4,188 research outputs found

    Self-gravitating system made of axions

    Full text link
    We show that the inclusion of an axion-like effective potential in the construction of a self-gravitating system made of scalar fields leads to a decrease on its compactness when the value of the self-interaction coupling constant is increased. By including the current values for the axion mass m and decay constant f_a, we have computed the mass and the radius for self-gravitating systems made of axion particles. It is found that such objects will have asteroid-size masses and radius of few meters, then, the self-gravitating system made of axions could play the role of scalar mini-machos that are mimicking a cold dark matter model for the galactic halo.Comment: 5 pages, 3 figures. References added. Accepted for publication in Physical Review

    K-Rb Fermi-Bose mixtures: vortical states and sag

    Get PDF
    We study a confined mixture of bosons and fermions in the quantal degeneracy regime with attractive boson-fermion interaction. We discuss the effect that the presence of vortical states and the displacement of the trapping potentials may have on mixtures near collapse, and investigate the phase stability diagram of the K-Rb mixture in the mean field approximation supposing in one case that the trapping potentials felt by bosons and fermions are shifted from each other, as it happens in the presence of a gravitational sag, and in another case, assuming that the Bose condensate sustains a vortex state. In both cases, we have obtained an analytical expression for the fermion effective potential when the Bose condensate is in the Thomas-Fermi regime, that can be used to determine the maxima of the fermionic density. We have numerically checked that the values one obtains for the location of these maxima using the analytical formulas remain valid up to the critical boson and fermion numbers, above which the mixture collapses.Comment: Submitted to Phys. Rev. A (on May 2004), 15 pages with 3 figure

    Transfer of coherence from atoms to mixed field states in a two-photon lossless micromaser

    Full text link
    We propose a two-photon micromaser-based scheme for the generation of a nonclassical state from a mixed state. We conclude that a faster, as well as a higher degree of field purity is achieved in comparison to one-photon processes. We investigate the statistical properties of the resulting field states, for initial thermal and (phase-diffused) coherent states. Quasiprobabilities are employed to characterize the state of the generated fields.Comment: 20 pages, 8 figures, to appear in Journal of Modern Optic

    Diffuse neutrino supernova background as a cosmological test

    Full text link
    The future detection and measurement of the diffuse neutrino supernova background will shed light on the rate of supernovae events in the Universe, the star formation rate and the neutrino spectrum from each supernova. Little has been said about what those measurements will tell us about the expansion history of the universe. The purpose of this article is to show that the detection of the diffuse supernova neutrino background will be a complementary tool for the study and possible discrimination of cosmological models. In particular, we study three different cosmological models: the Λ\Lambda Cold Dark Matter model, the Logotropic universe and a bulk viscous matter-dominated universe. By fitting the free parameters of each model with the supernova Ia probe, we found that the predicted number of events computed with the best fit parameters for the Λ\Lambda-Cold dark matter model and with the Logotropic model are the same, while a bulk viscous matter-dominated cosmological model predicts 3\sim 3 times more events. We show that the current limit set by Super-Kamiokande on the diffuse supernova neutrino background flux gives complementary constraints on the free parameters of a bulk viscous matter-dominated universe. Furthermore, this limit implies, within a Λ\Lambda Cold Dark Matter model, that the universe should be expanding with H0>21.5 Km/sec/MpcH_0 > 21.5 ~\rm{Km/sec/Mpc} independently of the content of dark matter Ωm\Omega_m.Comment: 19 pages, 8 figure

    Nucleation in dilute 3He-4He liquid mixtures at low temperatures

    Full text link
    We present a study of phase separation from supersaturated 3He-4He liquid mixtures at low temperatures addressing both the degree of critical supersaturation Dx and the thermal-to-quantum crossover temperature T* for the nucleation process. Two different nucleation seeds are investigated, namely 3He droplets and 4He vortex lines with cores filled with 3He. We have found that the experimental T* is reproduced when we consider that nucleation proceeds from 3He droplets, whereas Dx is reproduced when we consider 4He vortex lines filled with 3He. However, neither nucleation configuration is able to simultaneously reproduce the current experimental information on Dx and T*.Comment: To appear in J. of Low Temp. Physic

    Spin-orbit effects on the Larmor dispersion relation in GaAs quantum wells

    Get PDF
    We have studied the relevance of spin-orbit coupling to the dispersion 00009 relation of the Larmor resonance observed in inelastic light scattering and electron-spin resonance experiments on GaAs quantum wells. We show that the spin-orbit interaction, here described by a sum of Dresselhaus and Bychkov-Rashba terms, couples Zeeman and spin-density excitations. We have evaluated its contribution to the spin splitting as a function of the magnetic field BB, and have found that in the small BB limit, the spin-orbit interaction does not contribute to the spin splitting, whereas at high magnetic fields it yields a BB independent contribution to the spin splitting given by 2(λR2λD2)2(\lambda_R^2-\lambda_D^2), with λR,D\lambda_{R,D} being the intensity of the Bychkov-Rashba and Dresselhaus spin-orbit terms.Comment: To be published in Physical Review

    Dressed-State Approach to Population Trapping in the Jaynes-Cummings Model

    Get PDF
    The phenomenon of atomic population trapping in the Jaynes-Cummings Model is analysed from a dressed-state point of view. A general condition for the occurrence of partial or total trapping from an arbitrary, pure initial atom-field state is obtained in the form of a bound to the variation of the atomic inversion. More generally, it is found that in the presence of initial atomic or atom-field coherence the population dynamics is governed not by the field's initial photon distribution, but by a `weighted dressedness' distribution characterising the joint atom-field state. In particular, individual revivals in the inversion can be analytically described to good approximation in terms of that distribution, even in the limit of large population trapping. This result is obtained through a generalisation of the Poisson Summation Formula method for analytical description of revivals developed by Fleischhauer and Schleich [Phys. Rev. A {\bf 47}, 4258 (1993)].Comment: 24 pages, 5 figures, to appear in J. Mod. Op
    corecore