ then a • b = a ⇔ b = 1;
3. a • (b⊥c) = (a • b)⊥(a • c) whenever b⊥c < 1 (conditional distributivity).

Proof The assertion in item 1 follows by the 2nd equality of (3) and by the strict
monotonicity of •. The assertion in item 2 follows by Proposition 2. To prove item 3
let us assume b⊥c < 1; then, by Theorem 1 and definition of ḡ, we get ḡ(b)+ ḡ(c) < 1
and

a • (b⊥c) = ḡ−1(ḡ(a) · ḡ(b⊥c)
) = ḡ−1(ḡ(a) · (ḡ(b) + ḡ(c)

) =
= ḡ−1(ḡ(a) · ḡ(b) + ḡ(a) · ḡ(c)

) = (a • b)⊥(a • c).

��
By the previous proposition, (J , ⊥, •) is a conditionally distributive semiring.

Lemma 1 For h, n ∈ N ∪ {+∞}, n > h,

(⊥n
i=h xi )

′ ≤ •n
i=h x ′

i ≤ ⊥n
i=h x ′

i . (28)

Proof It is enough to prove the first inequality in (28), because the second inequality
follows immediately from the inequalities (4). First we prove that

x ′ • y′ ≥ (x⊥y)′ ∀x, y ∈ J. (29)
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The inequality (29) is trivial if x⊥y = 1 because (x⊥y)′ = 0; in the case x⊥y < 1,
by Theorem 1 and Proposition 5, we get ḡ(x) + ḡ(y) < 1 and

ḡ(x ′) · ḡ(y′) = 1 − ḡ(x) − ḡ(y) + ḡ(x) · ḡ(y);

so

(x ′ • y′)⊥(x⊥y)=ḡ(−1)
(
ḡ(x ′) · ḡ(y′) + ḡ(x) + ḡ(y)

)=ḡ(−1)
(
1 + ḡ(x) · ḡ(y)

) = 1.

Then, by (1), (29) is proved and, as a consequence, the inequality (28) is achieved
for n = h + 1.

Assume now that (28) is verified for k ≥ h + 1. Then by (29) and the assumed
inequality •k

i=h x ′
i ≥ (⊥k

i=h xi )
′ we get

•k+1
i=h x ′

i = (•k
i=h x ′

i ) • x ′
k+1 ≥ (⊥k

i=h xi )
′ • x ′

k+1 ≥ (⊥k+1
i=h xi )

′.

Hence the (28) is proved by induction for each n ≥ h + 1; by the continuity of •,
(28) holds also for n = +∞. ��
Theorem 5 The following assertions are equivalent:

1. ⊥+∞
i=1 xi ≡ 1;

2. •+∞
i=1 x ′

i ≡ 0.

Proof 1. ⇒ 2. By the definition of strong equality in item 1 and Corollary 1,
�i>n ḡ(xi ) = +∞ ∀n ≥ 1. Then, by the inequality “(1 − x) ≤ e−x ” holding
for each x ≥ 0, we get, for each n ≥ 1:

0 ≤ •i>n x ′
i = g−1

(
∏

i>n

(1 − g(xi ))

)

≤ g−1

(
∏

i>n

e−g(xi )

)

= g−1(e−∑
i>n g(xi )) = 0

2. ⇐ 1. By the first inequality in Lemma 1 and Proposition 5. ��

5 m⊥-independent events and second Borel–Cantelli lemma

In this section we assume that m is a σ -⊥-decomposable measure with respect to a
non-strict archimedean t-conorm ⊥.

Definition 6 If A, B ∈ A, then we say that A and B are m⊥-independent if and only
if

m(A ∩ B) = m(A) • m(B).

If T = {A1, A2, ...An} is a finite collection of measurable sets, then we say that T
is m⊥-independent if and only if

m(A1 ∩ · · · ∩ An) = m(A1) • · · · • m(An).
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An infinite collection of measurable sets is m⊥-independent if and only if each of
its finite subcollections is.

Proposition 11 A, B ∈ A are m⊥-independent if and only if they are independent
respect to the normed measure ḡ ◦ m, that is

ḡ
(
m(A ∩ B)

) = ḡ(m(A))ḡ(m(B)). (30)

Proof By definition of the product norm •. ��
Kruse (1987) defines the concept of independence of two events with respect to a

λ-additive fuzzy measure mλ, λ > −1, as follows:

Definition 7 A and B are mλ-independent if and only if

log1+λ(1 + λmλ(A ∩ B)) = log1+λ(1 + λmλ(A)) log1+λ(1 + λmλ(B)).

This definition has been extended by Qiang (1995) to a finite or infinite collection
of events as we have done in Definition 6. By Proposition 11 our concept of m⊥-
independence generalizes the concept of mλ-independence given in Kruse (1987) and
Qiang (1995), because mλ is a decomposable measure with respect to the t-conorm
Uλ(a, b) = min(a+b−λab, 1) that has g(x) = log1+λ(1+λx) as normed generator.

Proposition 12 Let (Ak)k∈N be a set of m⊥-independent events. Then (Ac
k)k∈N is a

set of m⊥- independent events.

Proof By Proposition 11. ��
Theorem 6 (2nd Borel–Cantelli like Lemma) Let (Ak)k∈N be a m⊥-independent
sequence of events and A = lim sup Ak. Then:

⊥+∞
k=1m(Ak) ≡ 1 ⇒ m(A) = 1.

Proof Because of the Proposition 7, it is enough to show that m(Ac) = 0. Let us
observe that

m(Ac) = m

⎛

⎝
⋃

n≥1

⋂

k≥n

Ac
k

⎞

⎠ = lim
n

m

⎛

⎝
⋂

k≥n

Ac
k

⎞

⎠ .

Furthermore, by Propositions 12 and Proposition 7, we get

m

⎛

⎝
⋂

k≥n

Ac
k

⎞

⎠ = •+∞
k=nm(Ac

k) = •+∞
k≥nm(Ak)

′.

Hence the assertion follows by Theorem 5. ��
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6 Conclusions and future works

We have introduced a concept of strict product norm • associated to a non-strict
archimedean t-conorm ⊥ over the interval [0, 1] and given a notion of independence
in the setting of general ⊥-decomposable measures. Our concept of independence
generalizes the concept of mλ-independence introduced by Kruse (1987) and Qiang
(1995). In the context of the λ-additive fuzzy measures, Qiang has stated theorems
that correspond to those of the classical probability theory such as Borel–Cantelli
lemmas; we prove the correspondent theorems for the more general context of the
m⊥-decomposable measures.
In order to continue our analysis we plan to handle with the following problems:

– to look for other convergence properties more general than the properties stated in
the present paper, see for instance (Petrov 2004);

– to consider the previous problems in a general algebraic structure (not necessarily a
real interval) in order to generally characterize the operations suitable for the above
properties.
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