684 research outputs found

    Lie algebras and 3-transpositions

    Get PDF
    We describe a construction of an algebra over the field of order 2 starting from a conjugacy class of 3-transpositions in a group. In particular, we determine which simple Lie algebras arise by this construction. Among other things, this construction yields a natural embedding of the sporadic simple group \Fi{22} in the group 2E6(2)^2E_6(2).Comment: 23 page

    Eliminating the low-mass axigluon window

    Get PDF
    Using recent collider data, especially on the hadronic width the Z0, we exclude axigluons in the currently allowed low-mass window, namely axigluons in the mass range 50 GeV < M_A < 120 GeV. Combined with hadron collider data from di-jet production, axigluons with masses below roughly 1 TeV are now completely excluded.Comment: 8 pages, no figures, LaTe

    Charginos and Neutralinos Production at 3-3-1 Supersymmetric Model in eee^-e^- Scattering

    Get PDF
    The goal of this article is to derive the Feynman rules involving charginos, neutralinos, double charged gauge bosons and sleptons in a 3-3-1 supersymmetric model. Using these Feynman rules we will calculate the production of a double charged chargino with a neutralino and also the production of a pair of single charged charginos, both in an electron- electron eee^-e^- process.Comment: 18 pages, 8 figures, 2 table

    Signal and Backgrounds for Leptoquarks at the LHC

    Get PDF
    We study the potentiality of the CERN Large Hadron Collider (LHC) to unravel the existence of first generation scalar leptoquarks. Working with the most general SU(2)LU(1)YSU(2)_L \otimes U(1)_Y invariant leptoquark interactions, we analyze in detail the signals and backgrounds that lead to a final state containing a pair e+ee^+e^- and jets. Our results indicate that a machine like the LHC will be able to discover leptoquarks with masses up to 2--3 TeV depending on their couplings.Comment: 37 pages, revtex, uses epsfig.sty (included), 15 figures (included

    Lepton flavor violation at linear collider experiments in supersymmetric grand unified theories

    Get PDF
    Lepton flavor violation at linear collider experiments is discussed. We show that detectable lepton flavor violation could occur through scalar lepton pair production and decay in the supersymmetric SU(5) grand unified theory in spite of the stringent present experimental constraints by rare process searches. Possible cross sections about 40fb for an e+e- collider and 280fb for an e-e- collider are illustrated.Comment: 12 pages, including 3 figures, REVTeX, eps

    Signal and Backgrounds for the Single Production of Scalar and Vector Leptoquarks at the LHC

    Get PDF
    We perform a detailed analysis of the potentiality of the CERN Large Hadron Collider to study the single production of leptoquarks via ppe±qpp \to e^\pm q\to leptoquark e±q\to e^\pm q, with e±e^\pm generated by the splitting of photons radiated by the protons. Working with the most general SU(2)LU(1)YSU(2)_L \otimes U(1)_Y invariant effective lagrangian for scalar and vector leptoquarks, we analyze in detail the leptoquark signals and backgrounds that lead to a final state containing an e±e^\pm and a hard jet with approximately balanced transverse momenta. Our results indicate that the LHC will be able to discover leptoquarks with masses up to 2--3 TeV, depending on their type, for Yukawa couplings of the order of the electromagnetic one.Comment: Revtex, 23 pages, 11 postscript files. Uses axodraw.sty (included) and epsfig.sty. Typos corrected. To be published in Phys. Rev.

    Signal and Backgrounds for Leptoquarks at the LHC II: Vector Leptoquarks

    Full text link
    We perform a detailed analyses of the CERN Large Hadron Collider (LHC) capability to discover first generation vector leptoquarks through their pair production. We study the leptoquark signals and backgrounds that give rise to final states containing a pair e+e- and jets. Our results show that the LHC will be able to discover vector leptoquarks with masses up to 1.3-2.1 TeV depending on their couplings to fermions and gluons.Comment: 18 pages, 3 figures, REVTe
    corecore