2,354 research outputs found
Electron-electron interaction and charging effects in graphene quantum dots
We analyze charging effects in graphene quantum dots. Using a simple model,
we show that, when the Fermi level is far from the neutrality point, charging
effects lead to a shift in the electrostatic potential and the dot shows
standard Coulomb blockade features. Near the neutrality point, surface states
are partially occupied and the Coulomb interaction leads to a strongly
correlated ground state which can be approximated by either a Wigner crystal or
a Laughlin like wave function. The existence of strong correlations modify the
transport properties which show non equilibrium effects, similar to those
predicted for tunneling into other strongly correlated systems.Comment: Extended version accepted for publication at Phys. Rev.
Inflaton Decay in an Alpha Vacuum
We study the alpha vacua of de Sitter space by considering the decay rate of
the inflaton field coupled to a scalar field placed in an alpha vacuum. We find
an {\em alpha dependent} Bose enhancement relative to the Bunch-Davies vacuum
and, surprisingly, no non-renormalizable divergences. We also consider a
modified alpha dependent time ordering prescription for the Feynman propagator
and show that it leads to an alpha independent result. This result suggests
that it may be possible to calculate in any alpha vacuum if we employ the
appropriate causality preserving prescription.Comment: 16 pages, 1 figure, Revtex 4 preprin
Vacuum polarization near cosmic string in RS2 brane world
Gravitational field of cosmic strings in theories with extra spatial
dimensions must differ significantly from that in the Einstein's theory. This
means that all gravity induced properties of cosmic strings need to be revised
too. Here we consider the effect of vacuum polarization outside a straight
infinitely thin cosmic string embedded in a RS2 brane world. Perturbation
technique combined with the method of dimensional regularization is used to
calculate for a massless scalar field.Comment: 8 pages, RevTeX
Energy-Momentum Tensor of Particles Created in an Expanding Universe
We present a general formulation of the time-dependent initial value problem
for a quantum scalar field of arbitrary mass and curvature coupling in a FRW
cosmological model. We introduce an adiabatic number basis which has the virtue
that the divergent parts of the quantum expectation value of the
energy-momentum tensor are isolated in the vacuum piece of , and
may be removed using adiabatic subtraction. The resulting renormalized
is conserved, independent of the cutoff, and has a physically transparent,
quasiclassical form in terms of the average number of created adiabatic
`particles'. By analyzing the evolution of the adiabatic particle number in de
Sitter spacetime we exhibit the time structure of the particle creation
process, which can be understood in terms of the time at which different
momentum scales enter the horizon. A numerical scheme to compute as a
function of time with arbitrary adiabatic initial states (not necessarily de
Sitter invariant) is described. For minimally coupled, massless fields, at late
times the renormalized goes asymptotically to the de Sitter invariant
state previously found by Allen and Folacci, and not to the zero mass limit of
the Bunch-Davies vacuum. If the mass m and the curvature coupling xi differ
from zero, but satisfy m^2+xi R=0, the energy density and pressure of the
scalar field grow linearly in cosmic time demonstrating that, at least in this
case, backreaction effects become significant and cannot be neglected in de
Sitter spacetime.Comment: 28 pages, Revtex, 11 embedded .ps figure
Cosmic Dust Collection Facility: Scientific objectives and programmatic relations
The science objectives are summarized for the Cosmic Dust Collection Facility (CDCF) on Space Station Freedom and these objectives are related to ongoing science programs and mission planning within NASA. The purpose is to illustrate the potential of the CDCF project within the broad context of early solar system sciences that emphasize the study of primitive objects in state-of-the-art analytical and experimental laboratories on Earth. Current knowledge about the sources of cosmic dust and their associated orbital dynamics is examined, and the results are reviewed of modern microanalytical investigations of extraterrestrial dust particles collected on Earth. Major areas of scientific inquiry and uncertainty are identified and it is shown how CDCF will contribute to their solution. General facility and instrument concepts that need to be pursued are introduced, and the major development tasks that are needed to attain the scientific objectives of the CDCF project are identified
Adiabatic renormalization in theories with modified dispersion relations
We generalize the adiabatic renormalization to theories with dispersion
relations modified at energies higher than a new scale . We obtain
explicit expressions for the mean value of the stress tensor in the adiabatic
vacuum, up to the second adiabatic order. We show that for any dispersion
relation the divergences can be absorbed into the bare gravitational constants
of the theory. We also point out that, depending on the renormalization
prescription, the renormalized stress tensor may contain finite trans-Planckian
corrections even in the limit .Comment: Typos corrected; to appear in the Proceedings of IRGAC 06, Journal of
Physics
Self Similar Solutions of the Evolution Equation of a Scalar Field in an Expanding Geometry
We consider the functional Schrodinger equation for a self interacting scalar
field in an expanding geometry. By performing a time dependent scale
transformation on the argument of the field we derive a functional Schrodinger
equation whose hamiltonian is time independent but involves a time-odd term
associated to a constraint on the expansion current. We study the mean field
approximation to this equation and generalize in this case, for interacting
fields, the solutions worked out by Bunch and Davies for free fields.Comment: 8 pages, Latex, IPNO/TH 94-3
Energy Density in Expanding Universes as Seen by Unruh's Detector
We consider the response of an Unruh detector to scalar fields in an
expanding space-time. When combining transition elements of the scalar field
Hamiltonian with the interaction operator of detector and field, one finds at
second order in time-dependent perturbation theory a transition amplitude,
which actually dominates in the ultraviolet over the first order contribution.
In particular, the detector response faithfully reproduces the particle number
implied by the stress-energy of a minimally coupled scalar field, which is
inversely proportional to the energy of a scalar mode. This finding disagrees
with the contention that in de Sitter space, the response of the detector drops
exponentially with particle energy and therefore indicates a thermal spectrum.Comment: 15 pages, 1 figur
Imaging analysis of LDEF craters
Two small craters in Al from the Long Duration Exposure Facility (LDEF) experiment tray A11E00F (no. 74, 119 micron diameter and no. 31, 158 micron diameter) were analyzed using Auger electron spectroscopy (AES), time-of-flight secondary ion mass spectroscopy (TOF-SIMS), low voltage scanning electron microscopy (LVSEM), and SEM energy dispersive spectroscopy (EDS). High resolution images and sensitive elemental and molecular analysis were obtained with this combined approach. The result of these analyses are presented
Quantum Fields in an Expanding Universe
We extend our analysis for scalar fields in a Robertson-Walker metric to the
electromagnetic field and Dirac fields by the method of invariants. The issue
of the relation between conformal properties and particle production is
re-examined and it is verified that the electromagnetic and massless spinor
actions are conformal invariant, while the massless conformally coupled scalar
field is not. For the scalar field case it is pointed out that the violation of
conformal simmetry due to surface terms, although ininfluential for the
equation of motion, does lead to effects in the quantized theory.Comment: 15 pp, no figures, accepted for publication in Class. Quantum Gra
- …
