25 research outputs found

    Fast, multi-band photon detectors based on quantum well devices for beam-monitoring in new generation light sources

    Get PDF
    In order to monitor the photon-beam position for both diagnostics and calibration purposes, we have investigated the possibility to use InGaAs/InAlAs Quantum Well (QW) devices as position-sensitive photon detectors for Free-Electron Laser (FEL) or Synchrotron Radiation (SR). Owing to their direct, low-energy band gap and high electron mobility, such QW devices may be used also at Room Temperature (RT) as fast multi-band sensors for photons ranging from visible light to hard X-rays. Moreover, internal charge-amplification mechanism can be applied for very low signal levels, while the high carrier mobility allows the design of very fast photon detectors with sub-nanosecond response times. Segmented QW sensors have been preliminary tested with 100-fs-wide 400 nm laser pulses and X-ray SR. The reported results indicate that these devices respond with 100 ps rise-times to such ultra-fast laser pulses. Besides, linear scan on the back-pixelated device has shown that these detectors are sensitive to the position of each ultrashort beam bunch

    Three-Dimensional Shapes of Spinning Helium Nanodroplets

    Get PDF
    A significant fraction of superfluid helium nanodroplets produced in a free-jet expansion have been observed to gain high angular momentum resulting in large centrifugal deformation. We measured single-shot diffraction patterns of individual rotating helium nanodroplets up to large scattering angles using intense extreme ultraviolet light pulses from the FERMI free-electron laser. Distinct asymmetric features in the wide-angle diffraction patterns enable the unique and systematic identification of the three-dimensional droplet shapes. The analysis of a large dataset allows us to follow the evolution from axisymmetric oblate to triaxial prolate and two-lobed droplets. We find that the shapes of spinning superfluid helium droplets exhibit the same stages as classical rotating droplets while the previously reported metastable, oblate shapes of quantum droplets are not observed. Our three-dimensional analysis represents a valuable landmark for clarifying the interrelation between morphology and superfluidity on the nanometer scale

    Deep neural networks for classifying complex features in diffraction images

    Get PDF
    Intense short-wavelength pulses from free-electron lasers and high-harmonic-generation sources enable diffractive imaging of individual nano-sized objects with a single x-ray laser shot. The enormous data sets with up to several million diffraction patterns represent a severe problem for data analysis, due to the high dimensionality of imaging data. Feature recognition and selection is a crucial step to reduce the dimensionality. Usually, custom-made algorithms are developed at a considerable effort to approximate the particular features connected to an individual specimen, but facing different experimental conditions, these approaches do not generalize well. On the other hand, deep neural networks are the principal instrument for today's revolution in automated image recognition, a development that has not been adapted to its full potential for data analysis in science. We recently published in Langbehn et al. (Phys. Rev. Lett. 121, 255301 (2018)) the first application of a deep neural network as a feature extractor for wide-angle diffraction images of helium nanodroplets. Here we present the setup, our modifications and the training process of the deep neural network for diffraction image classification and its systematic benchmarking. We find that deep neural networks significantly outperform previous attempts for sorting and classifying complex diffraction patterns and are a significant improvement for the much-needed assistance during post-processing of large amounts of experimental coherent diffraction imaging data.Comment: Published Version. Github code available at: https://github.com/julian-carpenter/airyne

    Nanoscale transient polarization gratings

    Full text link
    We present the generation of transient polarization gratings at the nanoscale, achieved using a tailored accelerator configuration of the FERMI free electron laser. We demonstrate the capabilities of such a transient polarization grating by comparing its induced dynamics with the ones triggered by a more conventional intensity grating on a thin film ferrimagnetic alloy. While the signal of the intensity grating is dominated by the thermoelastic response of the system, such a contribution is suppressed in the case of the polarization grating. This exposes helicity-dependent magnetization dynamics that have so-far remained hidden under the large thermally driven response. We anticipate nanoscale transient polarization gratings to become useful for the study of any physical, chemical and biological systems possessing chiral symmetry

    Toward the Extreme Ultra Violet Four Wave Mixing Experiments: From Table Top Lasers to Fourth Generation Light Sources

    No full text
    Three different Transient Grating setups are presented, with pulsed and continuous wave probe at different wavelengths, ranging from infrared to the extreme ultra violet region. Both heterodyne and homodyne detections are considered. Each scheme introduces variations with respect to the previous one, allowing moving from classical table top laser experiments towards a new four wave mixing scheme based on free electron laser radiation. A comparison between the various setups and the first results from extreme ultra violet transient grating experiments is also discussed

    Does exist an anomalous sound dispersion in supercooled water?

    No full text
    International audienceAcoustic sound velocity of water in the supercooled regime shows a peculiar behaviour. Accordingly to the available data, sound velocity displays a complex behaviour below −15-15 ∘^\circC, here anomalous frequency dispersion phenomena seem to appear and need to be understood. In particular lower frequencies data at a few tens of KHz show leveling-off of the sound velocity value below -25 ∘^\circC, with a possible minimum around -30 ∘^\circC. Other data at higher frequencies, around 1 GHz, in comparison with the low frequency data, could instead suggest the existence of a "negative dispersion", yet other high frequency data show a normal dispersion behaviour. To get new insight into this topic, we made measurements of acoustic sound velocity in bulk water in the liquid and supercooled phase down to -29 ∘^\circC by means of a heterodyne detected transient grating (TG) experiment at an unexplored frequency value around 100 MHz

    Transient grating experiment on CCl<sub>4</sub>-filled porous glasses

    No full text
    International audienceWe performed heterodyne detected transient grating experiments on porous glasses, characterized by different pore sizes, filled with liquid carbon tetrachloride. The measured signal shows an articulated profile characterized by different dynamic phenomena. In the faster time scale (t0.1 ÎŒsec.) unexpected relaxation/thermal diffusion phenomena shows up. In order to measure and address these dynamic evidences, we studied the effect of sample preparation on the experimental signal. Furthermore, we measured the sound velocity and attenuation as a function of sample treatment and temperature. The reported data shows clearly how the unremoved water contained into the pores can play a relevant role in the measure of physical parameters of liquid filled-glass systems

    Liquid Carbon Reflectivity at 19 nm

    No full text
    We hereby report on a pump-probe reflectivity experiment conducted on amorphous carbon, using a 780 nm laser as a pump and a 19 nm FEL emission as probe. Measurements were performed at 50 degrees with respect to the surface normal to have an un-pumped reflectivity higher than 0.5%. A sub-10 fs time synchronization error could be obtained exploiting the nearly jitter-free capabilities of FERMI. EUV FEL-based experiments open the way to study the behaviour of a liquid carbon phase being unaffected by plasma screening

    Toward the Extreme Ultra Violet Four Wave Mixing Experiments: From Table Top Lasers to Fourth Generation Light Sources

    No full text
    Three different Transient Grating setups are presented, with pulsed and continuous wave probe at different wavelengths, ranging from infrared to the extreme ultra violet region. Both heterodyne and homodyne detections are considered. Each scheme introduces variations with respect to the previous one, allowing moving from classical table top laser experiments towards a new four wave mixing scheme based on free electron laser radiation. A comparison between the various setups and the first results from extreme ultra violet transient grating experiments is also discussed
    corecore