55 research outputs found

    Current deformation in Central Afar and triple junction kinematics deduced from GPS and InSAR measurements

    Get PDF
    Kinematics of divergent boundaries and Rift-Rift-Rift junctions are classically studied using long-term geodetic observations. Since significant magma-related displacements are expected, short-term deformation provides important constraints on the crustal mechanisms involved both in active rifting and in transfer of extensional deformation between spreading axes. Using InSAR and GPS data, we analyse the surface deformation in the whole Central Afar region in detail, focusing on both the extensional deformation across the Quaternary magmato-tectonic rift segments, and on the zones of deformation transfer between active segments and spreading axes. The largest deformation occurs across the two recently activated Asal-Ghoubbet (AG) and Manda Hararo-Dabbahu (MH-D) magmato-tectonic segments with very high strain rates, whereas the other Quaternary active segments do not concentrate any large strain, suggesting that these rifts are either sealed during interdyking periods or not mature enough to remain a plate boundary. Outside of these segments, the GPS horizontal velocity field shows a regular gradient following a clockwise rotation of the displacements from the Southeast to the East of Afar, with respect to Nubia. Very few shallow creeping structures can be identified as well in the InSAR data. However, using these data together with the strain rate tensor and the rotations rates deduced from GPS baselines, the present-day strain field over Central Afar is consistent with the main tectonic structures, and therefore with the long-term deformation. We investigate the current kinematics of the triple junction included in our GPS data set by building simple block models. The deformation in Central Afar can be described by adding a central microblock evolving separately from the three surrounding plates. In this model, the northern block boundary corresponds to a deep EW-trending trans-tensional dislocation, locked from the surface to 10–13 km and joining at depth the active spreading axes of the Red Sea and the Aden Ridge, from AG to MH-D rift segments. Over the long-term, this plate configuration could explain the presence of the en-échelon magmatic basins and subrifts. However, the transient behaviour of the spreading axes implies that the deformation in Central Afar evolves depending on the availability of magma supply within the well-established segments

    A rockslide-generated tsunami in a Greenland fjord rang Earth for 9 days

    Get PDF
    Climate change is increasingly predisposing polar regions to large landslides. Tsunamigenic landslides have occurred recently in Greenland (Kalaallit Nunaat), but none have been reported from the eastern fjords. In September 2023, we detected the start of a 9-day-long, global 10.88-millihertz (92-second) monochromatic very-long-period (VLP) seismic signal, originating from East Greenland. In this study, we demonstrate how this event started with a glacial thinning–induced rock-ice avalanche of 25 × 106 cubic meters plunging into Dickson Fjord, triggering a 200-meter-high tsunami. Simulations show that the tsunami stabilized into a 7-meter-high long-duration seiche with a frequency (11.45 millihertz) and slow amplitude decay that were nearly identical to the seismic signal. An oscillating, fjord-transverse single force with a maximum amplitude of 5 × 1011 newtons reproduced the seismic amplitudes and their radiation pattern relative to the fjord, demonstrating how a seiche directly caused the 9-day-long seismic signal. Our findings highlight how climate change is causing cascading, hazardous feedbacks between the cryosphere, hydrosphere, and lithosphere.acceptedVersio

    Applications of electrified dust and dust devil electrodynamics to Martian atmospheric electricity

    Get PDF
    Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kVm-1 to 100 kVm-1 have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m-1 can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface)-MicroARES (Atmospheric Radiation and Electricity Sensor) instrumentation to Mars in 2016 for the first in situ measurements

    Étude d’un composite carbone-carbone pour une application en fabrication du verre creux

    No full text
    L’utilisation d’un composite carbone-carbone dans les procédés de moulage du verre sodo-calcique est ici étudiée. Ce composite est choisi pour ses performances physiques, mécaniques et chimiques.Vis-à-vis du verre chaud, le comportement du matériau se caractérise par l’angle de contact θ entre la goutte de verre et la surface du composite lors de l’expérience dite de la “goutte posée”. Des tests de tribologie et des essais de fatigue thermique ont également été réalisés.L’ensemble de cette étude montre que le verre pâteux n’adhère pas au composite. Les cinétiques de vieillissement à l’air semblent mettre en évidence que cette non adhérence résulte de l’oxydation du carbone

    Imclass - a User-Tailored Machine Learning Image Classification Chain for Change Detection or Landcover Mapping

    No full text
    International audienceWith the increasing availability of satellite imagery at several spatial, spectral and temporal resolutions, the choice of the best image and the most appropriate method for object detection and classification of a broad range of land surface classes or processes is still a difficult task for many users. In order to guide the users, we proposed a user-tailored machine learning method (IMage CLASSification - ImCLASS) to detect and classifiy specific landcover classes. The method assumes a mono-class approach taking several ill-posed problems (e.g. class imbalance, high diversity inside the studied class, similarities with the adjacent samples…) as use cases (landslides, construction works in urban areas, burnt areas, vegetation classes…). It is a generalization of the ALADIM processor already validated in the context of landslide mapping and available as a service on the ESA GeoHazards Exploitation Platform (GEP). The proposed chain is able to combine optical and radar images, uses open source libraries, and is optimized for rapid calculation on HPC environments. The ImCLASS processor is presented and its performance is evaluated on three use cases: landslide detection and mapping after disasters in different regions of the World, urban classes change detection with a focus on construction works in Strasbourg, and crop mapping (vineyard) in the Grand-Est region. First results using either bi-dates or mono-date imagery are presented

    Versatile Acylation of N

    No full text
    • …
    corecore