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We extend previous analyses of wide-angle correlations in the galaxy power spectrum in redshift
space to include all general relativistic effects. These general relativistic corrections to the standard
approach become important on large scales and at high redshifts, and they lead to new terms in the
wide-angle correlations. We show that in principle the new terms can produce corrections of nearly
10% on Gpc scales over the usual Newtonian approximation. General relativistic corrections will be
important for future large-volume surveys such as SKA and Euclid, although the problem of cosmic
variance will present a challenge in observing this.

I. INTRODUCTION

Upcoming surveys of galaxies and HI will probe increasingly large scales, approaching and even exceeding the Hubble
scale at the survey redshifts. On these cosmological scales, surveys can in principle provide the best constraints on
dark energy and modified gravity models – and will be able to test general relativity itself. Furthermore, constraints
on primordial non-Gaussianity from large-scale surveys of the matter distribution will be competitive with CMB
constraints. However, in order to realise the potential of these surveys, we need to ensure that we are using a correct
analysis, i.e. a general relativistic analysis, on cosmological scales.

There are two fundamental issues underlying the GR analysis.

• We need to correctly identify the galaxy overdensity ∆ that is observed on the past light cone. The overdensity
δg defined in different gauges gives the same results on sub-Hubble scales, but leads to different results on large
scales – and this remains true even if we use gauge-invariant definitions of δg. The observed ∆ is necessarily
gauge-invariant, and is unique.

• We need to account for all the distortions arising from observing on the past light cone, including redshift
distortions (with all GR effects included) and volume distortions.

These GR effects come in to the measured 2-point correlation function in redshift space ξ(n1,n2; z1, z2). We provide
a new representation of this function which is relatively simple to calculate, and which takes into account all GR and
wide-angle contributions. Our fully general relativistic wide-angle formalism recovers and generalizes previous work
in the Newtonian plane-parallel (flat-sky) [1, 2] and Newtonian wide-angle [3–9] cases.

Observed galaxy density perturbation

The GR analysis of the matter power spectrum [10–21] leads to corrections on cosmological scales of the standard
Newtonian analysis (which is accurate on small scales). The observed galaxy overdensity is a function of the observed
direction n and redshift z. It may be expressed in any chosen gauge. We use synchronous-comoving gauge, in which

ds2 = a2(τ)
{
− dτ2 +

[(
1− 2R

)
δij + 2∂i∂jE

]
dxidxj

}
. (1)

In ΛCDM, we have R′ = 0 [22, 23] (a prime denotes ∂τ ).
We can write the observed overdensity at observed redshift z and in the unit direction n as

∆(n, z) = ∆s(n, z) + ∆κ(n, z) + ∆I(n, z). (2)
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Here ∆s is a local term (i.e. evaluated at the source) which includes the galaxy density perturbation, the redshift
distortion and the change in volume entailed by the redshift perturbation. ∆κ is the weak lensing convergence integral
along the line of sight, and ∆I is a time delay integral along the line sight. In the gauge (1), we have [17]

∆s = bδ +

[
be − (1 + 2Q) +

(1 + z)

H

dH

dz
− 2

χ
(1−Q)

(1 + z)

H

] (
∂‖E

′ + E′′
)

− (1 + z)

H
∂2‖E

′ − 2

χ
(1−Q) (χR+ E′) , (3)

∆κ = (1−Q)∇2
⊥

∫ χ

0

dχ̃ (χ− χ̃)
χ

χ̃
(E′′ −R) (4)

∆I = − 2

χ
(1−Q)

∫ χ

0

dχ̃ (E′′ −R)

+

[
be − (1 + 2Q)

(1 + z)

H

dH

dz
− 2

χ
(1−Q)

(1 + z)

H

] ∫ χ

0

dχ̃E′′′. (5)

Here χ(z) is the comoving distance, b(z) is the bias and

be(z) = −(1 + z)
d ln[ng(1 + z)−3]

dz
, (6)

where ng is the background number density. (We have changed some of the notation in [17].) The directional
derivatives are defined as

∂‖ = nj∂j , ∂i‖ = ni∂‖, ∂2‖ = ∂‖i∂
i
‖ = ∂‖∂‖, (7)

∂i⊥ = (δij − ninj)∂j = ∂i − ni∂‖, ∇2
⊥ = ∂⊥i∂

i
⊥ = ∇2 − ∂2‖ − 2χ−1∂‖. (8)

The term Q(z) encodes the magnification bias, which arises from the perturbation to the flux of a galaxy, relative to
a galaxy at the same observed redshift in the unperturbed universe (see [17]).

The local term ∆s contains the Newtonian local terms, and in addition some GR corrections. The line of sight
term ∆I is a pure GR correction. The lensing term ∆κ is the same as in the Newtonian analysis. Note that in ∇2

⊥
we do not drop the radial derivative term −2χ−1∂‖ which gives a negligible contribution to (4) on small scales, but
should not be neglected on large scales.

We can relate the metric perturbations to the matter density contrast in synchronous gauge, removing the residual
gauge ambiguity. Taking into account that E′′ + aHE′ − 4πGρmE = 0, we get

E′ = − H

(1 + z)
f∇−2δ, (9)

E′′ = − H2

(1 + z)2

(3

2
Ωm − f

)
∇−2δ, (10)

E′′′ = −3
H3

(1 + z)3
Ωm (f − 1)∇−2δ, (11)

R =
H2

(1 + z)2

(3

2
Ωm + f

)
∇−2δ. (12)

Here Ωm(z) is the matter density and f(z) is the growth rate,

f =
d lnD

d ln a
, δ(x, z) = δ(x, 0)

D(z)

D(0)
, (13)

where D is the growing mode of δ.

II. REDSHIFT-SPACE CORRELATION FUNCTIONS IN GENERAL RELATIVITY

The correlation function can be decomposed in spherical harmonics as [13]

ξ(n1,n2, z1, z2) = 〈∆(n1, z1)∆(n2, z2)〉 =
∑
`,m

C`(z1, z2)Y`m(n1)Y ∗`m(n2). (14)
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However, this turns out to be computationally expensive to implement for wide-angle correlations, and we follow
the alternative decomposition used in previous analyses based on a Newtonian approach [6–9]. (The formula for the
correlation function in redshift space, including wide-angle effects, was first derived in [3, 5], without GR corrections.)
This alternative expands the redshift space correlation function using tripolar spherical harmonics, with the basis
functions

S`1`2L(n1,n2,n12) =

[
(4π)3

(2`1 + 1)(2`2 + 1)(2L+ 1)

]1/2 ∑
m1,m2,M

(
`1 `2 L
m1 m2 M

)
Y`1m1

(n1)Y`2m2
(n2)YLM (n12),

−`1 ≤ m1 ≤ `1 , −`2 ≤ m2 ≤ `2 , −L ≤M ≤ L . (15)

Here (
`1 `2 `3
m1 m2 m3

)
is the Wigner 3j symbol. Because our triangles are closed, only two independent `’s appear. The expansion for ξ
may then be written in redshift space as a sum over these functions with L in the range |`1 − `2| ≤ L ≤ `1 + `2
(see [6] for details). In the conventional expansion (14) of ξ into C`’s, the ` represents the angular momentum of the
correlation function, and is summed to infinity. By contrast, in the tripolar expansion, the `’s are representative of
the radial derivatives ∂‖ in the two directions n1 and n2. Consequently, the sums involved in the tripolar expansion
are no longer infinite, making explicit computations in redshift space comparatively simple.

The positions of two galaxies and their separation are given by (see Fig. 1)

x1 = χ1n1, x2 = χ2n2, x12 = x1 − x2 ≡ χ12n12. (16)

FIG. 1: Positions of a pair of galaxies on the lightcone.
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The overdensity in the form (2) leads to the cross correlation functions in redshift space:

ξAB(x1,x2) = 〈∆A(x1)∆B(x2)〉 = ξBA(x2,x1), A,B = s, κ, I. (17)

First, we define the spherical transform of the matter overdensity [3]

An` (x, z) =

∫
d3k

(2π)3
(ik)−n P`(n · k̂) exp (ik · x) δ(k, z), x = χn, (18)

where P` is a Legendre polynomial. Then by (3), ∆s can be be decomposed as

∆s

b
=

(
1 +

1

3
β

)
A0

0 + γA2
0 +

βα

χ
A1

1 +
2

3
βA0

2, (19)

where

α(z) = −χ(z)
H(z)

(1 + z)

[
be(z)− 1− 2Q(z) +

3

2
Ωm(z)− 2

χ(z)

[
1−Q(z)

] (1 + z)

H(z)

]
, (20)

β(z) =
f(z)

b(z)
, (21)

γ(z) =
H(z)

(1 + z)

{
H(z)

(1 + z)

[
β(z)− 3

2

Ωm(z)

b(z)

]
be(z) +

3

2

H(z)

(1 + z)
β(z)

[
Ωm(z)− 2

]
−3

2

H(z)

(1 + z)

Ωm(z)

b(z)

[
1− 4Q(z) +

3

2
Ωm(z)

]
+

3

χ(z)

[
1−Q(z)

]Ωm(z)

b(z)

}
. (22)

Here α is a generalization of the Newtonian expression, β has the same form as in the Newtonian analysis and γ is a
new term arising from GR corrections: see Fig. 2 below.

In order to decompose ξss, we need the correlator of (18):

〈An1

`1
(x1, z1)An2

`2
(x2, z2)〉 = (−1)`2

∫
d3k

(2π)3
(ik)−(n1+n2)P`1(k̂ · n1)P`2(k̂ · n2) exp (ik · x12) Pδ(k; z1, z2) , (23)

where Pδ(k; z1, z2) is defined by

〈δ(k1, z1)δ(k2, z2)〉 = (2π)3δ3D(k1 + k2)Pδ(k1; z1, z2) . (24)

In terms of the primordial power spectrum and the transfer function, we have

Pδ(k; z1, z2) = Pprim(k)T 2(k)
D(z1)D(z2)

D2(0)
. (25)

Expanding P` and exp (ik · x) in spherical harmonics and applying the Gaunt integral [24], we obtain

〈An1

`1
(x1, z1)An2

`2
(x2, z2)〉 =

∑
L

(−1)`2 iL−n1−n2

(
`1 `2 L
0 0 0

)
S`1`2L(n1,n2,n12) ξn1+n2

L (χ12; z1, z2),

|`1 − `2| ≤ L ≤ `1 + `2. (26)

This is an expansion in the tripolar basis functions (15), with coefficients

ξnL(χ; z1, z2) =

∫
dk

2π2
k2−njL(χk)Pδ(k; z1, z2) . (27)

Finally, we arrive at the tripolar decomposition of ξss in the most general (GR wide-angle) case:

ξss(x1,x2) = b(z1)b(z2)
∑

`1,`2,L,n

B `1`2L
ss n (χ1, χ2)S`1`2L(n1,n2,n12) ξnL(χ12; z1, z2). (28)

By (19), `i, ni = 0, 1, 2 so that n ≡ n1 + n2 = 0, 1, 2, 3, 4; by (26) we also have L = 0, 1, 2, 3, 4. The B coefficients for
ξss and the other ξAB (see below) are given in Appendix A. These coefficients involve the functions (20) and (22) that
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contain GR corrections. In order to compare the GR and Newtonian cases, we set Q = 0 for simplicity. We rewrite
(20) as

α(z)

χ(z)
= − H(z)

(1 + z)

[
3

2
Ωm(z)− 1

]
+
d lnNg
dχ

+
2

χ
, (29)

where Ng is the comoving galaxy number density. Then for small redshift (i.e. χ → 0), we recover the Newtonian
limit of α [2]:

α

χ
→ αN

χ
=
d lnNg
dχ

+
2

χ
. (30)

In the same limit, (22) shows that

γ(z) → 3Ωm(z)

2b(z)

H(z)

(1 + z)

{[
1− 2f(z)

3Ωm(z)

]
d lnng
dχ

+
2

χ

}
, (31)

which is nonzero. However, to recover the Newtonian limit, we have to take into account (27) when χ12 → 0. Then
we find:

γξnL → 0, (32)

so that γ drops out of ξss in the Newtonian approximation.

α GR
α Newtonian

α 
(z

)

−2

0

2

z
0 0.5 1.0 1.5 2.0 2.5 3.0

β(
z)

0.2

0.3

0.4

0.5

z
0 0.5 1.0 1.5 2.0 2.5 3.0

γ(
z)

 ×
 χ

(z
)2

−3

−2

−1

0

z
0 0.5 1.0 1.5 2.0 2.5 3.0

FIG. 2: The functions α, β, γ in (19), assuming a concordance model, and with Q = 0, b = 2 and ng as defined in [17]. β is
unchanged by GR corrections, whereas γ is not present in the Newtonian analysis.

The remaining ξAB all involve integrals along the lines of sight. The spherical transforms of ∆κ,∆I are

∆κ(n, z) = b(z)

∫ χ

dχ̃ σ(z, z̃)

[
A0

0(x̃, z̃)−A0
2(x̃, z̃)− 3

χ̃
A1

1(x̃, z̃)

]
, (33)

∆I(n, z) = b(z)

∫ χ

dχ̃ µ(z, z̃)A2
0(x̃, z̃), (34)
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where

σ(z, z̃) ≡ −2
H2(z̃)

(1 + z̃)2
(χ− χ̃) χ̃

χ

[
1−Q(z)

]
b(z)

Ωm(z̃), (35)

µ(z, z̃) ≡ 3
H2(z̃)

(1 + z̃)2
Ωm(z̃)

b(z)

{
2

χ

[
1−Q(z)

]
− H(z̃)

(1 + z̃)

[
f(z̃)− 1

] [
be(z)−

[
1 + 2Q(z)

]
+

3

2
Ωm(z)− 2

χ

[
1−Q(z)

] (1 + z)

H(z)

]}
, (36)

and χ = χ(z), χ̃ = χ(z̃). These functions are illustrated in Fig. 3: σ has the same form as in Newtonian analysis and
µ corresponds to GR terms that vanish in the Newtonian limit.

σ 
(z

 =
 3

, z
) ×

 χ
 (z

)

−0.10

−0.05

0

z
0 0.5 1.0 1.5 2.0 2.5 3.0

µ 
(z

 =
 3

, z
) ×

 χ
 (z

)

0

5

10

15

20×10−8

z
0 0.5 1.0 1.5 2.0 2.5 3.0

FIG. 3: The functions σ(3, z̃) and µ(3, z̃), assuming a concordance model, and with Q = 0, b = 2 and ng as defined in [17]. σ
is unchanged by GR corrections, whereas µ is not present in the Newtonian analysis.

For the lensing-lensing correlation, we find

ξκκ(x1,x2) = b(z1)b(z2)

∫ χ1,χ2

dχ̃1dχ̃2

∑
`1,`2,L,n

B `1`2L
κκ n (χ1, χ̃1;χ2, χ̃2)S`1`2L(n1,n2, ñ12) ξnL(χ̃12; z̃1, z̃2), (37)

and for the II correlation

ξII(x1,x2) = b(z1)b(z2)

∫ χ1,χ2

dχ̃1dχ̃2

∑
`1,`2,L,n

B `1`2L
II n (χ1, χ̃1;χ2, χ̃2)S`1`2L(n1,n2, ñ12) ξnL(χ̃12; z̃1, z̃2). (38)

The integration variables χ̃12, ñ12 are given by

χ̃12ñ12 = χ12n12 + (χ̃1 − χ1)n1 − (χ̃2 − χ2)n2, (39)

χ̃2
12 = χ̃2

1 + χ̃2
2 +

χ̃1χ̃2

χ1χ2

[
χ2
12 −

(
χ̃2
1 + χ̃2

2

)]
. (40)

Similarly, we find:

ξsI(x1,x2) = b(z1)b(z2)

∫ χ2

dχ̃2

∑
`1,`2,L,n

B `1`2L
sI n (χ1;χ2, χ̃2)S`1`2L(n1,n2,n12̃) ξnL(χ12̃; z1, z̃2), (41)

ξsκ(x1,x2) = b(z1)b(z2)

∫ χ2

dχ̃2

∑
`1,`2,L,n

B `1`2L
sκ n (χ1;χ2, χ̃2)S`1`2L(n1,n2,n12̃) ξnL(χ12̃; z1, z̃2), (42)

ξκI(x1,x2) = b(z1)b(z2)

∫ χ1,χ2

dχ̃1dχ̃2

∑
`1,`2,L,n

B `1`2L
κI n (χ1, χ̃1;χ2, χ̃2)S`1`2L(n1,n2, ñ12) ξnL(χ̃12; z̃1, z̃2), (43)

where

χ12̃n12̃ = (χ2 − χ̃2)n2 + χ12n12, (44)

χ2
12̃

= χ2
1 + χ̃2

2 +
χ̃2

χ2

[
χ2
12 −

(
χ2
1 + χ2

2

)]
. (45)

Note that the remaining ξAB follow from the symmetry in (17). (See Appendix A for the explicit expressions.)
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III. COMPUTING THE GENERAL RELATIVISTIC CORRELATIONS

Here we consider the GR wide-angle correlation function ξss(x1,x2) in various limits and then in the general case.
For simplicity, and since it does not affect the comparisons, we assume Q = 0.

GR small-angle (plane-parallel) limit

For small angle and small galaxy separation, we have the plane-parallel or flat-sky limit, i.e. n1 and n2 are almost
parallel [1, 2].

Using the properties of the Wigner coefficients and spherical functions, we get [6]

S`1`2L(n1,n1,n11) =

(
`1 `2 L
0 0 0

)
PL(n1 · n11), where n1 ' n2, n11 ≡ n12. (46)

With z1 ' z2 (χ1 ∼ χ2), χ11 is given by x11 = χ11n11. From (28) we obtain the expansion of the redshift space
correlation function in monopole, quadrupole and hexadecapole terms:

ξss(x1,x1)

b21
=

{(
1 +

2

3
β1 +

1

5
β2
1

)
ξ00(χ11; z1, z1)−

[
2

(
1 +

1

3
β1

)
γ1 −

β2
1α

2
1

3χ2
1

]
ξ20(χ11; z1, z1)

+ γ21ξ
4
0(χ11; z1, z1)

}
P0(n1 · n11) +

[
−4β1

(
1

3
+

1

7
β1

)
ξ02(χ11; z1, z1)

+
2

3
β1

(
2γ1 −

β1α
2
1

χ2
1

)
ξ22(χ11; z1, z1)

]
P2(n1 · n11) +

8

35
β2
1ξ

0
4(χ11; z1, z1)P4(n1 · n11). (47)

(This is consistent with [11, 17].) In (47), we can divide the terms into 3 categories: those including only β, those with
α, and those with γ. The terms with β are the ones considered in the standard Kaiser analysis, and if we consider
only them we will recover the classical results (see e.g. [2]). The terms including α are responsible for the “mode-
coupling” effects, and they arise in the jacobian relating real- to redshift-space (for details, in Newtonian analysis, see
e.g. [3, 6–8]). These terms are usually ignored when using the plane-parallel approximation. Note that they vanish
if the comoving radial distribution of galaxies is constant. Finally, the terms with γ are the GR corrections.

In Fig. 4, we illustrate the GR corrections in (47) to the Newtonian monopole and quadrupole of ξss. For galaxy
separations up to 600 Mpc, the GR corrections to the quadrupole remain negligible while the monopole is corrected
by up to 2%.

ξ G
R

 / 
ξ N

w
t

1.005

1.010

1.015

1.020

χ12
150 200 250 300 350 400 450 500 550 600

ξ G
R

 / 
ξ N

w
t

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

χ12
150 200 250 300 350 400 450 500 550 600

FIG. 4: The GR corrections to the Newtonian plane-parallel limit of the ξss monopole (left) and quadrupole (right), as a
function of galaxy separation (Mpc).

Note that in the Newtonian limit, a monopole and a quadrupole term proportional to α2 survive:

β2
1α

2
1

3χ2
1

ξ20 P0(n1 · n11) and − 2β2
1α

2
1

3χ2
1

ξ22 P2(n1 · n11); (48)
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see also [3]. These terms are usually omitted from the standard flat-sky analyses [1, 2] (for details see [8]).
The remaining correlation functions ξAB , which have not before been explicitly computed in the plane-parallel limit,

are presented in Appendix B.

GR corrections on very large scales: analytical approximations

For simplicity we consider the angular correlation, with z1 = z2 ≡ z. We rewrite ξnL as

ξnL(χ12; z) =

∫ 1/χ12

kmin

dk

2π2
k2−njL(χ12k)Pδ(k; z) +

∫ ∞
1/χ12

dk

2π2
k2−njL(χ12k)Pδ(k; z), (49)

where we impose a large-scale cutoff kmin, which we take as kmin ∼ H0/2. We take χ12 ∼ χH ' 2(1 + z)H−1(z).
In this case, for k < 1/χ12, we have Pδ(k; z) ∝ Pprim(k) = Akns , and jL(χ12k) ' (χ12k)L/(2L + 1)!!. The second
integral, for L > 0, can be approximated as∫ ∞

1/χ12

dk

2π2
k2−njL(χ12k)Pδ(k; z) ∼

k2−nL

2π2

Pδ(kL; z)

χ12
IL , (50)

kL =
(L+ 1/2)

χ12
, IL =

∫ ∞
0

jL(y)dy =

√
π

2

Γ[(L+ 1)/2]

Γ[(L+ 2)/2]
. (51)

For L = 0, the integral vanishes because kL < 1/χ12. Also, we can take Pδ ∝ Pprim(k) since kL � keq. Then, for the
spectral index ns < 1, we obtain the analytical approximation:

ξnL(χ12; z) ∝


(3 + ns − n)−1

(
χn−3−ns
12 − χn−3−ns

H0

)
for L = 0

(3 + L+ ns − n)−1
[(
χn−3−L−ns
12 − χn−3−L−ns

H0

)
+ (L+ 1/2)2−n+nsIL χ

n−3−ns
12

]
for L > 0.

(52)

Note that, when n = 4 and L = 0, we require an infrared (IR) cutoff, kmin > 0, since ξ40 becomes power-law divergent.
(If ns = 1, there is a logarithmic divergence.) The IR cutoff appears only in the terms of the correlation function that
contain YLM with M = L = 0. (In this case Y00 ∝ P0 ≡ 1.) Therefore they add only an overall additive normalization
to ξ which is unobservable, and so the IR cutoff actually conveys no information. In addition, for large χ12, the slope
of ξnL is less steep when n increases. In other words, on large scales, Bss are bigger when they contain GR corrections.
(The same is true for the other BAB .)

Defining θ as the angular separation of two galaxies, we have χ12 = [2(1− cos θ)]1/2χ. We assume that ng ∼ χ−ν12 ,
where ν is a suitable positive constant. Then by (20) and (22), in the large-scale limit χ12 � χH(z), we have

α

χ
→ − 2

χH(z)

[
2 +

3

2
Ωm(z)

]
, (53)

γ → −3
Ωm(z)

b(z)χ2
H(z)

[3Ωm(z) + 8− 2f(z)] . (54)

Computation of GR wide-angle correlation function

Finally, here we show the GR corrections to the full wide-angle correlation function. For illustrative purposes, we

split the effects along the line of sight (n · k̂ = 1), and transverse to the line of sight (n · k̂ = 0). The line of sight
case corresponds to a configuration where one galaxy is much further than the other and the angular separation θ is
small. In the transverse case, the two galaxies have the same redshift and θ is not small. In Fig. 5 we plot the GR
corrections for the two examples:

• ξss, as a function of z1, computed for z2 = 0.1 and θ = 0.1 rad.

• ξss, as a function of z1 = z2, computed for θ = 0.3 rad.

Along with the correlation function corrections, we plot the comoving galaxy separation, in order to have a clearer
picture of the scales involved. In these computations we assumed a constant bias b = 2 and ng from the universal mass
function prescription, see [17]. The plots of the GR corrections show the ratio of the correlation function computed
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using the GR formalism with the one in the Newtonian case. Wide-angle effects are included in both cases, the only
difference being the inclusion or not of terms deriving from γ. We decided to analyze two different cases, both for
uniformity with previous literature and for physical reasons: pairs of galaxies (almost) along, and across the line
of sight. The first case (left panel) corresponds to pairs that have a large difference in redshift and experience the
maximum of the redshift-space distortions effect, while the second one (right panel) corresponds to pairs of galaxies
with the same redshift, and for which the redshift space distortion effect is minimum. In a following companion paper
we will present a detailed analysis of all the GR effects and their dependencies on scale, angular separation, bias and
radial distribution of sources for all the terms presented in this work, along with predictions for observing these effects
with future surveys.

ξ G
R

 / 
ξ N

w
t

1.02

1.04

1.06

1.08

χ12

400

600

800

1000

z1
0.25 0.30 0.35 0.40 0.45 0.50

ξ G
R

 / 
ξ N

w
t

0.98

1.00

1.02

1.04

1.06

χ12

700

800

900

1000

1100

z1 = z2
0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

FIG. 5: GR corrections to the Newtonian wide-angle ξss correlation function (solid lines), along the line of sight (left; with
z2 = 0.1 and θ = 0.1 rad) and transverse (right; with θ = 0.3 rad). The corresponding comoving galaxy separation (Mpc) is
also shown (dotted lines).

IV. CONCLUSIONS

We derived a fully general relativistic expression for correlation functions in the wide-angle case, that will need to
be used in future surveys (such as SKA and Euclid) which measure galaxy correlations on very large scales. Our
formalism recovers and generalizes previous results in the plane-parallel (flat-sky) and Newtonian approximations.

We presented new results for the GR-corrected plane-parallel case. The GR corrections to the Newtonian monopole
of ξss, for galaxy separations up to 600 Mpc, are up to 2% (see Fig. 4).

Stronger GR corrections arise in the wide-angle case. We showed via illustrative examples that GR corrections on
large scales (∼ 1 Gpc separation) can in principle be of order 5–10%, as shown in Fig. 5. Of course, the observability
of these effects is severely degraded by cosmic variance. Future large-volume surveys will reduce the cosmic variance –
but the problem can in fact be removed if we are able to observe multiple tracers of the underlying matter distribution,
as shown in [25]. In a companion paper we will present a detailed analysis of the predicted GR corrections for large-
volume surveys, taking into account cosmic variance.
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Appendix A: Coefficients in the tripolar decomposition of ξAB

For (28):

B 000
ss 0 =

(
1 + 1

3β1
) (

1 + 1
3β2
)
, B 011

ss 1 =
√

3 χ−12

(
1 + 1

3β1
)
β2α2,

B 000
ss 2 = −

(
1 + 1

3β1
)
γ2 −

(
1 + 1

3β2
)
γ1, B 022

ss 0 = − 2
√
5

3

(
1 + 1

3β1
)
β2,

B 101
ss 1 = −

√
3 χ−11 β1α1

(
1 + 1

3β2
)
, B 110

ss 2 = −
√
3
3 χ−11 χ−12 β1α1β2α2,

B 112
ss 2 = −

√
30
3 χ−11 χ−12 β1α1β2α2, B 101

ss 3 =
√

3 χ−11 β1α1γ2,

B 121
ss 1 = 2

√
30

15 χ−11 α1β1β2, B 123
ss 1 = 2

√
105
15 χ−11 α1β1β2,

B 011
ss 3 = −

√
3 χ−12 γ1β2α2, B 000

ss 4 = γ1γ2,

B 022
ss 2 = 2

√
5

3 γ1β2, B 211
ss 1 = − 2

√
30

15 χ−12 β1β2α2,

B 213
ss 1 = − 2

√
105
15 χ−12 β1β2α2, B 202

ss 0 = − 2
√
5

3 β1
(
1 + 1

3β2
)
,

B 202
ss 2 = 2

√
5

3 β1γ2, B 220
ss 0 = 4

√
5

45 β1β2,

B 222
ss 0 = 4

√
70

63 β1β2, B 224
ss 0 = 4

√
70

35 β1β2 ,

(A1)

where αi = α(zi), βi = β(zi) and γi = γ(zi).
For (37):

B 000
κκ 0 = σ11̃σ22̃, B 022

κκ 0 =
√

5 σ11̃σ22̃,

B 202
κκ 0 =

√
5 σ11̃σ22̃, B 011

κκ 1 = −3
√

3 χ̃−12 σ11̃σ22̃,

B 101
κκ 1 = 3

√
3 χ̃−11 σ11̃σ22̃, B 220

κκ 0 =
√
5
5 σ11̃σ22̃,

B 222
κκ 0 =

√
70
7 σ11̃σ22̃, B 224

κκ 0 = 9
√
70

35 σ11̃σ22̃,

B 211
κκ 1 = − 3

√
30
5 χ̃−12 σ11̃σ22̃, B 213

κκ 1 = − 3
√
105
5 χ̃−12 σ11̃σ22̃,

B 121
κκ 1 = 3

√
30
5 χ̃−11 σ11̃σ22̃, B 123

κκ 1 = 3
√
105
5 χ̃−11 σ11̃σ22̃,

B 110
κκ 2 = −3

√
3 χ̃−11 χ̃−12 σ11̃σ22̃, B 112

κκ 2 = −3
√

30 χ̃−11 χ̃−12 σ11̃σ22̃,

(A2)

where σi ĩ = σ(zi, z̃i).
For (38):

B 000
II 4 = µ11̃µ22̃, (A3)

where µi ĩ = µ(zi, z̃i).
For (41):

B 000
sI 2 = −

(
1 + 1

3β1
)
µ22̃, B 101

sI 3 =
√

3 χ−11 β1α1µ22̃,

B 000
sI 4 = γ1µ22̃, B 202

sI 2 = 2
√
5

3 β1µ22̃.

(A4)
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For (42):

B 000
sκ 0 =

(
1 + 1

3β1
)
σ22̃, B 022

sκ 0 =
√

5
(
1 + 1

3β1
)
σ22̃,

B 011
sκ 1 = − 3

√
3 χ̃−12

(
1 + 1

3β1
)
σ22̃, B 101

sκ 1 = −
√

3 χ−11 β1α1σ22̃,

B 121
sκ 1 = −

√
30
5 χ−11 β1α1σ22̃, B 123

sκ 1 = −
√
105
5 χ−11 β1α1σ22̃,

B 110
sκ 2 =

√
3 χ̃−12 χ−11 β1α1σ22̃, B 112

sκ 2 =
√

30 χ̃−12 χ−11 β1α1σ22̃,

B 000
sκ 2 = − γ1 σ22̃, B 022

sκ 2 = −
√

5 γ1 σ22̃,

B 011
sκ 3 = 3

√
3χ̃−12 γ1σ22̃, B 202

sκ 0 = − 2
√
5

3 β1σ22̃,

B 220
sκ 0 = − 2

√
5

15 β1σ22̃, B 222
sκ 0 = − 2

√
70

21 β1σ22̃,

B 224
sκ 0 = − 6

√
70

35 β1σ22̃, B 211
sκ 1 = 2

√
30
5 χ̃−12 β1σ22̃,

B 213
sκ 1 = 2

√
105
5 χ̃−12 β1σ22̃.

(A5)

For (43):

B 000
κI 2 = − σ11̃µ22̃, B 202

κI 2 = −
√

5 σ11̃µ22̃,

B 101
κI 3 = −3

√
3 χ̃−11 σ11̃µ22̃.

(A6)

The remaining ξAB are

ξIs(x1,x2) = b(z1)b(z2)

∫ χ1

dχ̃1

∑
`1,`2,L,n

B `1`2L
Is n (χ1, χ̃1;χ2)S`1`2L(n1,n2,n1̃2) ξnL(χ1̃2; z̃1, z2), (A7)

ξκs(x1,x2) = b(z1)b(z2)

∫ χ1

dχ̃1

∑
`1,`2,L,n

B `1`2L
κs n (χ1, χ̃1;χ2)S`1`2L(n1,n2,n1̃2) ξnL(χ1̃2; z̃1, z2), (A8)

ξIκ(x1,x2) = b(z1)b(z2)

∫ χ1,χ2

dχ̃1dχ̃2

∑
`1,`2,L,n

B `1`2L
Iκ n (χ1, χ̃1;χ2, χ̃2)S`1`2L(n1,n2, ñ12) ξnL(χ̃12; z̃1, z̃2), (A9)

where

χ1̃2n1̃2 = (χ̃1 − χ1)n1 + χ12n12, (A10)

χ2
1̃2

= χ̃2
1 + χ2

2 +
χ̃1

χ1

[
χ2
12 −

(
χ2
1 + χ2

2

)]
, (A11)

and the corresponding B coefficients are

B 000
Is 2 = −

(
1 + 1

3β2
)
µ11̃, B 011

Is 3 = −
√

3 β2α2χ
−1
2 µ11̃,

B 000
Is 4 = γ2 µ11̃, B 022

Is 2 = 2
√
5

3 β2µ11̃,

(A12)
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B 000
κs 0 =

(
1 + 1

3β2
)
σ11̃, B 202

κs 0 =
√

5
(
1 + 1

3β2
)
σ11̃,

B 101
κs 1 = 3

√
3 χ̃−11

(
1 + 1

3β2
)
σ11̃, B 011

κs 1 =
√

3 χ−12 β2α2σ11̃,

B 211
κs 1 =

√
30
5 χ−12 β2α2σ11̃, B 213

κs 1 =
√
105
5 χ−12 β2α2σ11̃,

B 110
κs 2 =

√
3 χ̃−11 χ−12 β2α2σ11̃, B 112

κs 2 =
√

30 χ̃−11 χ−12 β2α2σ11̃,

B 000
κs 2 = − γ2 σ11̃, B 202

κs 2 = −
√

5 γ2 σ11̃,

B 101
κs 3 = −3

√
3χ̃−11 γ2σ11̃, B 022

κs 0 = − 2
√
5

3 β2σ11̃,

B 220
κs 0 = − 2

√
5

15 β2σ11̃, B 222
κs 0 = − 2

√
70

21 β2σ11̃,

B 224
κs 0 = − 6

√
70

35 β2σ11̃, B 121
κs 1 = − 2

√
30
5 χ̃−11 β2σ11̃,

B 123
κs 1 = − 2

√
105
5 χ̃−11 β2σ11̃ .

(A13)

B 000
Iκ 2 = − µ11̃σ22̃, B 022

Iκ 2 = −
√

5 µ11̃σ22̃,

B 011
Iκ 3 = 3

√
3 χ̃−12 µ11̃σ22̃.

(A14)

Appendix B: General relativistic ξAB in the plane-parallel limit

ξss is given in (47). The remaining GR ξAB have not before been given in the plane-parallel limit.
Lensing-lensing correlation:

ξκκ(x1,x1) = b21

∫ χ1

dχ1′

∫ χ1

dχ1′′σ11′σ11′′

{
[
3

(
2

5
ξ00(χ11′ ; z1′ , z1′′) +

1

χ1′χ1′′
ξ20(χ1′1′′ ; z1′ , z1′′)

)
P0(n1 · n1′1′′)

+ 3
χ1′′ − χ1′

χ1′χ1′′
ξ11(χ1′1′′ ; z1′ , z1′′)P1(n1 · n1′1′′)

+ 6

(
2

7
ξ02(χ1′1′′ ; z1′ , z1′′)−

1

χ1′χ1′′
ξ22(χ1′1′′ ; z1′ , z1′′)

)
P2(n1 · n1′1′′)

− 9

5

χ1′′ − χ1′

χ1′χ1′′
ξ13(χ1′1′′ ; z1′ , z1′′)P3(n1 · n1′1′′) +

18

35
ξ04(χ1′1′′ ; z1′ , z1′′)P4(n1 · n1′1′′)

]}
. (B1)

II correlation:

ξII(x1,x1) = b21

∫ χ1

dχ1′

∫ χ1

dχ1′′µ11′µ11′′ ξ
4
0(χ1′1′′ ; z1′ , z1′′)P0(n1 · n1′1′′). (B2)

We assumed n12 ≡ n1′1′′ . Then

χ1′1′′n1′1′′ = (χ1′ − χ1′′)n1′ + χ1′′χ
−1
1 χ11n11 , (B3)

χ2
1′1′′ = χ2

1′ + χ2
1′′ + χ1′χ1′′

(
χ2
11

χ2
1

− 2

)
. (B4)

sI correlation:

ξsI(x1,x1) = b21

∫ χ1

dχ1′µ11′

{[
−
(

1 +
1

3
β1

)
ξ20(χ11′ ; z1, z1′) + γ1ξ

4
0(χ11′ ; z1, z1′)

]
P0(n1 · n11′)

− β1α1

χ1
ξ31(χ11′ ; z1, z1′)P1(n1 · n11′) +

2

3
β1ξ

2
2(χ11′ ; z1, z1′)P2(n1 · n11′)

}
, (B5)
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where we assumed n12̃ ≡ n11′ . Then

χ11′n11′ = (χ1 − χ1′)n1 + χ1′χ
−1
1 χ11n11 , (B6)

χ2
11′ = χ2

1 + χ2
1′ +

χ1′

χ1

(
χ2
11 − 2χ2

1

)
. (B7)

Is correlation:

ξIs(x1,x1) = b21

∫ χ1

dχ1µ11′

{[
−
(

1 +
1

3
β1

)
ξ20(χ1′1; z1′ , z1) + γ1ξ

4
0(χ1′1; z1′ , z1)

]
P0(n1 · n1′1)

+
β1α1

χ1
ξ31(χ1′1; z1′ , z1)P1(n1 · n1′1) +

2

3
β1ξ

2
2(χ1′1; z1′ , z1)P2(n1 · n1′1)

}
, (B8)

where we defined n1̃2 ≡ n1′1. Then

χ1′1n1′1 = − (χ1 − χ1′)n1 + χ11n11 and χ1′1 = χ11′ . (B9)

sκ correlation:

ξsκ(x1,x1) = b21

∫ χ1

dχ1′σ11′

{[(
1 +

1

5
β1

)
ξ00(χ11′ ; z1, z1′)−

(
β1α1

χ1′χ1
+ γ1

)
ξ20(χ11′ ; z1, z1′)

]
P0(n1 · n11′)

+

[
3

(
1

χ1′
+

3

5χ1′
β1 +

1

5

β1α1

χ1

)
ξ11(χ11′ ; z1, z1′)−

3

χ1′
γ1ξ

3
1(χ11′ ; z1, z1′)

]
P1(n1 · n11′)

+

[(
1− 1

7
β1

)
ξ02(χ11′ ; z1, z1′) +

(
2
β1α1

χ1′χ1
− γ1

)
ξ22(χ11′ ; z1, z1′)

]
P2(n1 · n11′)

+
3

5
β1

(
α1

χ1
− 2

χ1′

)
ξ13(χ11′ ; z1, z1′)P3(n1 · n11′)−

12

35
β1ξ

0
4(χ11′ ; z1, z1′)P4(n1 · n11′)

}
. (B10)

κs correlation:

ξκs(x1,x1) = b21

∫ χ1

dχ1′σ11′

{[(
1 +

1

5
β1

)
ξ00(χ1′1; z1′ , z1)−

(
β1α1

χ1χ1′
+ γ1

)
ξ20(χ1′1; z1′ , z1)

]
P0(n1 · n1′1)

−
[
3

(
1

χ1′
+

3

5χ1′
β1 +

1

5

β1α1

χ1

)
ξ11(χ1′1; z1′ , z1)− 3

χ1′
γ1ξ

(3)
1 (χ1′1; z1′ , z1)

]
P1(n1 · n1′1)

+

[(
1− 1

7
β1

)
ξ02(χ1′1; z1′ , z1) +

(
2
β1α1

χ1′χ1
− γ1

)
ξ22(χ1′1; z1′ , z1)

]
P2(n1 · n1′1)

− 3

5
β1

(
α1

χ1
− 2

χ1′

)
ξ
(1)
3 (χ1′1; z1′ , z1)P3(n1 · n1′1)− 12

35
β1ξ

0
4(χ1′1; z1′ , z1)P4(n1 · n1′1)

}
. (B11)

Iκ correlation:

ξIκ(x1,x1) = b21

∫ χ1

dχ1′

∫ χ1

dχ1′′ µ11′σ11′′

[
− ξ20(χ1′1′′ ; z1′ , z1′′)P0(n1 · n1′1′′)

− 3

χ1′
ξ31(χ1′1′′ ; z1′ , z1′′)P1(n1 · n1′1′′)− ξ22(χ1′1′′ ; z1′ , z1′′)P2(n1 · n1′1′′)

]
. (B12)

κI correlation:

ξκI(x1,x1) = b21

∫ χ1

dχ1′

∫ χ1

dχ1′′ σ11′µ11′′

[
− ξ(2)0 (χ1′1′′ ; z1′ , z1′′)P0(n1 · n1′1′′)

+
3

χ1
ξ
(3)
1 (χ1′1′′ ; z1′ , z1′′)P1(n1 · n1′1′′)− ξ(2)2 (χ1′1′′ ; z1′ , z1′′)P2(n1 · n1′1′′)

]
. (B13)

Note that n1′1′′ 6= −n1′′1′ χ1′ = χ1′′ , and n11′ 6= −n1′1 unless χ1 = χ1′ . This is connected to the fact that we have
already fixed galaxy 1 and galaxy 2 a priori and by the definition of n11, when we impose the plane-parallel limit.
Indeed the second subscript 1 is the second galaxy and not the first one – i.e. in the flat-sky limit n11 = −n21.
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