46 research outputs found

    New fluorogenic probes for neutral and alkaline ceramidases

    Get PDF
    New fluorogenic ceramidase substrates derived from the N-acyl modification of our previously reported probes (RBM14) are reported. While none of the new probes were superior to the known RBM14C12 as acid ceramidase substrates, the corresponding nervonic acid amide (RBM14C24:1) is an efficient and selective substrate for the recombinant human neutral ceramidase, both in cell lysates and in intact cells. A second generation of substrates, incorporating the natural 2-(N-acylamino)-1,3-diol-4-ene framework (compounds RBM15) is also reported. Among them, the corresponding fatty acyl amides with an unsaturated N-acyl chain can be used as substrates to determine alkaline ceramidase (ACER)1 and ACER2 activities. In particular, compound RBM15C18:1 has emerged as the best fluorogenic probe reported so far to measure ACER1 and ACER2 activities in a 96-well plate format. Keywords: ceramides; sphingolipids; substrate; umbelliferone

    Transcriptional Regulation of Sphingosine Kinase 1

    No full text
    Once thought to be primarily structural in nature, sphingolipids have become increasingly appreciated as second messengers in a wide array of signaling pathways. Sphingosine kinase 1, or SK1, is one of two sphingosine kinases that phosphorylate sphingosine into sphingosine-1-phosphate (S1P). S1P is generally pro-inflammatory, pro-angiogenic, immunomodulatory, and pro-survival; therefore, high SK1 expression and activity have been associated with certain inflammatory diseases and cancer. It is thus important to develop an understanding of the regulation of SK1 expression and activity. In this review, we explore the current literature on SK1 transcriptional regulation, illustrating a complex system of transcription factors, cytokines, and even micro-RNAs (miRNAs) on the post transcriptional level

    Elusive Roles of the Different Ceramidases in Human Health, Pathophysiology, and Tissue Regeneration

    No full text
    Ceramide and sphingosine are important interconvertible sphingolipid metabolites which govern various signaling pathways related to different aspects of cell survival and senescence. The conversion of ceramide into sphingosine is mediated by ceramidases. Altogether, five human ceramidases—named acid ceramidase, neutral ceramidase, alkaline ceramidase 1, alkaline ceramidase 2, and alkaline ceramidase 3—have been identified as having maximal activities in acidic, neutral, and alkaline environments, respectively. All five ceramidases have received increased attention for their implications in various diseases, including cancer, Alzheimer’s disease, and Farber disease. Furthermore, the potential anti-inflammatory and anti-apoptotic effects of ceramidases in host cells exposed to pathogenic bacteria and viruses have also been demonstrated. While ceramidases have been a subject of study in recent decades, our knowledge of their pathophysiology remains limited. Thus, this review provides a critical evaluation and interpretive analysis of existing literature on the role of acid, neutral, and alkaline ceramidases in relation to human health and various diseases, including cancer, neurodegenerative diseases, and infectious diseases. In addition, the essential impact of ceramidases on tissue regeneration, as well as their usefulness in enzyme replacement therapy, is also discussed

    Role of alkaline ceramidases in the generation of sphingosine and its phosphate in erythrocytes

    No full text
    Plasma sphingosine-1-phosphate (S1P) has been suggested to mainly originate from erythrocytes; however, within the erythrocyte, how sphingosine (SPH) generation—the precursor to S1P—is controlled is unknown. SPH is only generated from the hydrolysis of ceramides via ceramidases. Five human ceramidases have been identified: 1 acid, 1 neutral, and 3 alkaline ceramidases (ACER1, ACER2, and ACER3). Here, we demonstrate that only alkaline ceramidase activity is expressed in erythrocytes and that it is instrumental for SPH generation. Erythrocytes have alkaline but not acid or neutral ceramidase activity on D-e-C18:1-ceramide, a common substrate of ceramidases. Not only alkaline ceramidase activity but also the generation of SPH and S1P are increased during erythroid differentiation in K562 erythroleukemic cells. Such SPH and S1P increases were inhibited by the alkaline ceramidase inhibitor D-e-MAPP, suggesting that alkaline ceramidases have a role in the generation of SPH and S1P in erythroid cells. Alkaline ceramidase activity is highly expressed in mouse erythrocytes, and intravenous administration of D-e-MAPP decreased both SPH and S1P in erythrocytes and plasma. Collectively, these results suggest that alkaline ceramidase activity is important for the generation of SPH, the S1P precursor in erythrocytes.—Xu, R., Sun, W., Jin, J., Obeid, L. M., Mao, C. Role of alkaline ceramidases in the generation of sphingosine and its phosphate in erythrocytes

    Anticancer actions of lysosomally targeted inhibitor, LCL521, of acid ceramidase

    No full text
    <div><p>Acid ceramidase, which catalyzes ceramide hydrolysis to sphingosine and free fatty acid mainly in the lysosome, is being recognized as a potential therapeutic target for cancer. B13 is an effective and selective acid ceramidase inhibitor <i>in vitro</i>, but not as effective in cells due to poor access to the lysosomal compartment. In order to achieve targeting of B13 to the lysosome, we designed lysosomotropic N, N-dimethyl glycine (DMG)-conjugated B13 prodrug LCL521 (1,3-di-DMG-B13). Our previous results indicated the efficient delivery of B13 to the lysosome resulted in augmented effects of LCL521 on cellular acid ceramidase as evaluated by effects on substrate/product levels. Our current studies indicate that functionally, this translated into enhanced inhibition of cell proliferation. Moreover, there were greater synergistic effects of LCL521 with either ionizing radiation or Tamoxifen. Taken together, these results clearly indicate that compartmental targeting for the inhibition of acid ceramidase is an efficient and valuable therapeutic strategy.</p></div

    Golgi Fragmentation Is Associated with Ceramide-induced Cellular Effects

    No full text
    Ceramide has been shown to cause anoikis, a subtype of apoptosis due to inadequate cell adhesion. However, the underlying mechanism is unclear. Herein, we report that D-e-C(6)-ceramide (D-e-Cer), via generating sphingosine, disrupts the Golgi complex (GC), which is associated with various cellular effects, including anoikis. Treatment of HeLa cells with D-e-Cer caused cell elongation, spreading inhibition, rounding, and detachment before apoptosis (anoikis). In D-e-Cer–treated cells, glycosylation of β1 integrin in the GC was inhibited, thus its associated integrin receptors failed to translocate to the cell surface. Ceramide treatment also inhibited the reorganization of both microtubule and F-actin cytoskeletons, focal adhesions, and filopodia. These cellular effects were preceded by fragmentation of the Golgi complex. In contrast, L-e-C(6)-ceramide (L-e-Cer), the enantiomer of D-e-Cer, failed to induce these cellular effects. Mass spectrometric analysis revealed that treatment HeLa cells with D-e-Cer but not L-e-Cer caused a >50-fold increase in the levels of sphingosine, a product of hydrolysis of ceramide. Treatment with D-e-sphingosine and its enantiomer, L-e-sphingosine, caused massive perinuclear vacuolization, Golgi fragmentation, and cell rounding. Together, these results suggest that sphingosine generated from hydrolysis of ceramide causes the GC disruption, leading to various cellular effects

    Click and count: specific detection of acid ceramidase activity in live cells

    No full text
    The use of intact cells in medical research offers a number of advantages over employing cell-free systems. In diagnostics, cells isolated from liquid biopsies can be directly used, speeding up the time of analysis and diminishing the risk of protein degradation by sample manipulation. In drug discovery, studies in live cells take into account aspects neglected in cell-free systems, such as uptake, metabolization, and subcellular concentration by compartmentalization of potential drug candidates. Therefore, probes for studies in cellulo are of paramount importance. Acid ceramidase (AC) is a lysosomal enzyme that hydrolyses ceramides into sphingoid bases and fatty acids. The essential role of this enzyme in the outburst and progress of several diseases, some of them still incurable, is well sustained. Despite the great clinical relevance of AC as a biomarker and therapeutic target, the specific monitoring of AC activity in live cells has remained elusive due to the concomitant existence of neutral and alkaline ceramidases. In this work, we report that 1-deoxydihydroceramides are exclusively hydrolysed by AC. Using N-octanoyl-18-azidodeoxysphinganine as a probe and a BODIPY-substituted bicyclononyne, we show the click-reliant predominant staining of lysosomes, with extra-lysosomal labeling also occurring in some cells. Importantly, using pharmacological and genetic tools together with high resolution mass spectrometry, we demonstrate that both lysosomal and extra-lysosomal staining are AC-dependent. These findings are translated into the specific flow cytometry monitoring of AC activity in intact cells, which fills an important gap in the field of diseases linked to altered AC activity.11Nsciescopu
    corecore