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embedding of the sporadic simple group Fi22 in the group 2 E6(2).
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1. Introduction

Let G be a group and D a conjugacy class of involutions generating G such that for all d, e ∈ D the
order of de is equal to 1, 2 or 3. Then D is called a class of 3-transpositions in G . Groups generated by
3-transpositions have been introduced by Fischer [7] and studied by various authors since; e.g., see
[1,2,5,14,15].

Given a class D of 3-transpositions in a group G , we define the Fischer space Π(D) to be the partial
linear space with D as point set and as lines the triples of points of the form {d, e, ed = de}, where
d, e ∈ D are non-commuting. Thus, three 3-transpositions on a line generate a subgroup isomorphic
to Sym3, and vice versa, every subgroup Sym3 containing involutions from D produces a line.

The involutions from D on two intersecting lines in a Fischer space generate a subgroup isomor-
phic to Sym4 or to a central quotient of the group 31+2 : 2; e.g. see [5]. The subspace of the Fischer
space generated by these two lines is then isomorphic to the dual of the affine plane of order 2 or
to the affine plane of order 3, respectively. It was already noticed by Buekenhout, that Fischer spaces
are characterized by the property that any two intersecting lines generate such subspaces; see for
example [5].
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By F2 D we denote the F2 vector space on the set of finite subsets of D , where addition of two sets
is defined by the symmetric difference. We identify a point d ∈ D with the vector {d} of this vector
space. Note that this makes D a basis of F2 D , so we can write vectors from F2 D simply as linear
combinations of the 3-transpositions from D . Let A(D) be the algebra on F2 D whose multiplication
∗ is the linear expansion of the multiplication defined for d, e ∈ D by

d ∗ e :=
{

d + e + f if {d, e, f } is a line,

0 otherwise.

In other words, if d and e commute (in particular, when d = e) then d ∗ e = 0 and if d and e do not
commute then d ∗e is the line that passes through them. The group G = 〈D〉 acts on D by conjugation
and it preserves lines. Hence it induces a group of automorphisms of both the Fischer space Π(D)

and the algebra A(D). Note that the action of G is faithful only if Z(G) = 1.
We refer to the algebras A(D) and their G-invariant quotients as 3-transposition algebras. Notice

that Simon Norton [13] considered a similar class of algebras, but defined over the reals. Another
related class of algebras (related to both Norton’s algebras and our 3-transposition algebras) is the
class of Majorana algebras introduced by Alexander Ivanov [11]. In the (2B, 3C)-case the Majorana
algebras are related to a subclass of groups generated by 3-transpositions. They, furthermore, admit
a natural basis with integral structure constants, and after reduction modulo two they produce our
3-transposition algebras.

The 3-transposition algebra A(D) is endowed with a natural bilinear form defined as follows: for
d, e ∈ D we set 〈d|e〉 = 0, if d and e commute, and 〈d|e〉 = 1, if d and e do not commute. Since D is a
basis of A(D), this extends by linearity to the entire A(D). Note that 〈d|d〉 = 0 for every d ∈ D , that
is, this bilinear form is symplectic. Another important property of the form 〈·|·〉 is that it associates
with the algebra product, that is,

〈u|v ∗ w〉 = 〈u ∗ v|w〉
for all u, v, w ∈A(D). This will be verified in Proposition 2.1.

Clearly, the action of G leaves the form invariant. Hence the radical V(D) of 〈·|·〉 is G-invariant.
More interestingly, because the form associates with the algebra product, V(D) is an ideal of A(D)!
We call V(D) the vanishing ideal of A(D) and we call the elements of V(D), viewed as subsets of D ,
the vanishing sets.

Note that with the exception of the trivial case, where G is a group of order 2, the form 〈·|·〉 is
nonzero, which means that V(D) is a proper ideal of A(D). As we are mainly interested in simple
algebras, we will study the algebra A := A(D)/V(D), in which vanishing sets are reduced to zero.
Note that in general A does not need to be simple; however, it is very nearly so. We will show (see
Proposition 2.4) that every G-invariant proper ideal of A(D) is contained in V(D). In particular, A is
always semisimple.

The following relation τ plays a key role in the theory of Fischer spaces. For an element d ∈ D ,
we denote by Ad the set of all points collinear to but distinct from d, i.e., Ad := {e ∈ D | o(de) = 3}.
If, for d, e ∈ D , we have Ad = Ae , then we write dτe. The relation τ is an equivalence relation and it
is related to the existence of a certain normal 2-subgroup of G; see [5]. Indeed, the subgroup τ (G) =
〈de | d, e ∈ D,dτe〉 is normal in G . The image D of D in G = G/τ (G) is a class of 3-transpositions
of G . Note that for any two elements d, e ∈ D with dτe, we have d + e ∈ V(D) (that is, {d, e} is a
vanishing set in D). It follows that the algebras A(D)/V(D) and A(D)/V(D) are isomorphic. Thus,
we can restrict our attention to the case where the relation τ is trivial. This is a strong condition that
significantly simplifies the possible structure of G .

We will mainly focus on the case where the algebra A is a Lie algebra. It turns out that A is
a Lie algebra if and only if the affine planes of the Fischer space are vanishing sets; see Proposi-
tion 2.9. This observation makes it possible to determine which simple Lie algebras are (quotients of)
3-transposition algebras.

The main result of this paper is as follows. We use the Atlas notation for groups; in particu-
lar, pn stands for the elementary abelian group of order pn . The colon : indicates a split extension
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(semidirect product), where the left side is normal. Furthermore, in all such extensions, the natu-
ral action of the complement on the normal subgroup is assumed. Finally, for a Dynkin diagram Xn ,
W (Xn) stands for the corresponding Weyl group.

1.1. Theorem. Let G be a nonabelian group generated by a class D of 3-transpositions. Suppose the relation τ
on D is trivial and suppose further that A is a simple Lie algebra.

Then, up to the center of G, we have one of the following:

(a) D is the unique class of 3-transpositions in G = 3n : W (An); the algebra A is isomorphic to the simple Lie
algebra of type 2 An(2).

(b) D is the unique class of 3-transpositions in G = 3n : W (Dn); the algebra A is isomorphic to the simple Lie
algebra of type 2 Dn(2) for odd n and of type Dn(2) for even n.

(c) D is the unique class of 3-transpositions in the group G = 3n : W (En) with n ∈ {6,7,8}; the algebra A is
isomorphic to the Lie algebra of type 2 E6(2) (n = 6), E7(2) (n = 7) or E8(2) (n = 8).

(d) D is the class of transvections in G = SUn+1(2); the algebra A is isomorphic to the simple Lie algebra of
type 2 An(2).

(e) D is one of the two classes of 126 reflections of O−
6 (3) and A is isomorphic to the simple Lie algebra of

type 2 A5(2).
(f) D is one of the two classes of 117 reflections of O+

6 (3) and A is isomorphic to the simple Lie algebra of
type D4(2).

(g) D is the unique class of 360 3-transpositions in G = PΩ+
8 (2) : Sym3; the algebra A is isomorphic to the

simple Lie algebra of type D4(2).
(h) D is the class of 351 reflections of +-type in G = +Ω+

7 (3) and A is isomorphic to the simple Lie algebra
of type 2 E6(2).

(i) D is the unique class of 3510 3-transpositions in Fi22 and A is isomorphic to the simple Lie algebra of type
2 E6(2).

For the notation used in part (h) we refer the reader to Section 4.
The above result and its proof provide a geometric argument for the embedding of a central ex-

tension of PΩ−
6 (3) into SU6(2) and of Fi22 into 2 E6(2). Indeed, we obtain the following result.

1.2. Corollary.

(a) The group PSU6(2) contains a subgroup isomorphic to PΩ−
6 (3) generated by root elements (i.e., elations).

(b) The group 2 E6(2) contains subgroups isomorphic to +Ω+
7(3) and Fi22 generated by root elements.

The embedding of Fi22 into 2 E6(2) was first established by Bernd Fischer. It led him to the dis-
covery of the Baby Monster sporadic simple group and hence also to the discovery of the Monster,
see [11].

We also notice that with a bit of extra effort we could have included the case where the group G
is infinite. Indeed, in [5] all Fischer spaces, finite and infinite, have been classified. The infinite ones
turn out to be limits of finite ones. So we only find the infinite dimensional, finitary versions of the
unitary and orthogonal Lie algebras as in (a), (b), and (d) of the conclusion of Theorem 1.1, if we allow
infinite groups G .

For Fischer spaces of symplectic type (see Section 4) a somewhat similar algebra product was
considered by Irving Kaplansky [12] and the first author [4]. This leads to four series of simple Lie
algebras in characteristic 2, none of which appears in the conclusion of our Theorem 1.1. We thank
Bill Kantor for this observation.

The organization of the paper is as follows. In Section 2 we develop some general theory for 3-
transposition algebras. In particular, we prove the algebra A to be a Lie algebra if and only if every
affine plane of the Fischer space is vanishing. In Section 3 we prove various forms of simple Lie
algebras of classical type A, D or E over the field F2 to be 3-transposition algebras. In Section 4 we
start with the proof of our main result, Theorem 1.1. We determine those Fischer spaces that give
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rise to Lie algebras. In Section 5 we complete the proof of Theorem 1.1. In Section 6 we present
some additional computational results on the dimensions of (arbitrary) 3-transposition algebras for
relatively small groups.

2. 3-transposition algebras

Let G be a group and D a conjugacy class of 3-transpositions generating G . By A we denote
the corresponding 3-transposition algebra A(D). We will study A and the action of G on A. Since
the center Z(G) of G acts trivially on D and since de /∈ Z(G) for all d, e ∈ D , d �= e, we can assume
Z(G) = 1 whenever convenient.

Recall that the product in A is defined by

d ∗ e :=
{

d + e + f if {d, e, f } is a line,

0 otherwise,

and the symplectic form on A is defined by

〈d|e〉 :=
{

1 if d and e are collinear and distinct,
0 otherwise.

We first check that 〈·|·〉 associates with the product.

2.1. Proposition. For v, u, w ∈A we have

〈u|v ∗ w〉 = 〈u ∗ v|w〉.

Proof. It suffices to prove that 〈u|v ∗ w〉 = 〈u ∗ v|w〉 for u, v, w ∈ D .
Suppose u, v, w ∈ D . If u commutes with v , then u ∗ v = 0 hence 〈u ∗ v|w〉 = 0. Thus we have to

show that 〈u|v ∗ w〉 = 0. This is clear if w commutes with v , as then w ∗ v = v ∗ w = 0. Otherwise,
let t = w v = v w be the third point on the line through v and w . Note that u commutes either with
both w and t , or with neither. In either case, we obtain 〈u|v ∗ w〉 = 0. (Recall that A is defined over
F2 and hence the values of 〈·|·〉 are in F2, too.)

By symmetry, we can now restrict our attention to the case where both u and w do not commute
with v . If all three points are together on a line, then clearly 〈u|v ∗ w〉 = 0 = 〈u ∗ v|w〉. So we can
assume that the three points span a plane. If this plane is an affine plane of order 3, then w is
collinear to all three points on the line u ∗ v and u is collinear to all three points on v ∗ w . Hence
〈u|v ∗ w〉 = 1 = 〈u ∗ v|w〉. If the plane is the dual affine plane of order 2, then w is collinear to two
points on the line u ∗ v and u to two points on v ∗ w . Therefore 〈u|v ∗ w〉 = 0 = 〈u ∗ v|w〉. �

Let V = V(D) be the radical of 〈·|·〉.

2.2. Corollary. The radical V is an ideal of A.

Proof. Since V is a linear subspace, it suffices to show that V is closed with respect to multiplication
with elements of A. Let u ∈ V and v ∈ A. It follows from Proposition 2.1 that for every w ∈ A we
have that 〈u ∗ v|w〉 = 〈u|v ∗ w〉 = 0, since u is in the radical V . Thus, 〈u ∗ v|w〉 = 0 for all w ∈A, that
is, u ∗ v is in V . �

Recall that we call V the vanishing ideal and the elements of V , viewed as subsets of D , vanishing
sets. Clearly, a finite subset X of D is vanishing if and only if X is perpendicular to every d ∈ D , that
is, if for every d ∈ D , the number of elements of X not commuting with d is even. Every finite Fischer
space does contain nonempty vanishing subsets. Indeed, if D is finite, then D itself is a vanishing set,
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as every point d does not commute with an even number of points, two on every line through d. For
each of the various types of Fischer spaces we can find more types of vanishing sets.

We now concentrate on G-invariant ideals and quotients of A. It is clear that the symplectic form
〈·|·〉 is preserved by the action of G obtained by linearly extending the conjugation action of G on D .
Thus V is G-invariant. We claim that V is the unique maximal among all G-invariant proper ideals
of A.

The following observation will be useful.

2.3. Lemma. Let X be a finite subset of D and d ∈ D. Then

d ∗ X = 〈d|X〉d + X + Xd.

Proof. The expression in the right side is linear in X , so one only needs to verify it for X of size 1, in
which case the claim follows directly from the definition of the product on A. �

We now turn to the main claim.

2.4. Proposition. Every G-invariant proper ideal of A is contained in V .

Proof. Suppose I is a G-invariant ideal containing an element X not in V . Then we can find an
element d ∈ D with 〈d|X〉 �= 0. Since I is an ideal, d ∗ X ∈ I . On the other hand, by the above lemma,
d ∗ X = d + X + Xd . Note that X ∈ I and also Xd ∈ I , since I is G-invariant. It follows that d ∈ I .
However, now by G-invariance, dG = D is contained in I and so I =A. �

The above result has the following important consequence. Recall that A=A(D)/V(D).

2.5. Proposition. If D is finite then A is the direct product of isomorphic simple algebras. In particular, A is
semisimple.

Proof. We first note that G acts on A since V is G-invariant. Furthermore, in view of Proposition 2.4,
the only G-invariant ideals of A are the zero ideal and the entire A.

If D is finite then A (and hence also A) is finite dimensional and hence A contains a minimal
non-trivial ideal I . For g ∈ G , if I g �= I then I ∩I g = 0 and hence II g = 0. It follows from here that
the orbit of I under G generates an ideal J that is a direct sum of several conjugates of I . Since J
is manifestly G-invariant and nonzero, the remark at the beginning of the proof implies that J = A.
Finally, since I is a minimal ideal and since every factor of A, other than I itself, annihilates I , it
follows that I is a simple algebra. �

Note that we were careful in this proof not to state that A is the direct product of all ideals I g .
This is, however, almost always the case. Indeed, if some conjugate I g does not appear in the direct
product decomposition then every factor annihilates I g , which clearly means that I g (and hence also
I and the entire A) is a trivial algebra. It easily follows from the definition of the product of A that
A is trivial if and only if every line in the Fischer space Π(D) is vanishing. An example of a Fischer
space satisfying this property is the dual affine plane of order 2. For more examples see Lemma 5.1.

The above discussion yields the following.

2.6. Corollary. If the finite Fischer space Π(D) has at least one line that is not vanishing then A is the direct
product of all its minimal ideals. Furthermore, G transitively permutes the minimal ideals of A.

We also note the following important case.

2.7. Proposition. Suppose A is a simple quotient algebra of A. If A ∼=A/I for some G-invariant ideal I , then
A is isomorphic to A.
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Proof. By Proposition 2.4, I is contained in V . Simplicity of A implies now that I = V . �
The following lemma will be used in Section 5.

2.8. Lemma. Let E be a subspace of the Fischer space Π(D) (i.e., E satisfies de ∈ E for all d, e ∈ E). Then the
algebra A contains a subalgebra that has a quotient isomorphic to A(E)/V(E).

Proof. The elements of E generate a subalgebra A(E) of A(D). As every vanishing subset of D which
is contained in E is also a vanishing subset of E , we find that V(D) ∩ A(E) ⊆ V(E). Hence, (A(E) +
V(D))/V(D) is the subalgebra we are looking for. �

Finally, we need a criterion which allows us to decide when A is a Lie algebra.

2.9. Proposition. Let I be an ideal of A. Then A/I is a Lie algebra if and only if every plane of Π(D) isomor-
phic to the affine plane of order 3 is in I .

Proof. Clearly the Jacobi identity holds in A if and only if it holds for any three elements of D . Let
d, e, f ∈ D . We will check the Jacobi identity for these elements, that is, the equality

(d ∗ e) ∗ f + (e ∗ f ) ∗ d + ( f ∗ d) ∗ e = 0.

If two of the three elements are equal, say d = e, then

(d ∗ e) ∗ f + (e ∗ f ) ∗ d + ( f ∗ d) ∗ e = (d ∗ d) ∗ f + (d ∗ f ) ∗ d + ( f ∗ d) ∗ d

= 0 + (d ∗ f ) ∗ d + (d ∗ f ) ∗ f

= 0.

Hence, we can assume that the three elements are pairwise distinct.
If {d, e, f } is a line, then (d ∗ e) ∗ f = (d + e + f ) ∗ f = d + e + f + d + e + f = 0. By symmetry,

(d ∗ e) ∗ f + (e ∗ f ) ∗ d + ( f ∗ d) ∗ e = 0 + 0 + 0 = 0. Thus, assume that the elements d, e, f are not on
a single line.

If there is a point (say d) among d, e, f which is neither collinear to e nor to f (i.e., d commutes
with both e and f ), then all three terms (d ∗ e) ∗ f , (e ∗ f ) ∗ d and ( f ∗ d) ∗ e are 0. Indeed, not only
d ∗ e = f ∗ d = 0, but also (e ∗ f ) ∗ d = 0, since either e ∗ f = 0 or else e ∗ f = e + f + t for t = e f = f e

and so (e ∗ f ) ∗ d = e ∗ d + f ∗ d + t ∗ d = 0 + 0 + 0, as d is not collinear to t (indeed, if d commutes
with e and f then it also commutes with t = e f ). So the Jacobi identity holds also in this case.

This leaves the situation where d, e, f are three points in a plane of the Fischer space Π(D).
Moreover, we can assume that e is collinear to both d and f . First suppose that d, e, f are in a dual
affine plane. If d ∗ f = 0, then (e ∗ f ) ∗ d equals the sum of the two lines on d. Also, ( f ∗ d) ∗ e = 0
and (d ∗ e) ∗ f equals the sum of the two lines on f . However, the sum of the two lines on d and the
two lines on f equals zero, which establishes the Jacobi identity in this case.

If d ∗ f �= 0 then (d ∗ e) ∗ f + (e ∗ f ) ∗ d + ( f ∗ d) ∗ e is the sum of the lines of the plane on d, e
and f . Again this sum is equal to zero.

Now assume that d, e, f are three points inside an affine plane, say π . Then (d ∗ e) ∗ f is equal
to the sum of the three lines in the plane on f meeting the line through d and e. But then (d ∗ e) ∗
f + (e ∗ f ) ∗ d + ( f ∗ d) ∗ e, after canceling the lines through d and e, through d and f , and through e
and f , each of which appears in the sum twice, equals the sum of the three lines passing through f
and de , through d and e f , and through e and f d . This is the sum of three parallel lines in the plane
π and hence it equals to π itself.

Thus, the Jacobi identity holds in A/I if and only if every such π is in I . �
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Clearly, this gives us the following.

2.10. Corollary. A is a Lie algebra if and only if every affine plane of order 3 in Π(D) is a vanishing subset
of D.

3. The normalizer of a Cartan subalgebra as a 3-transposition group

In this section we describe some examples of classical Lie algebras obtained as quotients of 3-
transposition algebras.

Let F4 be the field with 4 elements. Let g be a split classical Lie algebra over F4 of simply laced
type, i.e., of type An (n � 1), Dn (n � 4) or En (n = 6,7, or 8). Let h be a Cartan subalgebra of g and
Φ the corresponding root system. We can then decompose g as the sum of the Cartan subalgebra h

and the corresponding root spaces:

g = h⊕
⊕
α∈Φ

gα,

where gα denotes the root space associated to the root α ∈ Φ .
For each α ∈ Φ , let xα be a nonzero element in gα such that the elements xα together with some

root elements hα = [xα, x−α] ∈ h form a Chevalley basis for g. (The elements hα are only included in
this basis for simple roots α, although they make sense for arbitrary α ∈ Φ .) Taking into account that
our field is of characteristic two and the diagram is simply laced, the elements xα and hα satisfy the
following:

[xα, xβ ] =
{
hα if β = −α,

xα+β if α + β ∈ φ,

0 otherwise
and [hα, xβ ] =

{
xβ if α + β ∈ φ

or α − β ∈ φ,

0 otherwise.

Note that α + β ∈ φ if and only if the angle between α and β is 2π
3 and, similarly, α − β is a root if

and only if the angle is π
3 . Note also that

hα = h−α,

for all α ∈ Φ , and that

hα + hβ = hα+β,

when α + β is a root. Using hβ = h−β , we get that also hα + hβ = hα−β when α − β is a root.
The Weyl group W of g acts on g by permuting the elements xα and hα according to how it

permutes the roots α. Hence we can view W as a subgroup of the automorphism group of g stabiliz-
ing h. Additionally, for α ∈ Φ and ω ∈ F

∗
4 = F4 \ {0}, let h(α,ω) be the automorphism of g centralizing

h and such that

x
h(α,ω)
β =

⎧⎨
⎩

ωxβ if β = α or α + β is a root,
ωxβ if β = −α or α − β is a root,
xβ otherwise.

Here the bar indicates the involutory automorphism of F4, that is, ω = ω2 for all ω ∈ F4. Also, ω =
ω−1, when ω �= 0.
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It is straightforward to verify that h(α,ω) is indeed an automorphism of g for all α ∈ Φ and all
ω ∈ F

∗
4. Clearly,

h(α,μ)h(α,ν) = h(α,μν),

for all μ,ν ∈ F
∗
4. This means that, for a fixed root α, the three automorphisms h(α,ω) form a cyclic

group Hα of order 3. In particular, h(α,1) is the identity automorphism for all α ∈ Φ . Also, the
relation

h(−α,ω) = h(α,ω)

shows that Hα = H−α .
Manifestly, h(α,μ) and h(β, ν) commute for all α,β ∈ Φ and all μ,ν ∈ F

∗
4. Hence the subgroup H

of Aut(g) generated by all elements h(α,ω) is elementary abelian. When α +β is a root, we compute
that

h(α,ω)h(β,ω) = h(α + β,ω),

which means that H is generated by its subgroups Hα for simple roots α, and this yields that H has
order 3n .

The Weyl group W acts on the elements h(α,ω) via

h(α,ω)w = h
(
αw ,ω

)
,

for all w ∈ W . Hence W permutes the subgroups Hα and normalizes H . We set G := W H . Since
H ∼= 3n and H ∩ G = 1, we have G ∼= 3n : W .

3.1. Lemma. Let α be a root and let w ∈ W be the corresponding reflection. Then [H, w] = Hα .

Proof. For this, it suffices to show that [h(β,ω), w] ∈ Hα for all roots β and all ω ∈ F
∗
4. Since

h(β,ω) = h(−β,ω), we can assume that the angle between α and β is at least π
2 .

Let us consider the cases. If the angle is equal π
2 then h(β,ω)w = h(βw ,ω) = h(β,ω). Hence

in this case [h(β,ω), w] = 1. If the angle between α and β is 2π
3 then h(β,ω)w = h(βw ,ω) =

h(α + β,ω) = h(α,ω)h(β,ω). Hence [h(β,ω), w] = h(α,ω) ∈ Hα . Finally, if β = −α then h(β,ω)w =
h(α,ω). From this we deduce [h(β,ω), w] = h(−α,ω)−1h(α,ω) = h(α,ω)2 = h(α,ω) ∈ Hα . Thus,
[H, w] = Hα , as claimed. �

Let D be the conjugacy class of G containing the class of reflections from W . It follows from our
commutator computation that the intersection of D with the coset w H is w Hα . Hence D consists of
all elements d(α,ω) := wh(α,ω), where α is a root, w is the corresponding reflection, and ω ∈ F

∗
4.

3.2. Proposition. The class D is a class of 3-transpositions in G.

Proof. Clearly, D generates G . Let d = d(α,ω) = wh(α,ω) and d′ = d(α′,ω′) = w ′h(α′,ω′) be two
involutions from D . If w = w ′ then dd′ ∈ Hα = Hα′ and hence it has order dividing three. Suppose
w �= w ′ , that is, α �= ±α′ . If w and w ′ commute then (dd′)2 is in H and this element is inverted by
both d and d′ , which implies that it is inverted by both w and w ′ . Therefore, (dd′)2 ∈ Hα ∩ Hα′ = 1,
proving that dd′ has order 2.

Similarly, if w and w ′ do not commute then (dd′)3 is an element of H that is inverted by both w
and w ′ . Again, this implies that (dd′)3 ∈ Hα ∩ Hα′ = 1; hence the order of dd′ is three. �
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Thus, G is a group of 3-transpositions with respect to D . Note that for different types of Lie alge-
bra g, the group G does not always fall into the same case of the classification [5]. Indeed, following
the notation in [5], if g is of type An , then G has central type PR 2; if g is of type Dn , then G has
central type PR 5; and if g is of type E6, E7, E8, we get PR 5, PR 9 and PR 10, respectively.

We now want to build in g a quotient of the 3-transposition algebra A=A(D). Since D is a basis
of A, to define an F2-linear mapping φ : A → g, we can simply specify the image of each element
d(α,ω). We set

φ
(
d(α,ω)

) := x(α,ω) := ωxα + ωx−α + hα,

where, as usual, α ∈ Φ , and ω is an element of F∗
4. Note that x(α,ω) = x(−α,ω), which means that

φ is well defined. Let � be the set of all elements x(α,ω).

3.3. Proposition. The map φ is a homomorphism.

Proof. Let d = d(α,ω) and d′ = d(α′,ω′) be two elements of D . We need to check that φ(d ∗ d′) =
[φ(d), φ(d′)]. If d = d′ then both sides of this equality are zero. Hence we can assume that d �= d′ . If
α = ±α′ then we can assume without loss of generality that α = α′ and then ω �= ω′ . Let ω′′ ∈ F

∗
4 so

that F
∗
4 = {ω,ω′,ω′′} holds, and set d′′ := d(α,ω′′). Then d ∗ d′ = d + d′ + d′′ and hence φ(d ∗ d′) =

x(α,ω) + x(α,ω′) + x(α,ω′′) = hα , since ω + ω′ + ω′′ = 0. On the other hand,

[
φ(d),φ

(
d′)] = [

x(α,ω), x
(
α,ω′)]

= [
ωxα + ωx−α + hα, ω′xα + ω′x−α + hα

]
= 0 + ωω′hα + 0 + ωω′hα + 0 + 0 + 0

= (
ωω′ + ωω′)hα = hα.

Here we used that ωω′ �= 1 if ω �= ω′ , and hence ωω′ + ωω′ = 1.
Thus, the claim holds when α = ±α′ . If α is perpendicular to α′ then we proved in Proposi-

tion 3.2 that d and d′ commute. Hence d ∗ d′ = 0. On the other hand, by expanding [φ(d), φ(d′)] =
[x(α,ω), x(α′,ω′)], we see that each summand is zero and so [φ(d), φ(d′)] is also zero. So the claim
holds again.

Finally, suppose that α and α′ are not parallel and not perpendicular. Without loss of generality
we can assume that the angle between α and α′ is 2π

3 . In this case the order of dd′ is three and so

d ∗ d′ = d + d′ + d′′ , where d′′ = dd′
. Hence d′′ = d′dd′ = w ′h(α′,ω′)wh(α,ω)w ′h(α′,ω′), where w and

w ′ are the reflections with respect to α and α′ respectively. Hence,

d′′ = w ′w w ′h
((

α′)w w ′
,ω′)h

(
αw ′

,ω
)
h
(
α′,ω′)

= w ′w w ′h
(
α,ω′)h

(
α + α′,ω

)
h
(
α′,ω′)

= w ′w w ′h
(
α + α′,ωω′)

= d
(
α + α′,ωω′),

since w ′′ = w ′w w ′ is exactly the reflection with respect to α + α′ . We can also write that d(α +
α′,ωω′) = d(−α − α′,ωω′) = d(−α − α′, (ωω′)−1). Hence d′′ = d(α′′,ω′′), where α′′ satisfies α +
α′ + α′′ = 0 and ω′′ satisfies ωω′ω′′ = 1.

We can now verify our equality. On the one hand, φ(d ∗d′) = φ(d +d′ +d′′) = x(α,ω)+ x(α′,ω′)+
x(α′′,ω′′). On the other hand,
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[
φ(d),φ

(
d′)] = [

x(α,ω), x
(
α′,ω′)]

= [
ωxα + ωx−α + hα,ω′xα′ + ω′x−α′ + hα′

]
= ωω′xα+α′ + 0 + ωxα + 0 + ωω′x−α−α′ + ωx−α + ω′xα′ + ω′x−α′ + 0

= (ωxα + ωx−α) + (
ω′xα′ + ω′x−α′

) + (
ω′′xα′′ + ω′′x−α′′

)
.

(Here we used that α′′ = −α − α′ and ω′′ = (ωω′)−1 = ωω′ .) The difference between this expression
and x(α,ω) + x(α′,ω′) + x(α′′,ω′′) is hα + hα′ + hα′′ = h−α′′ + hα′′ = 0, hence we again have equality,
as claimed. �

As a by-product, our computation yields a description of the Fischer space Π(D). The lines of
Π(D) are of two kinds: (1) For a fixed α ∈ Φ , the set {d(α,ω) | ω ∈ F

∗
4} is a line. Clearly, the

lines corresponding to α and to −α are the same. (2) For a given triple of roots α, α′ , α′′ satis-
fying α + α′ + α′′ = 0, and a given triple of field elements ω, ω′ , ω′′ satisfying ωω′ω′′ = 1, the set
{d(α,ω),d(α′,ω′),d(α′′,ω′′)} is a line. Again note that if we negate all α’s and apply bar to the ω’s,
we will get the same line. Finally notice that the triples ω, ω′ , ω′′ as above can be of two kinds:
either ω = ω′ = ω′′ , or {ω,ω′,ω′′} = F

∗
4.

Our next goal is to show that the homomorphism φ that we introduced behaves naturally with
respect to the action of G . This will allow us later to invoke Proposition 2.7.

3.4. Proposition. The homomorphism φ commutes with the action of G.

Proof. Suppose d = d(α,ω) = wh(α,ω). We need to show that φ(dg) = φ(d)g for each g ∈ G . On the
left, g acts by conjugation, while on the right it acts in the natural way, as an automorphism of g.
Clearly, we can restrict g to a generating set of G , say, D . Let g = d′ = d(α′,ω′) = w ′h(α′,ω′).

We can use the known structure of the Fischer space Π(D) to compute dd′
, so it only remains to

compute the right side of the claimed equality, φ(d)d′ = x(α,ω)d′
. There are several cases. If α = ±α′

then we can assume without loss of generality that α = α′ . Then dd′ = d′′ := d(α,ω′′), where ω′′ = ω
if ω′ = ω and, otherwise, {ω,ω′,ω′′} = F

∗
4. (Note that in both cases ω′′ satisfies ωω′ω′′ = 1.) Hence

the left hand side is φ(d′′) = x(α,ω′′). The right hand side is

x(α,ω)d′ = (ωxα + ωx−α + hα)wh(α,ω′)

= (ωx−α + ωxα + hα)h(α,ω′)

= ωω′x−α + ωω′xα + hα

= ω′′x−α + ω′′xα + hα

= x
(
α,ω′′).

Hence the claim holds in this case.
If the angle between α and α′ is π

2 then dd′ = d. Correspondingly, in the right hand side, both w ′

and d(α′,ω′) fix x(α,ω) and so x(α,ω)d′ = x(α,ω), yielding the equality.
Finally, if α and α′ are neither parallel, nor perpendicular then we can assume without loss that

the angle between α and α′ is 2π
3 . In this case dd′ = d′′ := d(α′′,ω′′), where α′′ satisfies α + α′ +

α′′ = 0 and ω′′ satisfies ωω′ω′′ = 1. Thus, the left hand side is φ(d′′) = x(α′′,ω′′). Let us compute the
right hand side:

x(α,ω)d′ = (ωxα + ωx−α + hα)w ′h(α′,ω′)

= (ωx−α′′ + ωxα′′ + hα′′)h(α′,ω′)
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Table 1
Possible types and dimensions of the fixed subalgebra gσ .

Type g Type gσ Dimension gσ /Z(gσ )

An (n odd) 2 An (n + 1)2 − 2
An (n even) 2 An (n + 1)2 − 1
Dn (n odd) 2 Dn 2n2 − n − 1
Dn (n even) Dn 2n2 − n − 2
E6

2 E6 78
E7 E7 132
E8 E8 248

= ωω′x−α′′ + ωω′xα′′ + hα′′

= ω′′x−α′′ + ω′′xα′′ + hα′′

= x
(
α′′,ω′′),

and so the desired equality holds in all cases. �
As a consequence we have the following.

3.5. Corollary. The ideal I := kerφ is G-invariant.

It remains to discuss the image of φ. On the one hand, im φ can be described as the F2-span of �.
On the other hand, let σ be the composition of the Chevalley involution of g (fixing hα and sending
xα to x−α for all α ∈ Φ) with the field bar automorphism applied to the coordinates with respect
to our Chevalley basis of g. Then σ is a semilinear automorphism of g and so the fixed subalgebra
gσ := {x ∈ g | xσ = x} of σ is an F2-form of g. It is well known that gσ is, up to its center, a simple
Lie algebra (just like g itself is simple up to the center); its type is given in Table 1.

It is immediate that � ⊂ gσ , since x(α,ω)σ = (ωxα + ωx−α + hα)σ = ωx−α + ωxα + hα = x(α,ω).
Therefore, imφ ⊆ gσ .

3.6. Proposition. We have im φ = gσ .

Proof. We already know that imφ ⊆ gσ . Since gσ is an F2-form of g, the two algebras have the same
dimension. Hence it suffices to show that � has the full rank, that is, � spans g over F4.

Working in the A1 subalgebra 〈x−α,hα, xα〉 for a single root α ∈ Φ , we find three vectors of � in
this subalgebra, x(α,ω), x(α,ω′), and x(α,ω′′), where as usual {ω,ω′,ω′′} = F

∗
4. These three vectors

are linearly independent, since the corresponding determinant,

∣∣∣∣∣∣
ω ω′ ω′′
1 1 1
ω ω′ ω′′

∣∣∣∣∣∣ ,
is nonzero. (It is in essence a Vandermonde determinant.) Hence hα and xα are contained in the
F4-span of � for each α. �

This means that the algebra gσ is a quotient of the 3-transposition algebra A(D). Since the ideal
I = kerφ is G-invariant by Corollary 3.5 and since gσ modulo its center is simple, an application of
Proposition 2.7 yields the following.

3.7. Proposition. Suppose G and D are as defined in this section. Then A(D)/V(D) is isomorphic to the Lie
algebra gσ modulo its center.
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4. Fischer spaces in which affine planes vanish

The 3-transposition algebras giving rise to Lie algebras come from Fischer spaces in which affine
planes are vanishing; see Proposition 2.9. Thus, in order to find all Lie algebras among the 3-
transposition algebras, we can restrict our attention to Fischer spaces in which affine planes are
vanishing. It is the purpose of this section to classify all such spaces. For this we make use of (parts
of) the classification of Fischer spaces as presented in [5].

We introduce some notation. Denote by Dd the set of all points in D not collinear with d, i.e.,
Dd := {e ∈ D | o(de) = 2} (observe that D = Ad ∪ Dd ∪ {d}). As we already saw in the introduction,
the relation τ on D defined by dτe for d, e ∈ D if and only if Ad = Ae is related to the existence
of a normal 2-subgroup in G . The relation θ on D , defined by dθe if and only if Dd = De is related
to normal 3-subgroups. Indeed, the subgroup θ(G) = 〈de | d, e ∈ D,dθe〉 is normal in G and it is a
3-group.

The space Π is said to be of symplectic type if it contains a dual affine plane, but no affine planes.
It is called of orthogonal type if it does contain an affine plane, but every point not in the plane is
collinear with 0, 6 or all points in the plane. This excludes the case where G contains a subgroup
generated by elements from D isomorphic to a central quotient of 21+6 : SU3(2). Such subgroups
appear in the unitary groups over F4. Thus, continuing in this vein, we say that Π is of unitary type
when it contains an affine plane and a point outside of the plane that is collinear to exactly 8 points
of the plane, but does not contain a subspace isomorphic to the Fischer space of the unique class
of 3-transpositions in PΩ+

8 (2) : Sym3 (a subgroup of all five sporadic examples from [5]). Finally if
Π does contains a subspace isomorphic to the Fischer space of PΩ+

8 (2) : Sym3, then it is of sporadic
type.

The Fischer space Π(D) (as well as the group G = 〈D〉) will be called irreducible if and only if
Π(D) is connected, and both relations τ and θ are trivial. We recall the first main theorem from [5].

4.1. Theorem. (See [5, Theorem 1.1].) Let G be a group generated by a conjugacy class D of 3-transpositions. If
G is irreducible, then, up to a center, we may identify D with one of the following:

(a) the transposition class of a symmetric group;
(b) the transvection class of the isometry group of a nondegenerate orthogonal space over F2;
(c) the transvection class of the isometry group of a nondegenerate symplectic space over F2;
(d) a reflection class of the isometry group of a nondegenerate orthogonal space over F3;
(e) the transvection class of the isometry group of a nondegenerate unitary space over F4;
(f) a unique class of involutions in one of the five groups PΩ+

8 (2) : Sym3 , PΩ+
8 (3) : Sym3 , Fi22 , Fi23 , or Fi24 .

The 3-transposition classes of cases (a)–(c) of Theorem 4.1 are of symplectic type, those described
in case (d) of orthogonal type, the ones described in (e) of unitary type, and finally, those in (f) of
sporadic type.

In all cases except for (d), the class of 3-transpositions is unique. An orthogonal group over F3,
however, contains two classes of reflections. Let (V , Q ) be a nondegenerate orthogonal space of di-
mension n over F3 and suppose f is the associated bilinear form. If n is finite, then, up to isometry,
there are two choices for the form Q , distinguished by their discriminant � = ±1. This discriminant
is, in even dimension, determined by the Witt sign ε of Q , which is defined as +1 if the Witt index
(that is, the dimension of maximal isotropic subspaces) equals n

2 and as −1 if the Witt index equals
n
2 − 1. Indeed, for even n we have ε� = (−1)

(n+1)n
2 . We use this formula to define the Witt sign ε also

in odd dimensions. We write ε = ± for ε = ±1. For all n, we denote O(V , Q ) by Oε
n(3) and its derived

subgroup by Ωε
n (3). For odd n, the ε is often left out, since then O+

n (3) and O−
n (3) are isomorphic.

For each vector x ∈ V with Q (x) �= 0, the reflection rx : v �→ v + f (v, x)Q (x)x is an element of
the orthogonal group O(V , Q ). There are two classes of reflections in O(V , Q ); those of +-type with
Q (x) = 1 and those of minus type with Q (x) = −1.

By γ Ωε
n (3) we denote the subgroup of O(V , Q ) generated by the reflections of type γ .

The aim of this section is to prove the following result.
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4.2. Proposition. Let Π be a finite connected Fischer space with trivial relation τ . Then the affine planes in Π

are vanishing if and only if one of the following holds:

(a) Π is of symplectic type.
(b) Π is isomorphic to the Fischer space on the unique class of 3-transpositions in 3n : W (Xn), where Xn is

An (n � 2), Dn (n � 4) or En (n = 6,7,8).
(c) Π is isomorphic to the Fischer space of transvections in the group SUn(2) with n � 3.
(d) Π is isomorphic to the Fischer space of the class of 126 +-reflections in +Ω

−
6 (3).

(e) Π is isomorphic to the Fischer space of the class of 117 +-reflections in +Ω
+
6 (3).

(f) Π is isomorphic to the Fischer space on the 351 +-reflections in +Ω+
7(3).

(g) Π is isomorphic to the Fischer space of the unique class of 360 3-transpositions of PΩ8(2) : Sym3 .
(h) Π is isomorphic to the Fischer space of the unique class of 3-transpositions of Fi22 .

The proof of this proposition is given in the remainder of this section.
Assume that Π is a Fischer space of some class D of 3-transpositions in a group G = 〈D〉. More-

over, assume Π satisfies the hypothesis of Proposition 4.2.
If Π is of symplectic type, there is nothing to prove. So, we assume that Π does contain affine

planes. The following observation is very useful.

4.3. Lemma. A Fischer space in which affine planes are vanishing does not contain affine 3-spaces.

Proof. Inside an affine 3-space, an affine plane is not vanishing. �
As already noticed in the introduction, we focus on the Fischer spaces for which the relation τ is

trivial. However, let us first assume that not only τ , but also θ is trivial.
Suppose Π is of orthogonal type. In this case D can be identified with a class of reflections in

an orthogonal group O(W ,q) for some nondegenerate orthogonal space (W ,q) over the field F3, as
in case (d) of Theorem 4.1. However, since by Lemma 4.3 there are no affine 3-spaces in Π , the
dimension of W is restricted by 5 � dim W � 7.

If dim(W ) = 5, then only one class of reflections provides a Fischer space with affine planes,
namely those reflections, which centralize an orthogonal 4-space of maximal Witt index. This Fischer
space is then isomorphic to the Fischer space of the unique class of 3-transpositions in SU4(2). Hence
we are in case (c) of the proposition.

If dim(W ) = 6, then we have case (d) or (e) of Proposition 4.2.
Finally, if dim(W ) = 7, then by the condition that a point always centralizes at least a line in a

plane not containing the point, only the class of reflections centralizing an orthogonal 6-space with
non-maximal Witt index satisfies our assumptions. This class is the class of +-reflections in the group
+Ω+

7 (3), as described under (f) of Proposition 4.2.
Next assume that Π is of unitary type. Then we are in case (e) of Theorem 4.1 and hence in

case (c) of Proposition 4.2. The fact that the affine planes inside all these unitary spaces are vanishing
can easily be checked within SU4(2) and SU5(2).

It remains to consider the case where the Fischer space is sporadic, as in case (g) of Theorem 4.1.
The commuting graph of the Fischer space of PΩ8(3) : Sym3 consists of three parts, each forming

a Fischer space for PΩ8(3). Points of one part are collinear to all points of the other two parts. As
each part contains affine planes, we conclude that these planes are not vanishing. Since the Fischer
spaces related to Fi23 and Fi24 contain subspaces isomorphic to the Fischer space of PΩ8(3) : Sym3,
they contain non-vanishing affine planes, too.

The Fischer spaces of PΩ8(2) : Sym3 and Fi22 occur in (f) and (g) of Proposition 4.2, respectively. It
remains to prove that affine planes in these Fischer spaces are vanishing.

4.4. Lemma. Let Π be the Fischer space of PΩ8(2) : Sym3 . Then all affine planes in Π are vanishing.

Proof. The non-collinearity graph of Π partitions into three parts, each part being a Fischer space for
PΩ8(2). The latter space is of symplectic type and does not contain affine planes.
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Therefore, every affine plane π of Π meets each part of the partition in a line. The three lines
form a parallel class of lines in the plane. If d is a point of Π , then d centralizes one or three points
of the line of π that lies in the same part as d, and no other point of π . Hence π is vanishing. �

Now assume Π to be the Fischer space of Fi22. To show that the affine planes in Π are vanishing,
we consider its subspace on the 693 points not collinear to a fixed point d. This latter space is the
Fischer space related to SU6(2); e.g., see [1,2,5]. This space has the following properties.

4.5. Lemma. In the Fischer space of SU6(2) we have the following:

(a) each point is on 256 lines;
(b) each line is in 40 affine planes and 135 dual affine planes;
(c) there are in total 59 136 lines and 197 120 affine planes;
(d) each point lies in 2560 affine planes.

Proof. The collinearity graph of the Fischer space of SU6(2) is strongly regular with parameters
(v,k, λ,μ) = (693,512,376,384) (see for example [1,2]). So, each point in this Fischer space is
collinear to 512 points. As any pair of collinear points determines a unique line, there are 512/2 = 256
lines per point. This proves (a).

Fix collinear points d and e. Then each dual affine plane on the line l through d and e contains a
unique point collinear to e, but not to d. Moreover, each point with this property determines a unique
dual affine plane containing l. Hence, there are k − λ − 1 = 135 dual affine planes on d and e. Inside
these planes we find 1 + 135 = 136 common neighbors of d and e. So, the remaining 376 − 136 = 240
common neighbors of d and e are in 240/6 = 40 affine planes, proving (b).

Double counting now implies (c) and (d). �
The collinearity graph of the Fischer space of Fi22 is strongly regular with parameters (v,k, λ,μ) =

(3510,2816,2248,2304); see for example [1,2] or [5]. By similar arguments as used in the proof of
the previous lemma we obtain:

4.6. Lemma. In the Fischer space of Fi22 we have the following:

(a) each point is on 1408 lines;
(b) each line is in 280 affine planes and 567 dual affine planes;
(c) there are in total 1 647 360 lines and 38 438 400 affine planes;
(d) each point lies in 98 560 affine planes.

We are now in a position to prove the following:

4.7. Lemma. The affine planes in the Fischer space of Fi22 are vanishing.

Proof. Fix a point d. As we have seen above, there are 98 560 affine planes containing d, and by
Lemma 4.5, there are 197 120 affine planes containing no point collinear to d.

Now fix a point e not collinear to d and a line l through e consisting of points not collinear to d.
By Lemma 4.5 there are 693 such points e and 256 such lines on each e. Of the 280 affine planes
containing l, there are 40 planes having no point collinear to d. The other 240 planes contain 6
points collinear to d. So, e is in 256 · 240 = 61 440 affine planes containing just a line of points not
collinear to d. As e lies in 2560 affine planes that contain no point collinear with d (see Lemma 4.5),
there are 98 560 − 61 440 − 2560 = 34 560 planes through e containing 8 points collinear with d. So,
we find 693·256·240

3 = 14 192 640 affine planes containing just a line of points not collinear to d, and
693 · 34 560 = 23 950 080 planes containing a unique point not collinear to d.

However, by now we have accounted for 98 560 + 197 120 + 14 192 640 + 23 950 080 = 38 438 400
affine planes. As this is in fact the total number of affine planes in Π , we conclude that the point d
is collinear to 8, 6, or 0 points of any affine plane. This finishes the proof. �
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We have covered the case where the relation θ on the set D is trivial. Now assume θ to be non-
trivial. In this case the quotient G/θ(G) is generated by a class D of 3-transpositions whose Fischer
space does not contain affine planes. For otherwise, we would find affine 3-spaces in the space on D ,
contradicting Lemma 4.3. Moreover, each θ -equivalence class consists of exactly 3 elements, or else
the Fischer space on D contains no lines. In the latter case, Π is an affine plane, the Fischer space of
SU3(2)′ , as in case (c) of Proposition 4.2.

So we can assume that the Fischer space Π(D) has lines but no affine planes, and furthermore,
that every θ -equivalence class has size 3. This implies that, in the notation of [5], the Fischer space
Π(D) is of orthogonal type with the property that in each affine plane π there is a line l such that
each point d collinear with a point of π is also collinear to a point on l. Such spaces are classified in
[5, Theorem 6.13]. By this theorem and the condition that each θ -equivalence class has size 3 we find
the examples described in case (b) of Proposition 4.2.

Indeed, if, in the notation of [5, Theorem 6.13], G is of type PR1, then the absence of an affine
3-space leads to the case where Π is the Fischer space related to 3n : W (An) with n = 1,2. If G is
of type PR5, PR9, or PR10, then we find the cases where Π is the Fischer space of 3n : W (En) with
n = 6, 7, or 8, respectively. Hence, there only remains the case where G is isomorphic to a group
W (K ,Ω), a subgroup of the wreath product of a strong {2,3}-group K and SymΩ , with Ω a set of
size at least 4, as described in PR2 of [5]. If K is a 2-group, then the corresponding Fischer space
does not contain affine planes. If K contains subgroup of order 3n with n � 2, then the Fischer space
will contain affine 3-spaces, which is against our assumptions. Thus, K is either cyclic of order 3 or
isomorphic to Sym3. The first case leads to the Fischer spaces related to 3n : W (An), n � 4, the second
case to the Fischer spaces related to 3n : W (Dn), n � 4, as described in case (b) of Proposition 4.2.

5. Proof of Theorem 1.1

In this section we prove the main result of this paper, Theorem 1.1. We keep the notation as in
the previous sections. In particular, A=A(D)/V(D).

5.1. Lemma. If the Fischer space Π(D) is symplectic, then A is an abelian Lie algebra.

Proof. In this case the lines of the Fischer space are vanishing sets. Indeed, any point d ∈ D is collinear
to 0 or 2 points (different from d) on any line. So in A the product of any two elements is 0. �

The next lemma covers part (d) of Theorem 1.1.

5.2. Lemma. Suppose D is the class of transvections in the unitary group SUn+1(2), n � 2. Then A is isomor-
phic to the Lie algebra of type 2 An(2) modulo its center.

Proof. The long root elements in the Lie algebra of type 2 An(2) modulo its center satisfy the same
relations as the elements of D . Indeed, we can identify these long root elements with the rank 1
matrices in the unitary Lie algebra sun+1(2), which are in a one-to-one correspondence with the
transvections in SUn+1(2). In view of simplicity of the Lie algebra of type 2 An(2) modulo its center,
the result follows from Proposition 2.7. �

We now turn our attention to the exceptional cases (e)–(i) of Theorem 1.1.

5.3. Lemma. Suppose D is one of the two classes of reflections in O−
6 (3). Then the algebra A is isomorphic to

the Lie algebra of type 2 A5(2) modulo its center.

Proof. Let (M, Q ) be a 6-dimensional orthogonal space over F3 of Witt index −1. Up to isomor-
phism, we can identify the elements of D with the non-isotropic 1-spaces 〈m〉 in M , with Q (m) = 1.
The 3-transpositions in a parabolic subgroup of G = 〈D〉 stabilizing an isotropic point of M generate
a subgroup of G which, up to its center, is isomorphic to 35 : Sym6

∼= 35 : W (A5). The 3-transposition
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subalgebra of F2 D generated by the 3-transpositions in this subgroup is, modulo its vanishing ideal,
isomorphic to the Lie algebra of type 2 A5(2) modulo its center; see Proposition 3.7. Hence A con-
tains a subalgebra which has a quotient isomorphic to 2 A5(2) modulo its center. Note that this latter
algebra has dimension 34.

On the other hand, a computer with the computer algebra system GAP [8] reveals that the dimen-
sion of A is 34; see Table 3. Combined, this implies that A is isomorphic to the Lie algebra of type
2 A5(2) modulo its center. �

Note that a computer free verification of this can be found in [6].

5.4. Lemma. Suppose D is one of the two classes of reflections in O+
6 (3). Then the related algebra A is isomor-

phic to a Lie algebra of type D4(2) modulo its center.

Proof. The existence of a 3-transposition subgroup of G = 〈D〉 isomorphic to the group 34 : W (D4)

(as found inside a parabolic subgroup of G) implies that the dimension of A is at least 26. Indeed,
Lemma 2.8 and Proposition 3.7 imply that A contains a subalgebra having a quotient isomorphic to
the 26-dimensional simple Lie algebra of type D4(2).

On the other hand, G is a subgroup of F4(2) generated by long root elements; see [3]. These
root elements are the 3-transpositions in G . The Lie algebra of type F4(2) is not simple. It has a
G-invariant ideal of dimension 26 generated by the short roots. The quotient algebra is a simple Lie
algebra of type D4(2). Hence, the algebra A is isomorphic to this latter algebra. �
5.5. Lemma. Suppose D is the class of +-reflections in +Ω+

7 (3) or the unique class of 3-transpositions in Fi22 .

Then A is the Lie algebra of type 2 E6(2).

Proof. We note that +Ω+
7 (3) is a 3-transposition subgroup of Fi22; see [1,3]. Inside the group

+Ω+
7 (3), we find that the reflections in D that stabilize a fixed isotropic vector in the natural or-

thogonal module for +Ω+
7 (3) form a Fischer space isomorphic to that of 36 : W (E6). This shows that

(in both cases) the algebra A contains a subalgebra which has a quotient isomorphic to the Lie algebra
of type 2 E6(2) of dimension 78.

With help from the computer algebra system GAP [8], we verified that in both cases, the dimen-
sion of A equals 78; see Table 4. Thus, A itself must be isomorphic to the simple Lie algebra of type
2 E6(2). �

A computer free version of the last part of this proof can be found in [6].
We remark that, in order to obtain the upper bounds for the dimension of A in the above results,

we could have used the fact that PΩ−
6 (3) embeds into PSU6(2) and that both +Ω+

7 (3) and Fi22 embed
in 2 E6(2). However, with our present approach, these embeddings become consequences of the above
results.

Indeed, we can use them to prove Corollary 1.2:

5.6. Corollary.

(a) The group PSU6(2) contains a subgroup isomorphic to +Ω−
6 (3) generated by root elements.

(b) The group 2 E6(2) contains subgroups generated by root elements, which are isomorphic to Fi22 respec-
tively +Ω+

7 (3).

Proof. By the above results, we find that the group H = PO−
6 (3) embeds into the automorphism group

of the unitary Lie algebra psu6(2). Moreover, by construction, the 3-transpositions of G correspond to
root elements in psu6(2). However, this implies that H embeds into G = SU6(2). Under this embed-
ding, the 3-transpositions of H are root elements in G . Indeed, as we have seen in Section 3, the
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3-transpositions in the subgroup 35 : Sym6 of H correspond to root elements in psu6(2); and this
clearly implies (a).

Similarly, we find Fi22 and +Ω+
7 (3) to be subgroups of the automorphism group of the 2 E6(2) Lie

algebra defined by their Fischer spaces. Again, the 3-transpositions correspond to root elements in the
Lie algebra. This proves (b). �
5.7. Lemma. Let D be the unique class of 3-transpositions in Ω+

8 (2) : Sym3 . Then A is isomorphic to the
26-dimensional Lie algebra of type D4(2).

Proof. The Fischer space on D can be partitioned into three parts, D1, D2 and D3, each forming a
Fischer space of type Ω+

8 (2), such that any point in one part is collinear with all points in the other
parts. This implies that any vanishing set of Di of even size is also a vanishing set of D .

As the lines of the Fischer subspace Di are vanishing in Di , we find that they generate a subspace
of F2 Di of codimension 8. Indeed, modulo this subspace we obtain the natural embedding of the
Fischer space in the orthogonal space O+

8 (2); see [9]. However, this implies that the vanishing sets of
even size in Di generate a subspace of codimension 9. As every affine plane is a vanishing set of D
of odd size, we find that V(D) has codimension at most 9 + 9 + 9 − 1 = 26 in A(D).

Now, G = PΩ+
8 (2) : Sym3 embeds in F4(2) in such a way that the 3-transpositions are long root

elements. The Lie algebra of type F4(2) is not simple. It has a G-invariant ideal of dimension 26
generated by the short root elements. The quotient algebra is a simple Lie algebra of type D4(2). See
also 5.4. This proves that the latter algebra is isomorphic to A. �

We completed our proof of Theorem 1.1.

6. Some computational results

In this final section we present some computational results on algebras defined by 3-transpositions.
A few of these computations repeat the results obtained above.

We retain the notation of the previous sections. Thus, assume that G is a group generated by its
class of 3-transpositions D , and denote by A the 3-transposition algebra of D . The vanishing ideal is
denoted by V . In addition, let IAff denote the ideal of A generated by the set Aff of affine planes in
the Fischer space Π(D).

To determine the dimension of V and hence of A we have used the following proposition.

6.1. Proposition. Suppose D is finite. Then the dimension of A equals the F2-rank of the adjacency matrix of
the collinearity graph of the Fischer space on D.

Proof. Note that this matrix, viewed over F2, coincides with the Gram matrix of the form 〈·|·〉. Hence
the rank of the matrix is equal to the codimension of the radical. �

With this, and given a pair (G, D) as above, implementing a computer program that determines all
relevant dimensions is a relatively routine application of linear algebra. Indeed, we implemented this
with the help of GAP [8], and computed the dimensions of two quotients of A, one being A = A/V
and the other L := A/IAff. Note that L is the largest quotient of A that is a Lie algebra.

The source code for our implementation of this can be found on the second author’s homepage at
http://www.icm.tu-bs.de/~mhorn/. We summarize some results obtained this way in Tables 2–5.

6.2. Some 3-transposition groups with normal 3-group

We consider the examples PR9-16 from [5]. To perform our calculations, we made use of the
presentations of these groups given in [10].

http://www.icm.tu-bs.de/~mhorn/
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Table 2
Dimensions of algebras induced by unitary groups.

Group G |D| dim L dimA
SU2(2) 3 3 2
SU3(2) 9 8 8
SU4(2) 45 30 14
SU5(2) 165 45 24
SU6(2) 693 78 34
SU7(2) 2709 119 48
SU8(2) 10 965 176 62
SU9(2) 43 605 249 80
SU10(2) 174 933 340 98

Table 3
Dimensions of algebras induced by orthogonal groups over F3.

Group G |D| dim L dimA
+Ω+

3 (3) 3 3 0
+Ω−

3 (3) 6 3 2
+Ω+

4 (3) 12 12 2
+Ω−

4 (3) 15 15 4
+Ω+

5 (3) 36 36 6
+Ω−

5 (3) 45 30 14
+Ω+

6 (3) 117 52 26
+Ω−

6 (3) 126 56 34
+Ω+

7 (3) 351 78 78
+Ω−

7 (3) 378 0 104
+Ω+

8 (3) 1080 0 260
+Ω−

8 (3) 1107 0 286
+Ω+

9 (3) 3240 0 780
+Ω−

9 (3) 3321 0 860
+Ω+

10(3) 9801 0 2420
+Ω−

10(3) 9882 0 2500

Table 4
Dimensions of algebras induced by sporadic 3-transposition
groups.

Group G |D| dim L dimA
PΩ+

8 (2) : Sym3 360 52 26
PΩ+

8 (3) : Sym3 3240 0 782
Fi22 3510 78 78
Fi23 31 671 0 782
Fi24 306 936 0 3774

We include dimV in Table 5, to highlight that it is the same for certain related examples. E.g.,
the two cases of PR11 both have dimV = 141. Both are extensions of SU5(2), and there we also have
dimV = 141. Also, in the case PR12, for |I| = 1 or 2 we find that dimV = 28. Finally, PR13 is an
extension of +Ω−

5 (3), and for both we have dimV = 31.
Another interesting tidbit is that dimA is the same for +Ω+

9 (3) and PR15, and for +Ω−
10(3) and

PR16. It would be interesting to know whether the respective semisimple algebras are isomorphic.
The data in the above tables leads to some further interesting questions. For example, the 3-

transposition algebra A of PΩ+
8 (3) : Sym3 has the same dimension as the one associated to Fi23. This

implies that they are the same. Can this observation lead to a new construction of the group Fi23 as
a (sub)group of the automorphism group of the 3-transposition algebra associated to PΩ+

8 (3) : Sym3?
Is Fi23 the full group of automorphisms of this algebra?
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Table 5
Dimensions of algebras induced by examples from [5].

Ref. [5] Group G |D| dim L dimA dimV
PR9, |I| = 1 37 : W (E7) 189 133 132 57
PR10, |I| = 1 38 : W (E8) 360 248 248 112
PR11, |I| = 1 310 : (2 × SU5(2)) 1485 0 1344 141
PR11, |I| = 2 310+10 : (2 × SU5(2)) 13 365 0 13 224 141
PR12, |I| = 1 38 : (21+6 : SU3(2)′) 324 0 296 28
PR12, |I| = 2 38+8 : (21+6 : SU3(2)′) 2916 0 2888 28
PR13, |I| = 1 (35 · 35) : +Ω−

5 (3) 405 0 374 31
PR14, |I| = 1 (36 · 36) : (3 · +Ω−

6 (3)) 1134 0 1042 92
PR15, |I| = 1 37 · +Ω−

7 (3) 1134 0 860 274
PR16, |I| = 1 38 · +Ω−

8 (3) 3321 0 2500 821
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