14,800 research outputs found
Testing An Identification Algorithm for Extragalactic OB Associations Using a Galactic Sample
We have used a Galactic sample of OB stars and associations to test the
performance of an automatic grouping algorithm designed to identify
extragalactic OB associations. The algorithm identifies the known Galactic OB
associations correctly when the search radius (78 pc) is defined by the
observed stellar surface density. Galactic OB associations identified with a 78
pc search radius have diameters that are 3 times larger than OB
associations identified with a 22 pc search radius in M33. Applying the smaller
search radius to the Galactic data matches both the sizes and the number of
member stars between the two galaxies quite well. Thus, we argue that this and
similar algorithms should be used with a constant physical search radius,
rather than one which varies with the stellar surface density. Such an approach
would allow the identification of differences in the giant molecular cloud
populations and star formation efficiency under most circumstances.Comment: accepted to AJ; 16 pages, aas latex, 9 postscript figures; available
at http://www.physics.mcmaster.ca/Wilson_Preprints/index.htm
On the construction of hierarchic models
One of the main problems in the field of model-based diagnosis of technical systems today is finding the most useful model or models of the system being diagnosed. Often, a model showing the physical components and the connections between them is all that is available. As systems grow larger and larger, the run-time performance of diagnostic algorithms decreases considerably when using these detailed models. A solution to this problem is using a hierarchic model. This allows us to first diagnose the system using an abstract model, and then use this solution to guide the diagnostic process using a more detailed model. The main problem with this approach is acquiring the hierarchic model. We give a generic hierarchic diagnostic algorithm and show how the use of certain classes of hierarchic models can increase the performance of this algorithm. We then present linear time algorithms for the automatic construction of these hierarchic models, using the detailed model and extra information about cost of probing points and invertibility of components
Polarization effects on the effective temperature of an ultracold electron source
The influence has been studied of the ionization laser polarization on the
effective temperature of an ultracold electron source, which is based on
near-threshold photoionization. This source is capable of producing both
high-intensity and high-coherence electron pulses, with applications in for
example electron diffraction experiments. For both nanosecond and femtosecond
photoionization, a sinusoidal dependence of the temperature on polarization
angle has been found. For most experimental conditions, the temperature is
minimal when the polarization coincides with the direction of acceleration.
However, surprisingly, for nanosecond ionization a regime exists when the
temperature is minimal when the polarization is perpendicular to the
acceleration direction. This shows that in order to create electron bunches
with the highest transverse coherence length, it is important to control the
polarization of the ionization laser. The general trends and magnitudes of the
temperature measurements are described by a model, based on the analysis of
classical electron trajectories; this model further deepens our understanding
of the internal mechanisms during the photoionization process. Furthermore, for
nanosecond ionization, charge oscillations as a function of laser polarization
have been observed; for most situations the oscillation amplitude is small
Recommended from our members
Exposing piaget's scheme: Empirical evidence for the ontogenesis of coordination in learning a mathematical concept
The combination of two methodological resources-natural-user interfaces (NUI) and multimodal learning analytics (MMLA)-is creating opportunities for educational researchers to empirically evaluate seminal models for the hypothetical emergence of concepts from situated sensorimotor activity. 76 participants (9-14 yo) solved tablet-based non-symbolic manipulation tasks designed to foster grounded meanings for the mathematical concept of proportional equivalence. Data gathered in task-based semi-structured clinical interviews included action logging, eye-gaze tracking, and videography. Successful task performance coincided with spontaneous appearance of stable dynamical gaze-path patterns soon followed by multimodal articulation of strategy. Significantly, gaze patterns included uncued non-salient screen locations. We present cumulative results to argue that these 'attentional anchors' mediated participants' problem solving. We interpret the findings as enabling us to revisit, support, refine, and elaborate on central claims of Piaget's theory of genetic epistemology and in particular his insistence on the role of situated motor-action coordination in the process of reflective abstraction
Recommended from our members
Eye-tracking the emergence of attentional anchors in a mathematics learning tablet activity
Little is known about micro-processes by which sensorimotor interaction gives rise to conceptual development. Per embodiment theory, these micro-processes are mediated by dynamical attentional structures. Accordingly this study investigated eye-gaze behaviors during engagement in solving tablet-based bimanual manipulation tasks designed to foster proportional reasoning. Seventy-six elementary- and vocational-school students (9-15 yo) participated in individual task-based clinical interviews. Data gathered included action-logging, eye-tracking, and videography. Analyses revealed the emergence of stable eye-path gaze patterns contemporaneous with first enactments of effective manipulation and prior to verbal articulations of manipulation strategies. Characteristic gaze patterns included consistent or recurring attention to screen locations that bore non-salient stimuli or no stimuli at all yet bore invariant geometric relations to dynamical salient features. Arguably, this research validates empirically hypothetical constructs from constructivism, particularly reflective abstraction
Effect of disorder on the conductance of a Cu atomic point contact
We present a systematic study of the effect of the disorder in copper point
contacts. We show that peaks in the conductance histogram of copper point
contacts shift upon addition of nickel impurities. The shift increases
initially linerarly with the nickel concentration, thus confirming that it is
due to disorder in the nanowire, in accordance with predictions. In general,
this shift is modelled as a resistance R_s which is placed in series with the
contact resistance R_c. However, we obtain different R_s values for the two
peaks in the histogram, R_s being larger for the peak at higher conductance.Comment: 6 pages, 4 figure
Polarization-preserving confocal microscope for optical experiments in a dilution refrigerator with high magnetic field
We present the design and operation of a fiber-based cryogenic confocal
microscope. It is designed as a compact cold-finger that fits inside the bore
of a superconducting magnet, and which is a modular unit that can be easily
swapped between use in a dilution refrigerator and other cryostats. We aimed at
application in quantum optical experiments with electron spins in
semiconductors and the design has been optimized for driving with, and
detection of optical fields with well-defined polarizations. This was
implemented with optical access via a polarization maintaining fiber together
with Voigt geometry at the cold finger, which circumvents Faraday rotations in
the optical components in high magnetic fields. Our unit is versatile for use
in experiments that measure photoluminescence, reflection, or transmission, as
we demonstrate with a quantum optical experiment with an ensemble of
donor-bound electrons in a thin GaAs film.Comment: 9 pages, 7 figure
Lineage specific recombination rates and microevolution in Listeria monocytogenes
Background: The bacterium Listeria monocytogenes is a saprotroph as well as an opportunistic human foodborne pathogen, which has previously been shown to consist of at least two widespread lineages (termed lineages I and II) and an uncommon lineage (lineage III). While some L. monocytogenes strains show evidence for considerable diversification by homologous recombination, our understanding of the contribution of recombination to L. monocytogenes evolution is still limited. We therefore used
STRUCTURE and ClonalFrame, two programs that model the effect of recombination, to make inferences about the population structure and different aspects of the recombination process in L. monocytogenes. Analyses were performed using sequences for seven loci (including the house-keeping genes gap, prs, purM and ribC, the stress response gene sigB, and the virulence genes actA and inlA) for 195 L. monocytogenes isolates.
Results: Sequence analyses with ClonalFrame and the Sawyer's test showed that recombination is more
prevalent in lineage II than lineage I and is most frequent in two house-keeping genes (ribC and purM) and the two virulence genes (actA and inlA). The relative occurrence of recombination versus point mutation is about six times higher in lineage II than in lineage I, which causes a higher genetic variability in lineage II. Unlike lineage I, lineage II represents a genetically heterogeneous population with a relatively high proportion (30% average) of genetic material imported from external sources. Phylograms, constructed with correcting for recombination, as well as Tajima's D data suggest that both lineages I and II have suffered a population bottleneck.
Conclusion: Our study shows that evolutionary lineages within a single bacterial species can differ
considerably in the relative contributions of recombination to genetic diversification. Accounting for recombination in phylogenetic studies is critical, and new evolutionary models that account for the possibility of changes in the rate of recombination would be required. While previous studies suggested that only L. monocytogenes lineage I has experienced a recent bottleneck, our analyses clearly show that lineage II experienced a bottleneck at about the same time, which was subsequently obscured by abundant
homologous recombination after the lineage II bottleneck. While lineage I and lineage II should be considered separate species from an evolutionary viewpoint, maintaining single species name may be warranted since both lineages cause the same type of human disease
- …