4,170 research outputs found

    Neutral networks of genotypes: Evolution behind the curtain

    Get PDF
    Our understanding of the evolutionary process has gone a long way since the publication, 150 years ago, of "On the origin of species" by Charles R. Darwin. The XXth Century witnessed great efforts to embrace replication, mutation, and selection within the framework of a formal theory, able eventually to predict the dynamics and fate of evolving populations. However, a large body of empirical evidence collected over the last decades strongly suggests that some of the assumptions of those classical models necessitate a deep revision. The viability of organisms is not dependent on a unique and optimal genotype. The discovery of huge sets of genotypes (or neutral networks) yielding the same phenotype --in the last term the same organism--, reveals that, most likely, very different functional solutions can be found, accessed and fixed in a population through a low-cost exploration of the space of genomes. The 'evolution behind the curtain' may be the answer to some of the current puzzles that evolutionary theory faces, like the fast speciation process that is observed in the fossil record after very long stasis periods.Comment: 7 pages, 7 color figures, uses a modification of pnastwo.cls called pnastwo-modified.cls (included

    An optimal transportation approach for assessing almost stochastic order

    Full text link
    When stochastic dominance F≤stGF\leq_{st}G does not hold, we can improve agreement to stochastic order by suitably trimming both distributions. In this work we consider the L2−L_2-Wasserstein distance, W2\mathcal W_2, to stochastic order of these trimmed versions. Our characterization for that distance naturally leads to consider a W2\mathcal W_2-based index of disagreement with stochastic order, εW2(F,G)\varepsilon_{\mathcal W_2}(F,G). We provide asymptotic results allowing to test H0:εW2(F,G)≥ε0H_0: \varepsilon_{\mathcal W_2}(F,G)\geq \varepsilon_0 vs Ha:εW2(F,G)<ε0H_a: \varepsilon_{\mathcal W_2}(F,G)<\varepsilon_0, that, under rejection, would give statistical guarantee of almost stochastic dominance. We include a simulation study showing a good performance of the index under the normal model

    Supernova and solar neutrino searches at DUNE

    Full text link
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline experiment exploiting the liquid argon TPC technology. DUNE will have sensitivity to low energy physics searches, such as the detection of supernova and solar neutrinos. DUNE will consist of four modules of 70-kton liquid argon mass in total, placed 1.5 km underground at the Sanford Underground Research Facility in the USA. These modules are being designed considering the specific requirements of the low energy physics searches. As a result, DUNE will have a unique sensitivity for the detection of electron neutrinos from a core-collapse supernova burst, and solar and diffuse supernova background neutrinos can also be detected.Comment: 4 pages, 2 figures, XVIII International Conference on Topics in Astroparticle and Underground Physics (TAUP2023

    Imperfect Imitation Can Enhance Cooperation

    Get PDF
    The promotion of cooperation on spatial lattices is an important issue in evolutionary game theory. This effect clearly depends on the update rule: it diminishes with stochastic imitative rules whereas it increases with unconditional imitation. To study the transition between both regimes, we propose a new evolutionary rule, which stochastically combines unconditional imitation with another imitative rule. We find that, surprinsingly, in many social dilemmas this rule yields higher cooperative levels than any of the two original ones. This nontrivial effect occurs because the basic rules induce a separation of timescales in the microscopic processes at cluster interfaces. The result is robust in the space of 2x2 symmetric games, on regular lattices and on scale-free networks.Comment: 4 pages, 4 figure
    • …
    corecore