1,148 research outputs found

    The upper-atmosphere extension of the ICON general circulation model (version: Ua-icon-1.0)

    Get PDF
    How the upper-atmosphere branch of the circulation contributes to and interacts with the circulation of the middle and lower atmosphere is a research area with many open questions. Inertia-gravity waves, for instance, have moved in the focus of research as they are suspected to be key features in driving and shaping the circulation. Numerical atmospheric models are an important pillar for this research. We use the ICOsahedral Non-hydrostatic (ICON) general circulation model, which is a joint development of the Max Planck Institute for Meteorology (MPI-M) and the German Weather Service (DWD), and provides, e.g., local mass conservation, a flexible grid nesting option, and a non-hydrostatic dynamical core formulated on an icosahedral-triangular grid. We extended ICON to the upper atmosphere and present here the two main components of this new configuration named UA-ICON: an extension of the dynamical core from shallow- to deep-atmosphere dynamics and the implementation of an upper-atmosphere physics package. A series of idealized test cases and climatological simulations is performed in order to evaluate the upper-atmosphere extension of ICON. © Author(s) 2019

    Evidence for Quadratic Tidal Tensor Bias from the Halo Bispectrum

    Full text link
    The relation between the clustering properties of luminous matter in the form of galaxies and the underlying dark matter distribution is of fundamental importance for the interpretation of ongoing and upcoming galaxy surveys. The so called local bias model, where galaxy density is a function of local matter density, is frequently discussed as a means to infer the matter power spectrum or correlation function from the measured galaxy correlation. However, gravitational evolution generates a term quadratic in the tidal tensor and thus non-local in the density field, even if this term is absent in the initial conditions (Lagrangian space). Because the term is quadratic, it contributes as a loop correction to the power spectrum, so the standard linear bias picture still applies on large scales, however, it contributes at leading order to the bispectrum for which it is significant on all scales. Such a term could also be present in Lagrangian space if halo formation were influenced by the tidal field. We measure the corresponding coupling strengths from the matter-matter-halo bispectrum in numerical simulations and find a non-vanishing coefficient for the tidal tensor term. We find no scale dependence of the bias parameters up to k=0.1 h/Mpc and that the tidal effect is increasing with halo mass. While the Lagrangian bias picture is a better description of our results than the Eulerian bias picture, our results suggest that there might be a tidal tensor bias already in the initial conditions. We also find that the coefficients of the quadratic density term deviate quite strongly from the theoretical predictions based on the spherical collapse model and a universal mass function. Both quadratic density and tidal tensor bias terms must be included in the modeling of galaxy clustering of current and future surveys if one wants to achieve the high precision cosmology promise of these datasets.Comment: 14 pages, 4 figures, 1 tabl

    Context-aware and automatic configuration of mobile devices in cloud-enabled ubiquitous computing

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s00779-013-0698-3. Copyright @ Springer-Verlag London 2013.Context-sensitive (or aware) applications have, in recent years, moved from the realm of possibilities to that of ubiquity. One exciting research area that is still very much in the realm of possibilities is that of cloud computing, and in this paper, we present our work, which explores the overlap of these two research areas. Accordingly, this paper explores the notion of cross-source integration of cloud-based, context-aware information in ubiquitous computing through a developed prototypical solution. Moreover, the described solution incorporates remote and automatic configuration of Android smartphones and advances the research area of context-aware information by harvesting information from several sources to build a rich foundation on which algorithms for context-aware computation can be based. Evaluation results show the viability of integrating and tailoring contextual information to provide users with timely, relevant and adapted application behaviour and content

    Systemic risk approach to mitigate delay cascading in railway networks

    Full text link
    In public railway systems, minor disruptions can trigger cascading events that lead to delays in the entire system. Typically, delays originate and propagate because the equipment is blocking ways, operational units are unavailable, or at the wrong place at the needed time. The specific understanding of the origins and processes involved in delay-spreading is still a challenge, even though large-scale simulations of national railway systems are becoming available on a highly detailed scale. Without this understanding, efficient management of delay propagation, a growing concern in some Western countries, will remain impossible. Here, we present a systemic risk-based approach to manage daily delay cascading on national scales. We compute the {\em systemic impact} of every train as the maximum of all delays it could possibly cause due to its interactions with other trains, infrastructure, and operational units. To compute it, we design an effective impact network where nodes are train services and links represent interactions that could cause delays. Our results are not only consistent with highly detailed and computationally intensive agent-based railway simulations but also allow us to pinpoint and identify the causes of delay cascades in detail. The systemic approach reveals structural weaknesses in railway systems whenever shared resources are involved. We use the systemic impact to optimally allocate additional shared resources to the system to reduce delays with minimal costs and effort. The method offers a practical and intuitive solution for delay management by optimizing the effective impact network through the introduction of new cheap local train services.Comment: 27 pages, 14 figure

    An algorithm for the direct reconstruction of the dark matter correlation function from weak lensing and galaxy clustering

    Full text link
    The clustering of matter on cosmological scales is an essential probe for studying the physical origin and composition of our Universe. To date, most of the direct studies have focused on shear-shear weak lensing correlations, but it is also possible to extract the dark matter clustering by combining galaxy-clustering and galaxy-galaxy-lensing measurements. In this study we develop a method that can constrain the dark matter correlation function from galaxy clustering and galaxy-galaxy-lensing measurements, by focusing on the correlation coefficient between the galaxy and matter overdensity fields. To generate a mock galaxy catalogue for testing purposes, we use the Halo Occupation Distribution approach applied to a large ensemble of N-body simulations to model pre-existing SDSS Luminous Red Galaxy sample observations. Using this mock catalogue, we show that a direct comparison between the excess surface mass density measured by lensing and its corresponding galaxy clustering quantity is not optimal. We develop a new statistic that suppresses the small-scale contributions to these observations and show that this new statistic leads to a cross-correlation coefficient that is within a few percent of unity down to 5 Mpc/h. Furthermore, the residual incoherence between the galaxy and matter fields can be explained using a theoretical model for scale-dependent bias, giving us a final estimator that is unbiased to within 1%. We also perform a comprehensive study of other physical effects that can affect the analysis, such as redshift space distortions and differences in radial windows between galaxy clustering and weak lensing observations. We apply the method to a range of cosmological models and show the viability of our new statistic to distinguish between cosmological models.Comment: 23 pages, 14 figures, accepted by PRD; minor changes to V1, 1 new figure, more detailed discussion of the covariance of the new ADSD statisti

    Beyond the plane-parallel and Newtonian approach: Wide-angle redshift distortions and convergence in general relativity

    Get PDF
    We extend previous analyses of wide-angle correlations in the galaxy power spectrum in redshift space to include all general relativistic effects. These general relativistic corrections to the standard approach become important on large scales and at high redshifts, and they lead to new terms in the wide-angle correlations. We show that in principle the new terms can produce corrections of nearly 10 % on Gpc scales over the usual Newtonian approximation. General relativistic corrections will be important for future large-volume surveys such as SKA and Euclid, although the problem of cosmic variance will present a challenge in observing this.Comment: 14 pages, 5 figures; Typo in equation 5 corrected; results unaffecte

    Density reconstruction from biased tracers and its application to primordial non-Gaussianity

    Get PDF
    Large-scale Fourier modes of the cosmic density field are of great value for learning about cosmology because of their well-understood relationship to fluctuations in the early universe. However, cosmic variance generally limits the statistical precision that can be achieved when constraining model parameters using these modes as measured in galaxy surveys, and moreover, these modes are sometimes inaccessible due to observational systematics or foregrounds. For some applications, both limitations can be circumvented by reconstructing large-scale modes using the correlations they induce between smaller-scale modes of an observed tracer (such as galaxy positions). In this paper, we further develop a formalism for this reconstruction, using a quadratic estimator similar to the one used for lensing of the cosmic microwave background. We incorporate nonlinearities from gravity, nonlinear biasing, and local-type primordial non-Gaussianity, and verify that the estimator gives the expected results when applied to N-body simulations. We then carry out forecasts for several upcoming surveys, demonstrating that, when reconstructed modes are included alongside directly-observed tracer density modes, constraints on local primordial non-Gaussianity are generically tightened by tens of percents compared to standard single-tracer analyses. In certain cases, these improvements arise from cosmic variance cancellation, with reconstructed modes taking the place of modes of a separate tracer, thus enabling an effective "multitracer" approach with single-tracer observations.Comment: 30 pages plus 14 pages appendices, 19 figure

    Primordial non-Gaussianity in the Bispectrum of the Halo Density Field

    Full text link
    The bispectrum vanishes for linear Gaussian fields and is thus a sensitive probe of non-linearities and non-Gaussianities in the cosmic density field. Hence, a detection of the bispectrum in the halo density field would enable tight constraints on non-Gaussian processes in the early Universe and allow inference of the dynamics driving inflation. We present a tree level derivation of the halo bispectrum arising from non-linear clustering, non-linear biasing and primordial non-Gaussianity. A diagrammatic description is developed to provide an intuitive understanding of the contributing terms and their dependence on scale, shape and the non-Gaussianity parameter fNL. We compute the terms based on a multivariate bias expansion and the peak-background split method and show that non-Gaussian modifications to the bias parameters lead to amplifications of the tree level bispectrum that were ignored in previous studies. Our results are in a good agreement with published simulation measurements of the halo bispectrum. Finally, we estimate the expected signal to noise on fNL and show that the constraint obtainable from the bispectrum analysis significantly exceeds the one obtainable from the power spectrum analysis.Comment: 34 pages, 15 figures, (v3): matches JCAP published versio

    Savor the Cryosphere

    Get PDF
    This article provides concise documentation of the ongoing retreat of glaciers, along with the implications that the ice loss presents, as well as suggestions for geoscience educators to better convey this story to both students and citizens. We present the retreat of glaciers—the loss of ice—as emblematic of the recent, rapid contraction of the cryosphere. Satellites are useful for assessing the loss of ice across regions with the passage of time. Ground-based glaciology, particularly through the study of ice cores, can record the history of environmental conditions present during the existence of a glacier. Repeat photography vividly displays the rapid retreat of glaciers that is characteristic across the planet. This loss of ice has implications to rising sea level, greater susceptibility to dryness in places where people rely upon rivers delivering melt water resources, and to the destruction of natural environmental archives that were held within the ice. Warming of the atmosphere due to rising concentrations of greenhouse gases released by the combustion of fossil fuels is causing this retreat. We highlight multimedia productions that are useful for teaching this story effectively. As geoscience educators, we attempt to present the best scholarship as accurately and eloquently as we can, to address the core challenge of conveying the magnitude of anthropogenic impacts, while also encouraging optimistic determination on the part of students, coupled to an increasingly informed citizenry. We assert that understanding human perturbation of nature, then choosing to engage in thoughtful science-based decision-making, is a wise choice. This topic comprised “Savor the Cryosphere,” a Pardee Keynote Symposium at the 2015 Annual Meeting in Baltimore, Maryland, USA, for which the GSA recorded supporting interviews and a webinar

    Anomalous Dimensions and Non-Gaussianity

    Full text link
    We analyze the signatures of inflationary models that are coupled to strongly interacting field theories, a basic class of multifield models also motivated by their role in providing dynamically small scales. Near the squeezed limit of the bispectrum, we find a simple scaling behavior determined by operator dimensions, which are constrained by the appropriate unitarity bounds. Specifically, we analyze two simple and calculable classes of examples: conformal field theories (CFTs), and large-N CFTs deformed by relevant time-dependent double-trace operators. Together these two classes of examples exhibit a wide range of scalings and shapes of the bispectrum, including nearly equilateral, orthogonal and local non-Gaussianity in different regimes. Along the way, we compare and contrast the shape and amplitude with previous results on weakly coupled fields coupled to inflation. This signature provides a precision test for strongly coupled sectors coupled to inflation via irrelevant operators suppressed by a high mass scale up to 1000 times the inflationary Hubble scale.Comment: 40 pages, 10 figure
    • …
    corecore