126 research outputs found

    Nuclear Attenuation of Fast Hadrons Produced in Charged-Current Neutrino and Antineutrino Interactions in Neon

    Full text link
    The production of hadrons in charged-current (anti)neutrino interactions is studied with the bubble chamber BEBC exposed ot the CERN (anti)neutrino wide-band beam. Fast-hadron production in a neon target is found to be attennuated as compared to that in a hydrogen target. This feature is discussed within the theoretical models based on the idea of a hadron formation length. The experimental results favour the `constituent' over the `yo-yo' length concept, and suggest a quark cross-section in the order of 3mb.Comment: 14 pages + 7 figures, ps fil

    Quark fragmentation to π±\pi^{\pm}, π0\pi^{0}, K±K^{\pm}, pp and pˉ\bar{p} in the nuclear environment

    Get PDF
    The influence of the nuclear medium on lepto-production of hadrons was studied in the HERMES experiment at DESY in semi-inclusive deep-inelastic scattering of 27.6 GeV positrons off deuterium, nitrogen and krypton targets. The differential multiplicity for krypton relative to that of deuterium has been measured for the first time for various identified hadrons (π+\pi^+, π\pi^-, π0\pi^0, K+K^+, KK^-, pp and pˉ\bar{p}) as a function of the virtual photon energy ν\nu, the fraction zz of this energy transferred to the hadron, and the hadron transverse momentum squared pt2p_t^2. The multiplicity ratio is strongly reduced in the nuclear medium at low ν\nu and high zz, with significant differences among the various hadrons. The distribution of the hadron transverse momentum is broadened towards high pt2p_t^2 in the nuclear medium, in a manner resembling the Cronin effect previously observed in collisions of heavy ions and protons with nuclei.Comment: 8 pages, 5 figure

    Technical Design Report for the: PANDA Micro Vertex Detector

    Full text link
    This document illustrates the technical layout and the expected performance of the Micro Vertex Detector (MVD) of the PANDA experiment. The MVD will detect charged particles as close as possible to the interaction zone. Design criteria and the optimisation process as well as the technical solutions chosen are discussed and the results of this process are subjected to extensive Monte Carlo physics studies. The route towards realisation of the detector is outlined.Comment: 189 pages, 225 figures, 41 table

    Diagnosis and treatment of viral diseases in recipients of allogeneic hematopoietic stem cell transplantation

    Full text link

    Experimental access to Transition Distribution Amplitudes with the P̄ANDA experiment at FAIR

    Full text link

    Experimental results on many-body collisions

    No full text

    Experimental aspects of many-body collisions

    No full text

    Measurement of .gamma.-ray energy in a Xe bubble chamber

    No full text
    corecore