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Deep neural networks for classifying complex features in diffraction images
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Intense short-wavelength pulses from free-electron lasers and high-harmonic-generation sources enable
diffractive imaging of individual nanosized objects with a single x-ray laser shot. The enormous data sets
with up to several million diffraction patterns present a severe problem for data analysis because of the high
dimensionality of imaging data. Feature recognition and selection is a crucial step to reduce the dimensionality.
Usually, custom-made algorithms are developed at a considerable effort to approximate the particular features
connected to an individual specimen, but because they face different experimental conditions, these approaches
do not generalize well. On the other hand, deep neural networks are the principal instrument for today’s
revolution in automated image recognition, a development that has not been adapted to its full potential for data
analysis in science. We recently published [Langbehn et al., Phys. Rev. Lett. 121, 255301 (2018)] the application
of a deep neural network as a feature extractor for wide-angle diffraction images of helium nanodroplets. Here we
present the setup, our modifications, and the training process of the deep neural network for diffraction image
classification and its systematic bench marking. We find that deep neural networks significantly outperform
previous attempts for sorting and classifying complex diffraction patterns and are a significant improvement
for the much-needed assistance during postprocessing of large amounts of experimental coherent diffraction
imaging data.

DOI: 10.1103/PhysRevE.99.063309

I. INTRODUCTION

Coherent diffraction imaging (CDI) experiments of single
particles in free flight have been proven to be a significant
asset in the pursuit of understanding the structural composi-
tion of nanoscaled matter [1–6]. While traditional microscopy
methods are able to image fixated, substrate-grown, or de-
posited individual particles [7–11], only CDI can combine
high-resolution images with single particles in free flight
in one experiment [12–14]. CDI became possible because
of the recent advent of short-wavelength free-electron lasers
(FELs) that produce coherent high-intensity x-ray pulses with
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femtosecond duration with a single x-ray laser shot [15].
However, CDI also comes with its own set of new challenges.

One of the growing problems of CDI experiments is the
sheer amount of recorded data that has to be analyzed. The
LINAC Coherent Light Source (LCLS), for instance, has a
repetition rate of 120 Hz with typical hit rates ranging from
1% to 30% [15–17], greatly depending on the performed
experiment. The newly opened European XFEL will have
an even higher maximum repetition rate of 27 000 Hz [18],
which may add up to several million diffraction patterns in
a single 12-h shift. The idea of using neural networks for
classification of a large number of scattering patterns was born
out of the significant difficulties of analyzing large data sets
of clusters [19], in particular, metal clusters [20]. Moreover,
the ability to analyze such data sets is sought after by the
community in general [21]. For example, for the successful
determination of three-dimensional (3D) structures from a
CDI data set using the expansion-maximization-compression
algorithm [21–23], it is necessary to sample the 3D Fourier
space up to the Nyquist rate for the desired resolution, for all
subspecies contained in the target under study. The achievable
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resolution, as well as the chance for successful convergence of
the algorithm, correlates directly with the number of diffrac-
tion patterns with a high signal-to-noise ratio [22]. Thus,
huge data sets are taken and as a consequence of the sheer
amount of data, it is getting increasingly complicated to distill
the high-quality data subsets that are suitable for subsequent
analytical steps.

The enormous success of neural networks in the regime
of image processing and classification provides a unique way
of facing the imminent data-analysis bottleneck and reduces
the impending problem to a mere domain adaptation from
data sets used throughout the industry to ones that are used in
CDI research. This work aims to be a stepping stone toward
this adaptation by providing an introduction to the theory
of deep neural networks and analyzing how to best transfer
and optimize these algorithms to the domain of scattering
images. As a baseline, we train a widely used deep neural
network architecture, a residual convolutional deep neural
network [24], in a supervised manner with a training set of
manually labeled data. We then adapt the neural network to
the domain of diffraction images and improve on the baseline
performance by addressing the following issues:

(1) Modification of the architecture to account for the
specificities of diffraction images and thus optimization of the
prediction capabilities.

(2) Determination of the appropriate size of the training
data set in order to keep the manual work of a researcher to a
moderate level.

(3) Mitigation of experimental artifacts, in particular noisy
diffraction images.

Experience has shown that a researcher is able to relate
diffraction patterns produced by similarly shaped particles of
different sizes and orientations in context with each other.
However, a programmatic description for a classification and
sorting of these mostly similar patterns is almost impossible
to achieve.

Figure 1 illustrates the case of two diffraction patterns
captured from almost identical particles but under different
orientations. Both patterns clearly show an elongated and bent
streak, but the bending is differently pronounced and directed.
If we wanted to handcraft an algorithm that detects this fea-
ture, we would need to describe it via some appropriate metric
that must take into account the various grades of inflection,
direction, brightness, and completeness of this feature within
every image. Furthermore, we would need to redo it for every
characteristic feature in a diffraction image for which we want
to find similar ones.

In addition to that, poor signal-to-noise ratios, stray light, a
beam stop, or central hole of multichannel plates or pnCCDs
[25] and overall poor image quality can even further increase
the difficulty to make an automatized classification of all
images coherent [26–28].

Therefore, we need a robust classification routine that is
insusceptible to the described artifacts, just as a researcher is,
to tackle the upcoming data volume. Deep neural networks
provide a way out of this situation, and we show in this paper
that they outperform the current state-of-the-art classification
and sorting routines.

Current state-of-the-art automatic classification rou-
tines for diffraction experiments employ so-called kernel

FIG. 1. Panels (a) and (b) show capsule-shaped particles whose
orientation and size differs. The scattering images are calculated
using a multislice Fourier transform (MSFT) algorithm that simu-
lates a wide-angle x-ray scattering experiment which includes 3D
information about the particle [6,20]. The two incoming beams
(indicated by the arrow on the left-hand side) produce very different
scattering images, yet the dominant feature, an elongated bent streak,
is distinctly visible in both calculations. A handcrafted algorithm is
typically not able to identify the similarity between the two scattering
patterns and would classify these two images in two distinct classes,
although they belong to the same capsule shape class. A deep neural
network can learn these complicated similarities on its own when we
provide a few manually selected diffraction patterns that contain this
feature.

methods [27,29]. Bobkov et al. [27] trained a support-vector
machine on a public small-angle x-ray scattering data set with
an accuracy of 87%, but only on selected images (we will use
this approach as a reference in Sec. IV). Yoon et al. [29] were
able to achieve an accuracy of up to 90% using unsupervised
spectral clustering on a nonpublic small-angle x-ray scattering
data set.

Deep neural networks, on the other hand, have already
been applied to a broad range of physics-related problems
ranging from predicting topological ground states [30], dis-
tinguishing different topological phases of topological band
insulators [31], enhancing the signal-to-noise at hadron col-
liders [32], differentiating between so-called known-physics
background and new-physics signals at the Large Hadron
Collider [33], and solving the Schrödinger equation [34,35].
Their ability to classify images has also been utilized in
cryoelectron microscopy [36], medical imaging [37], and even
for hit finding in serial x-ray crystallography [38]. We now
have extended the use case of applying deep neural networks
for classifying complex features within diffraction patterns.
We show that deep neural networks outperform the current
state-of-the-art classification and sorting routines, while being
insusceptible to typical artifact features of diffraction mea-
surements. Furthermore, a deeper analysis of the trained net-
work shows that it can understand complex concepts of what
constitutes a characteristic feature in a diffraction pattern.
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The paper is organized as follows: In Sec. II, the data set
is presented and a few experimental details are discussed.
Section III provides the fundamental theory to understand
the basics of neural networks; it has two subsections. Sub-
section III A covers the theory, algorithmic underpinnings of
deep neural networks, and how to train these models, and
Subsec. III B presents three common metrics to evaluate the
quality of the neural network’s predictions.

Section IV establishes our starting point, while the full
benchmark report on the baseline neural network can be found
in Appendix A. We introduce the chosen network architecture
and provide baseline results on the data presented in Sec. II
but also on a reference data set for which classification results
are already published [39].

In Sec. V, we discuss solutions for the above stated is-
sues of applying neural networks to diffraction data. In Sub-
sec. V A, we discuss the choice of the activation function for
the neural network and present a logarithmic activation func-
tion that enhances the prediction performance with diffraction
image data. Subsection V B benchmarks the dependence of
neural networks on training data size, asking essentially how
much manually labeled data is needed for the neural network
to give acceptable results, and Subsec. V C presents an ap-
proach to harden the neural network against very noisy data
using a custom two-point cross-correlation map.

In Sec. VI, we then provide more profound insights into
the output of the neural network by showing and discussing
calculated heat maps that visualize the gradient flow within
the neural network. These images directly correlate with what
the neural network sees; they are created using an advanced
visualization algorithm called GRADCAM++ [40].

Finally, we give a summary of the principal results and
unique propositions of this paper and conclude with an out-
look on further modifications as well as future directions.

II. THE DATA

Helium nanodroplets [41] were imaged using extreme ul-
traviolet (XUV) photon energies between 19 and 35 eV using
the experimental setup of the LDM beamline [42,43] at the
Free Electron Laser FERMI [44]. Scattering images were
recorded with a multichannel-plate (MCP) detector combined
with a phosphor screen, which was placed 65 mm down-
stream from the interaction region; this defines the maximum
scattering angle of 30◦. Single-shot diffraction images in the
XUV regime are in some respect a special case, as they
cover large scattering angles and can contain 3D structural
information [20], manifesting as complex and pronounced
characteristic features, such as the bent streaks in Fig. 1. Out
of 2 × 105 laser shots, about 38 000 images were obtained.
The images were corrected for straylight background and the
flat detector (see also Langbehn et al. [41]).

For the neural network training data set, we selected 7264
diffraction images randomly out of all recorded patterns. The
size of the subset was chosen to be the maximum a researcher
could classify manually within 1 week. From this subset, we
manually identified 11 distinct but nonexclusive classes (see
Fig. 2 for examples as well as a description and Table I for
statistics about every class). We chose each of the diffraction
patterns shown in Fig. 2 as a strong candidate for its class,

but it is important to note that almost all diffraction patterns
belong to multiple classes since this is a multiclass labeling
scenario. These patterns are therefore not always clearly dis-
tinguishable from each other and can exhibit multiple charac-
teristics from different classes. For example, the Newton rings
in Fig. 2(d) are superimposed on a concentric ring pattern that
falls into the category spherical/oblate, but Newton rings can
also occur in other classes, e.g., streak patterns. Furthermore,
labeling all images is itself prone to systematic errors because
the researcher has to learn to label [45]. This means that
the labeling process itself is to some extent ill posed, as the
researcher does not know the characteristics of a feature a
priori, which results in a changing perception of features and
classes along the labeling process and thus a systematically
decreased consistency for every class.

We uploaded all available data alongside our assigned
labels to the public CXI database (CXIDB [46]) under the
public domain CC0 waiver.

III. BASIC THEORY

A. What is a deep neural network

We concentrate in this paper solely on deep feed-forward
neural networks. They are a classification model consisting
of a directed acyclic graph that defines a set of hierarchically
structured nonlinear functions.

A fundamental example can be constructed by arranging
n nonlinear functions (z1, z2, . . . , zn) in a chainlike manner:
zoutput = zn(zn−1( . . . (z2(z1(x))) . . . )), where x is the input,
which is in our case a diffraction image. The first function,
z1(x), is called the input layer. We then pass the output of z1

to z2 and so on; this goes on until the last layer (zn), which
is called the output layer. The nomenclature is that all layers
except the output layer (zn) and the input layer (z1) are called
hidden layers.

For illustrative purposes, Fig. 3 shows a convolutional
neural network. There, we schematically show the layer func-
tions z1, . . . , zn where every layer consists of two stages,
a linear layer-specific operation on its inputs followed by a
so-called activation function, which is always nonlinear. We
address the choice of layer-specific operations in Sec. III A 1
and then introduce the activation functions in Sec. III A 2. In
general, the layer-specific operation is always the name-giving
component for the layer, so, for example, if we compute a two-
dimensional (2D) convolution as the layer-specific operation
on the input and then apply an activation function, we call
the set of these two stages a convolutional layer. Figure 3
shows a neural network whose first layers are convolutional
layers followed by a fully connected layer that produces the
predictions.

1. Affine transformations

All common choices for layer-specific operations are affine
transformations. They all introduce trainable weights; free
parameters that are adjustable during the training process and
are sometimes called neurons due to the intuition that in a fully
connected layer they share some similarity to the dendrites,
soma, and axon of a biological neuron [47]. These trainable
weights are the name-giving components in a neural network.
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FIG. 2. Characteristic examples for all the classes assigned to the 7264 images by a researcher, except for the empty class. The top row
of every class shows a representative diffraction pattern and the bottom row in panels (b)–(d) shows a stylized drawing of the characteristic
feature of this class. The bottom row in panel (a) shows an illustration of the name-giving particle shape for the spherical/oblate and prolate
classes. The shapes are derived from the analysis of the data in Langbehn et al. [41], and they serve as a form of superordinate classes. They
are mutually exclusive to each other, and all diffraction patterns are part of one of these two classes. Also, both superordinate classes have
subclasses. For example, panel (b) shows the spherical/oblate subclasses round, elliptical, and double rings. While a diffraction pattern can be
part of the round and the double rings classes, it cannot be part of the round and the elliptical classes. For the prolate superordinate class, we
find analog subclass rules, although there is no exclusivity rule as it was with the round and elliptical class. Therefore, an image belonging to
bent can also be in the streaks class. Furthermore, all spherical/oblate and prolate patterns cannot only be part of their respective subclass but
can also be part of one or more of the classes in the nonexclusive other subclass categories, shown in panel (d). These classes describe general
features within the image which are to some extent independent of the particle shape. We derived the superordinate classes from these general
features. These complicated interclass relationships demonstrate the capabilities of a researcher to interconnect mostly distinctive appearing
features into a consistent description and ultimately leading to a valid physical interpretation. A hand-crafted algorithm could not account for
these relationships normally, but now these interconnections can serve as an additional evaluation metric for the neural network. Since there is
no diffraction pattern which belongs to the spherical/oblate and prolate class simultaneously, we can check if the neural network mislabeled
a diffraction pattern according to these rules. We can then interpret this as a reliable indicator for a failed generalization of the network. The
physics behind these patterns are quite complicated as well, but for a rigorous interpretation and analysis of these patterns, please see Langbehn
et al. [41].

Now, the goal of training a neural network is to optimize
all these weights for all layers, so that the predictions for
all images in the training data match their accompanying
original labels. The original labels are called ground truth

and define the upper limit of how good of a network can fit
a domain. No neural network is better than its training data.
In this section, we briefly illustrate the affine transformations
of the fully connected layer and the convolutional layer and
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TABLE I. Statistics of the helium nanodroplets data set. Nonex-
clusive labels assigned by a researcher. One image can be in multiple
classes. Total data-set size is 7264. Note that spherical/oblate as a
class also contains round patterns; only prolate shapes are excluded
from this class (see also caption of Fig. 2).

Percentage (%) of
Class No. of labels the whole data set

Spherical/oblate 6589 90.7
Round 5792 79.7
Elliptical 796 11.0
Newton rings 460 6.3
Prolate 453 6.2
Bent 390 5.4
Asymmetric 367 5.1
Streak 242 3.3
Double rings 218 3.0
Layered 47 0.7
Empty 222 3.1

then explain in the next section the role of the activation
function.

a. Fully connected layer. The name-giving operation for
the fully connected layer is a matrix multiplication performed
on a flattened input, for example, an m × n sized input image
would be flattened into a m · n sized vector. Mathematically,
this is a matrix multiplication between a matrix and a vector,

a j =
m∑

k=1

xkwk j, (1)

where x is the flattened input and w is the weight matrix
of a fully connected layer. Here, all input vector elements
(e.g., the pixels of an image, now arranged in one large row
xk) contribute to all output matrix elements and are therefore
connected. Furthermore, by convention is x0 defined as 1 and
w0 j = b j , where b j is a free and trainable bias parameter.

b. Convolutional layer. In a convolutional layer, the train-
able weights are parameters of a kernel that slides over the
inputs; this is visualized in Fig. 3. The general idea of a
convolutional layer is to preserve the spatial correlations in the
input image when going to a lower dimensional representation
(the next layer). This is achieved by using a kernel with
a spatial extent larger than 1 px. The kernel size is then
also the extent to which one kernel can correlate different
areas of an input and is called its local receptive field. Each
kernel produces one output which is called a feature map
or filter. Multiple feature maps from multiple kernels are
grouped within one convolutional layer. For example, the first
convolutional layer in Fig. 3 produces nine feature maps out
of the input diffraction image and hence has nine kernels that
get optimized during training. Since we usually only have in
the input layer a two-dimensional diffraction image as input
and a high number of feature maps for every subsequent
convolutional layer as their inputs, we define the output of
a convolutional layer with a four-dimensional kernel k that
produces i feature maps of size j × k:

ai, j,k =
∑
l,m,n

xl, j+m−1,k+n−1ki,l,m,n; (2)

here, the input x has l dimensions of size j × k and we slide a
kernel of size m × n across all these l dimensions. In the given

FIG. 3. Schematic visualization of a convolutional neural network. It shows the hierarchical structure of the network with the function
hierarchy z1, . . . , zn above each layer. Depicted as input is a diffraction image, which is getting expanded by nine trainable convolutional
kernel into nine feature maps. Note that only one kernel, producing the last feature map, is shown. The output of the first layer is then passed
through multiple convolutional layer; this is the feature extraction part of the neural network. Ultimately, a fully connected layer with a
logistic function as activation function produces the predictions. Every layer consists of two stages, also indicated by the brackets underneath
z1, . . . , zn. The first stage is an affine transformation and the second one is a nonlinear function, called an activation function. The operation
that is used as affine transformation is then the name-giving component for the layer, e.g., a convolutional layer uses a convolution as affine
transformation. The choice of the activation function is subject to empirical optimization with various choices possible. Section III A 1 describes
the affine transformations in more detail and Sec. III A 2 covers the basics on activation functions.
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example for the input layer, l is simply 1 and the summation
is just across one input image, as shown in Fig. 3.

2. Activation functions

Regardless of the affine transformation that is used, all
layer-specific operations produce trainable weights which are
passed through an activation function. This function is always
nonlinear. We only address two activation functions here as
they are the most common used by the community and the
only ones we use: the sigmoid and the LeakyRelu functions.
The first one is a logistic regression function used mostly
at the outputs of neural networks, and the second one is a
piecewise linear activation function used between layers for
numerical reasons [48,49]. The sigmoid function is given as

h(x) = 1

1 + exp (−x)
(3)

and the LeakyRelu function is given as

h(x) =
{

x if x � 0
γ x if x < 0,

(4)

where in both functions x ∈ a are the trainable weights of the
affine transformation [the convolutional or the fully connected
layer operation, i.e., the output of Eqs. (1) or (2)] and γ is the
slope for the negative part in the LeakyRelu function and is
called leakage.

In Fig. 3, the last activation function of the neural network,
denoted by Logistic function, is a sigmoid function, because
its output can be interpreted as the probability in a Bernoulli
distribution, yielding a probability for how likely it is that a
given event (an image in our case) is part of a class (in our
case, the predefined classes from Table I). Sigmoid functions
always give an output between 1 and 0. In our case, we have
11 distinct classes which are mutually nonexclusive, which
means every image has a probability of being part of every
class. Using a sigmoid function at the end of the neural
network yields therefore 11 distinct Bernoulli distributions.
The generalization from the single-case Bernoulli distribution
to its multicase n-class distribution equivalent is called cate-
gorical distribution.

Interpreting the output of the neural network, as well as
the original labels, as a categorical distribution is key to train
the neural network because only then we can use statistical
measures to evaluate the quality of the neural network’s
prediction, which allows us to optimize it iteratively.

However, because of the nonlinearity of all activation
functions, optimizing a neural network is a nonconvex prob-
lem where no global extrema can be found with certainty.
The general procedure is that of a forward pass and then a
backward correction, meaning that we feed the neural network
several images, take the network’s prediction, and compare
this prediction to the ground truth; this is the forward pass.
Then, we calculate a loss function which is a metric for how
bad or good the predictions were (see the next section), and
correct the weights of the network in a way that would make
it better equipped to predict the labels for the images it just
saw. This correction step is starting at the end of the network
using an algorithm called back-propagation, hence the name
backward correction; see Sec. III A 4.

3. The forward pass: Assess the network’s predictions

Optimizing a neural network always starts by feeding it
multiple images and evaluate what the neural network made
of it. For assessing the quality of the network’s prediction,
a so-called loss function is used. It is the defining metric
that we seek to minimize during the training of the neural
network. In every training step, we compare the output of the
neural network to the real labels provided by the researcher
and calculate the so-called loss. Lower loss values correspond
to a higher prediction quality of the neural net.

Therefore, the goal during the training process is to adjust
all weights and biases within the network so that the loss
is minimal for all input training images. There are various
possible loss functions which often serve a specific purpose.
For classification tasks, such as the present case, primarily
the cross entropy is used [50–53]. Cross entropy is a concept
from information theory giving an estimate about the statisti-
cal distance between a true distribution p and an unnatural
distribution q. In our case, p is the categorical distribution
over the ground truth labels and q is the output of the neural
network.

Cross entropy is calculated as the sum of the Shannon
entropy [54] for the true distribution p and the Kullback-
Leibler divergence [55] between p and q. The former is a
measure of the total amount of information of p, and the
latter is a typical distance measure between two probability
distributions.

If the Kullback-Leibler divergence is zero, then the cross
entropy is just the Shannon entropy of p, and we have p = q.
Then, the predictions of the neural network are not distin-
guishable from the labels of all training images.

Cross entropy can be formally written as

H (p, q) = H (p) + DKL(p‖q), (5)

where H (p) is the Shannon entropy of p and DKL(p‖q) is the
Kullback-Leibler divergence of p and q [56].

When using a sigmoid function as activation function on
the output layer, the final loss function can be defined as

H (xout, x) =
M∑
i

xout
i − xout

i xi + log
[
1 + exp

(−xout
i

)]
, (6)

where M is the number of all images in the training data, xout
i

is the prediction for one image from the deep neural network,
and xi is the original label of the image, assigned by the
researcher. Please see Appendix B for a complete derivation.

Using Eq. (6) as it is would require us to pass all images
through the network for one training step, as the sum runs over
all images. This is computationally intractable. Therefore, we
use a variant of Eq. (6), where the sum runs only over a
stochastically chosen subset of size bs, called a batch. The
size of that batch is called batch size and is an important
hyperparameter that needs to be chosen prior to training; see
Sec. III A 5. One iteration step now involves only bs images
from the data set, and we define an epoch as the number of
iteration steps it takes the network during the training to see
all images one time.

To summarize, minimizing the cross entropy is the goal
during the training process in a neural network. The network
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learns to link the user-defined labels to the provided images.
All that is left to understand the basic training process of a
neural network is a way to adjust the weights in all layers.

4. The backward correction: Gradient descent
and back propagation

Optimizing the weights within the neural network so that
they give minimal loss for all training images is done using
two distinct algorithms: gradient descent and back propaga-
tion. In principal, gradient descent works by evaluating the
gradient at some point and then moving a certain step size
in the opposite direction. This is done iteratively until the
gradient is smaller than some predefined threshold, which
is the numerical equivalent of calculating the extrema of a
function analytically.

The basic gradient descent step is given by

wτ+1 = wτ − η∇wτ
H (xout, x), (7)

where η is the afore mentioned step size, called learning rate,
∇wτ

is the gradient with regard to the weights at step τ , and
H (xout, x) is the loss function from Eq. (6). With Eq. (7), we
already could update the weights within the output layer of
the neural network [zn(·)], since for the output layer we can
calculate the numerical gradients, but we cannot do this for the
layers that come before the output layer since we lack a way
to include these. In order to propagate the gradient descent
correction throughout the network, an algorithm called back
propagation is used [57]:

First, we define the gradient of H (xout, x), with regard to
the weights at the output of the deep neural network, using the
chain rule:

∇wτ
H (xout, x) = ∂H (xout, x)

∂wN
jτ

= ∂H (xout, x)

∂hN
(
aN

j

) ∂hN
(
aN

j

)
∂wN

jτ

, (8)

where N denotes the layer depth of the output layer, hN (·)
is the used activation function in that layer, and aN

j are the
outputs of the layer-specific operation, as in Eqs. (1) and (2).
Starting from there, we include the layer preceding the output
layer [zn−1(zn(·))], by making use of the chain rule again:

∂H (xout, x)

∂hN
(
aN

j

) = ∂H (xout, x)

∂hN−1
(
aN−1

j

) ∂hN−1
(
aN−1

j

)
∂hN

(
aN

j

) . (9)

This can be iteratively repeated until the input layer [z1(·)] is
included in the calculation. By making use of the chain rule
until we reach the input layer, we can include all trainable
weights of all layers into the correction term of the gradient
descent algorithm. With this, we conclude the full optimiza-
tion routine in Table II.

5. Training setup

Of significant importance is the way how the network is
constructed. How deep should the network be and of what
should it consist? For nomenclature, the combination of all
used layers, the depth of the network, and the used activation
functions is called an architecture.

We bench marked the performance of various architec-
tural choices when used with diffraction images as input and

TABLE II. The iterative optimization routine for a deep feed-
forward neural network.

1. Forward pass: Propagate bs images through the network.
2. Evaluate the predictions: At the output layer calculate the loss

between the ground truth and the output of the deep neural
network [Eq. (6)].

3. Construct the backpropagation rule: Include all gradients
with regard to the weights of all layer according to Eq. (9).

4. Backward correction: Update all weights in the network using
gradient descent; see Eq. (7).

provide the results in Appendix A, not in the main paper, due
to its rather technical character. In short, all architectures are
established through extensive empirical research. So far, not
only the leading artificial intelligence (AI) research institutes,
like the Massachusetts Institute of Technology (MIT) and the
University of Toronto, but also large companies like Google,
Facebook, and Microsoft have invested significant amounts
of resources to establish well-working out-of-the-box solu-
tions [50–52].

Building on this and after extensively bench marking
the most common architectures on our own, we settled on
an architecture called preactivated wide residual convolu-
tional neural network in its 18-layer configuration, called
ResNet18 [24,58,59]. In essence, it is a convolutional neural
network much like the example in Fig. 3 but it employs
so-called residual skip connections which increase accuracy
while decrease training time; see Appendix A for further
details as well as comparisons with other architectures.

After settling on an architecture, training a neural network
requires fine-tuning of multiple free parameters. Four of them
are critical: The learning rate η, the batch size bs, and so-
called regularization parameters of which we have two (which
will be introduced at the end of this section).

We set the initial learning rate for the gradient descent al-
gorithm to η = 0.1; see also Eq. (7). Throughout the training,
we multiply η with 0.1 every 50 epochs; this increases the
chance for the gradient descent algorithm to get numerically
closer to a minimum in the loss function [58]. Furthermore,
we use a batch size of 48 for all training procedures; see also
the explanations for Eq. (6).

We split the manually classified part of the helium data
set into training and evaluation subsets, where we shuffle the
order of all images and then select 85% for the training set
while the rest serves as an evaluation set.

We rescale all diffraction images to 224 × 224 px, which
is necessary to fit the deep neural net on two Nvidia 1080Ti
GPUs, each having 11 GB of memory. The image dimensions
are chosen to be a compromise between file size and resolu-
tion. All features we are training the neural network on are
still clearly visible and distinguishable after the rescaling.

Furthermore, we face the problem of having a compar-
atively small training set, consisting of only ≈6000 clas-
sified images, which could result in a phenomenon called
overfitting, meaning the network memorizes the training set
without learning to make any meaningful prediction from

063309-7



JULIAN ZIMMERMANN et al. PHYSICAL REVIEW E 99, 063309 (2019)

it. Therefore, we employ two additional techniques called
regularization and data augmentation:

(1) Regularization means adding a so-called penalty term
to the loss function. There are two regularizations we use,
L1 and L2 [60]. These penalty terms are dependent on the
weights themselves and not on the labels, making the loss
function explicitly dependent on the weights of the neural
network. This dependency encourages the neural network to
reduce the values of all weights according to the two penalty
terms and ultimately find a sparser solution which in return
helps to prevent overfitting. Formally, we add these two terms
to the loss in Eq. (6):

H (xout, x)reg = H (xout, x) + α||w||1 + β||w||2, (10)

where H (xout, x) is the cross-entropy loss function, ||w||1 and
||w||2 are the L1 and the L2 norms applied on the sum of
all trainable weight parameters, and α and β are so-called
regularization coefficients. In our experiments, we set α and β

to 1 × 10−5 during training. Using L1 and L2 regularization
in combination is commonly referred to as elastic net regular-
ization [60].

(2) Data augmentation means creating artificial input im-
ages by randomly applying image transformations on the orig-
inal image like flipping the vertical or the horizontal axes and
adjusting contrast or brightness values randomly. This greatly
increases the robustness to overfitting and is used as a standard
procedure when facing small training data sets [61,62].

We were able to train deep neural networks with a depth
of up to 101 layers without overfitting using regularization
and data augmentation; see Appendix A. In all experiments
reported here, we chose a depth of 18 layers for the neu-
ral network, because of numerical, memory, and time rea-
sons. We trained all deep neural networks variants for 200
epochs.

B. Evaluating a deep neural network

We use three metrics to assess the quality of the predictions
from the neural network, accuracy, precision, and recall. We
calculated these metrics every 2500 training iteration steps
(≈52 epochs) using the evaluation data set. Accuracy is
formally defined as

Accuracy = True Positives + True Negatives

Condition Positives + Condition Negatives
,

where condition positives (negatives) is the real number of
positives (negatives) in the data and true positives (negatives)
is the correct overlap of the prediction from the model and the
condition positives (negatives). An accuracy of 1 corresponds
to a model that was able to predict all classes of all images
correct. Therefore, accuracy is a good measure for evaluating
the prediction capabilities of a model when true positives and
true negatives are of importance. Predicting negative labels
correct is in the case of the helium data set of particular inter-
est because we want to estimate if the neural network was able
to understand the complex interclass relationships imposed by
the researcher. The network should realize that if, for example,
one prediction is spherical/oblate, it cannot simultaneously
be prolate. Therefore, the network has to produce a true
negative for either one of these predictions. However, using

only accuracy as a metric has several downsides. The most
important one is the decreased expressiveness of accuracy
when working in a multiclass scenario. In order to understand
this, we first introduce precision and recall, and then provide
an example:

Precision = True Positives

True Positives + False Positives
,

Recall = True Positives

True Positives + False Negatives
.

Precision, also called positive predictive value, is a measure
for how reasonable the estimates of the model were when
it labeled a class positive, and recall is a measure for how
complete the model’s positive estimates were.

For example, if the model would predict all training images
in the helium data set to be spherical/oblate and nothing
else (out of 7264 images, 6589 are indeed spherical/oblate)
then accuracy would be 0.767, which translates to 77% of all
labels correctly assigned. However, if the model estimated all
images to be part of no class (setting every label to negative),
then accuracy would be 0.801, because out of 79 904 possible
labels (11 independent classes for 7264 images), 64 339 are
negative. Therefore, we would have a useless model that still
was able to predict 80% of all labels correct.

Using precision in these both examples would give 0.907
for the spherical/oblate example and 0.000 for the all-
negative example. Precision is, therefore, a metric that quanti-
fies how well the positive predictions were assigned. Since
91% of all images are indeed spherical/oblate, setting all
labels positive in the spherical/oblate class can make sense,
and precision also provides insight when the model makes no
positive prediction at all which would be a useless model for
our purpose. However, precision alone is not sufficient as a
metric. At this point, we do not know if our model predicted
almost every possible positive label correctly or if only a
small fraction of all positive labels were assigned correctly.
We therefore need an additional measure for the generaliza-
tion capabilities of our model. For that reason, precision is
always used in combination with recall. The recall for our
first example is 0.423 and for the second one 0.000. Recall
relies on ralse negatives instead of the false positives, used by
precision, which provides a measure about the completeness
of all positive predictions compared to all positive labels
within our data. Recall states that our model only captured
42% of all possible positive labels in the spherical/oblate
example, showing that generalization of the model would not
be sufficient for a real-world application.

Therefore, a balanced interpretation of these three metrics
is necessary to estimate the quality of the models tested here.

IV. BASELINE PERFORMANCE OF NEURAL
NETWORKS WITH CDI DATA

In this section, we briefly report on what we call baseline
results. We used the previously described ResNet [24] neural
network architecture in its basic configuration with a depth
of 18 layers, termed vanilla configuration or ResNet18 (see
Sec. III A 5) and trained it with the helium diffraction data
set as described in Sec. II as well as with a reference data
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TABLE III. Overall evaluation metrics for the ResNet18 archi-
tecture (vanilla configuration) and both data sets. The table gives the
max values during training for accuracy, precision, and recall. The
training time after which the neural network achieved the highest
accuracy score on the evaluation data set is labeled tmax and the time
for training the full 200 epochs is labeled tfull. See also Appendix A
for further details.

Architecture ResNet18

Data set CXIDB Helium

Accuracy 0.967 0.955
Precision 0.932 0.918
Recall 0.933 0.866
tmax [h] 0.278 0.231
tfull [h] 0.668 0.694

set from the literature [39]. This reference data set was made
freely available on the CXIDB by Kassemeyer et al. [39].
It contains diffraction patterns of a number of prototypical
diffraction imaging targets, namely the Paramecium bursar-
ium chlorella virus (PBCV-1), bacteriophage T4, magneto-
somes, and nanorice. For further experimental details, see
Ref. [39].

We selected this data set because of a previous pub-
lication dealing with this data set [27] that describes, to
our knowledge, the current state-of-the-art method for clas-
sification and sorting of diffraction images [27]. Bobkov
et al. [27] trained a support-vector machine on the CX-
IDB data set and inferred the particle type directly from
the diffraction images. Overall, they achieved an accuracy
of up to 0.87, but only on selected high-quality images
with a high confidence score of the support-vector machine
above 0.75.

Table III shows the overall evaluation metrics as well as the
training wall time. tmax is the time when the neural network
achieved the highest Accuracy score on the evaluation data
set, and tfull is the time for training 200 epochs. In practice,
we achieved optimal convergence after training for 70 to 100
epochs.

We achieved an accuracy of 0.967 on not only a high-
quality subset of the CXIDB data, like in Ref. [27], but on
all available data (see Table III), using a vanilla ResNet18
architecture, proving that using a neural network significantly
outperforms the current state-of-the-art approach given in
Ref. [27].

In the case of the helium data set, we face a much more
complicated multiclass learning problem (one image can be-
long to multiple classes compared to one image belongs to
exactly one class as it is in the CXIDB data). However,
we reach a comparable accuracy score of 0.955. Even more
promising, precision and recall are very high for the helium
and the CXIDB data set, proving that the neural network not
only predicted the true positives with high confidence and
reliability (high precision), it did so for almost all true positive
labels in the evaluation data set (high recall).

In the next section, we show how to further improve on
the baseline performance of neural networks with diffraction
images as input data.

V. ADAPTING NEURAL NETWORKS FOR CDI DATA

Here, we describe our contribution for using neural net-
works in combination with diffraction images.

First, we show in Sec. V A that the performance of a neural
network can be enhanced when using a special activation
function after the input layer.

Second, in Sec. V B, we benchmark the performance of
the neural network when using a smaller amount of training
data. The idea is to provide an intuition about how much the
prediction capabilities deteriorate when a smaller training data
set is used. This is useful because so far a researcher still has
to invest a lot of time preparing the training data set and, more
general, minimizing the time spent looking through the raw
data is the ultimate goal for using a neural network in the first
place.

Third, in Sec. V C, we propose a data augmentation in the
form of a custom two-point cross-correlation map that hardens
the network against very noisy data. We show that when using
this augmentation the network is more robust to noise from a
uniform distribution added on top of the original diffraction
image. This simulates the experimental scenario in which a
very low signal-to-noise ratio is unavoidable, e.g., during CDI
experiments with very limited photon flux [6] or very small
scattering cross sections, as it is in the case with upcoming
CDI experiments on single biomolecules [63,64].

A. The logarithmic activation function

One of the key additions of this paper is the proposed ac-
tivation function, formally stated in Eq. (11). It is designed to
account for the inherent property of diffraction images of scal-
ing exponentially. More generally, the intensity distribution of
scattered light on a flat detector follows two laws, depending
on the scattering angle that is recorded. For very small angles
(SAXS and USAXS experiments), the Guinier approximation
is the dominant contribution to the recorded intensity, while
for larger scattering angles (SAXS and WAXS experiments)
Porod’s law becomes dominant [65,66]. Where the scatter-
ing intensity in the Guinier approximation is proportional to
≈ exp (−q2), in Porod’s law the intensity scales with ≈q−d . q
is the scattering vector (function of the scattering angle and of
the wavelength in use) and d is the so-called Porod coefficient,
which can vary significantly depending on the object from
which the light was scattered [65].

In any case, the recorded detector intensity for diffraction
images scale exponentially. For this reason, we propose a
logarithmic activation function of the form

h(x) =
{
α[log (x + c0) + c1] if x � 0
−α[log (c0 − x) + c1] if x < 0,

(11)

where α > 0 is a tunable scaling parameter, c0 = exp (−1),
c1 = 1, and x is the input.

We define c0 and c1 so that the activation function is
antisymmetric around 0, which helps speed up training and
avoids a bias shift for succeeding layers [67,68].

Since we are using a gradient-based optimization tech-
nique, we need to take care that the gradient can prop-
agate throughout the whole network; otherwise it would
lead to so-called gradient flow problems, which befalls deep
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TABLE IV. Evaluation metrics for the ResNet18 network with
and without the logarithmic activation function. We benchmark three
values for α. Results are shown for both data sets and are the
maximum value recorded during training. Bold numbers indicate the
best scores across their respective category.

Architecture ResNet18

α 0.2 0.5 1.0 Unmodified

Data set Helium
Accuracy 0.965 0.960 0.959 0.955
Precision 0.922 0.920 0.922 0.918
Recall 0.870 0.870 0.868 0.867

architectures [48,69]. There are two possibilities for insuffi-
cient gradient flow: either the gradients are getting too small
(vanishing gradient) or too large (exploding gradient) when
propagating throughout the network. Both scenarios lead to
numerical instabilities during training, making convergence
for large architectures very hard or even impossible. The rea-
son for this is the backpropagation algorithm which invokes
the chain rule for calculating the gradients. Every gradient
is therefore also a multiplicative factor for the gradient of a
succeeding layer. For our case, the derivative of Eq. (11) with
regard to x is given by

∂h(x)

∂x
=

{
α

x+c0
if x � 0

α
c0−x if x < 0.

(12)

It shows that the gradient scales with x−1 with a discontinuity
of size α c−1

0 at 0.
If we used this activation function for all activations

throughout the network, the gradient would have an increased
probability to vanish—or explode—the deeper the architec-
ture gets. In addition to that, the discontinuity at x = 0 could
lead to gradient jumps, which would further decrease numer-
ical stability. Therefore, we use the logarithmic activation
function only for the first convolutional layer and use a
LeakyRelu activation with leakage of 0.2 on all hidden layers.
This compromise still captures the exponential scale of the
diffraction images but without losing numerical stability.

Since α is a tunable hyperparameter, we conduct experi-
ments with three values for α ∈ [0.2, 0.5, 1.0] and evaluate its
impact on the performance of the neural network.

In Table IV, we provide the evaluation metrics for
ResNet18 used with the logarithmic activation function,
trained with three different values for α. For comparison, we
also provide the results of the unmodified ResNet18 labeled
unmodified. The best-performing configuration is with an α

value of 0.2, maxing out with an accuracy of 0.965. Therefore,
providing a boost in accuracy of a full percentage point
compared to the unmodified ResNet18. The lowest value for
the maximum accuracy was reached without the logarithmic
activation function, topping at 0.955. precision and recall
both increase with the addition of the logarithmic activation
function. These improvements all come without increasing
training time or complexity of the model. The maximum
achieved accuracy seems to be anticorrelated to α, with the
ResNet18α=1.0 variant performing worst. We suspect that this

TABLE V. Evaluation metrics of the ResNet18α=0.2 network with
the logarithmic activation function and an α value of 0.2. Results are
shown for the helium data sets and reflect the maximum achieved
value reached throughout the training process, assessed on the eval-
uation data set. Bold numbers indicate the best scores across their
respective category.

Architecture ResNet18α=0.2

Training set size 6174 4631 3088 1544

Data set Helium
Accuracy 0.965 0.915 0.829 0.797
Precision 0.922 0.821 0.740 0.673
Recall 0.870 0.771 0.679 0.593

is related to the smaller size of the discontinuity of the deriva-
tive of h(a j ) when choosing a small value for α; see Eq. (12).

However, choosing even smaller values for α did not
improve the accuracy further, either because the benefit from
the activation function plateaus there or because we reached
the classification capacity of this ResNet layout.

These results show convincingly that the addition of the
logarithmic activation function improves the overall perfor-
mance and generalization of the deep neural network. This is
expected because we imposed a form of feature engineering
on the network, by exploiting a known characteristic of the
data set. Therefore, without increasing the complexity, the
depth or the training time, we showed that using the logarith-
mic activation improves all relevant evaluation metrics. For
this reason, we use the logarithmic activation function with an
α value of 0.2 as default for all following experiments.

B. Size of the training set

In this section, we evaluate the impact of the train-
ing set size on the evaluation metrics, and we trained the
ResNet18α=0.2 with a varying amount of labeled images. The
reason for this is to provide guidance for how many images are
needed to be classified manually before the employment of a
neural network is useful. We uniformly select images from the
training set but kept the same evaluation data set described in
Sec. III A 5. We decreased the size of the training set in three
stages (to 75% ≡ 4631, to 50% ≡ 3088 images, to 25% ≡
1544 images).

Table V shows the performance of ResNet18α=0.2 when
trained with data sets of different sizes. For the helium data
set, the maximum achieved accuracy is dropping from 0.965
to 0.797 when using only 1544 images instead of the full
6174 images. Even more pronounced is the decline in pre-
cision and recall from 0.922 and 0.870 to 0.673 and 0.593
for the smallest training set size. The steeper decline rate for
precision and recall, compared to accuracy, can be understood
as the helium data set predominantly consists of negative
ground truth labels (64 339 out of 79 904 labels) to which the
neural networks resorts in the absence of sufficient training
data. Precision and recall, on the other hand, provide only
information about the positive prediction capabilities and their
completeness and therefore decrease faster when a smaller
training set size is used.
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FIG. 4. Panels (a) to (d) showing the various stages of added noise to a standard scattering image. Panels (e) to (h) are the calculated
correlation maps with the upper triangle of order n = 8 and lower triangle from the full CCF calculation.

This shows that the number of images is critical for the pre-
diction capabilities of the neural network. The drastic decrease
in training set size results in a much worse generalization of
the model, detecting only those images that are very close
to the ones from the training set, missing most from the
evaluation set. The network has not learned the characteristics
of a particular class to a point where it can transfer the gained
knowledge to other images, which is the one critical property
for which we employed a neural network in the first place.

Therefore, if time is limited, one may be well advised
to concentrate efforts on preparing a sufficiently large, high-
quality training data set while using, e.g., our here presented
neural network approach in its standard configuration.

C. Using two-point cross-correlation maps
to be more robust to noise

This section introduces an image augmentation based on
the two-point cross-correlation function, which increases the
resistance to noise. We prepare four training sets, each with an
increasing amount of noise sampled from a uniform distribu-
tion, and analyze the noise dependence of the neural network.

One of the principal problems in CDI experiments, or
imaging experiments in general, is recorded noise. Noise often
leads to computational problems due to noise resistance being
a known weak point for a significant fraction of predictive
algorithms [28]. In particular, deep neural networks are known
to be easily fooled by noise. When adding noise to an image,
whose addition may be invisible to the human eye, a neural
network can come to entirely different conclusions and this
even with high confidence, for example, seeing a panda where
there was a wolf [70,71]. Therefore, we propose an additional
preprocessing step for the input images to increase the noise
resistance of the neural network.

To quantify the quality of an image, the signal-to-
noise ratio is often used. It is a measure for how much
noise is present when compared to some information con-
tent, where low values indicate that information might be
indistinguishable from noise. It has been shown that higher
orders of the two-point cross-correlation function (CCF) can
act as a frequency dependent noise filter and increase the
quality of a reconstruction of a diffraction image even in the
presence of recorded noise [72,73]. And since the CCF can be
interpreted as an image [see Figs. 4(e) to 4(h)], we employ
this method in a similar manner to optimize the use case
with a convolutional deep neural network, expecting that the
higher-order terms make the neural network more resistant to
the presence of noise.

In general, the CCF is defined as

Ci, j (qi, q j,�) =
∫ ∞

−∞
I∗
i (qi, φ)I j (q j, φ + �)dφ, (13)

where � is the angular separation, φ is the angular coordinate,
and (i, j) denotes the index of the two scattering vectors qi

and q j . For discrete φ, and written as Fourier decomposition,
Eq. (13) yields [72]:

Cn
i, j (qi, q j ) = In∗

i (qi ) In
j (q j ), (14)

where n denotes the order of the CCF. In
i is given by

In
i (qi ) = 1

2π

∫ 2π

0
I (qi, φ) exp (−inφ)dφ. (15)

Since Ci, j = Cj,i, we can split the final correlation map
into an upper and a lower triangle matrix. To maximize
information, and to optimally use the local receptive fields of
the convolutional layers, we merge the lower triangle from
the full CCF calculation, Eq. (13), with � = 0, and the upper
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TABLE VI. Evaluation results when training a ResNet18α=0.2 on the original diffraction images and on CCF maps calculated from them.
The results reflect the maximum value achieved throughout the training process, assessed on the evaluation data set. Bold numbers indicate the
best scores across their respective category.

Architecture ResNet18α=0.2

Noise added None Mean Mean + std. Max.

Input data CCF maps Diff. imgs. CCF maps Diff. imgs. CCF maps Diff. imgs. CCF maps Diff. imgs.

Data set Helium
Accuracy 0.950 0.965 0.948 0.954 0.946 0.944 0.944 0.926
Precision 0.901 0.922 0.897 0.910 0.893 0.887 0.905 0.865
Recall 0.838 0.870 0.833 0.853 0.823 0.815 0.814 0.808

triangle of order n = 8 from Eq. (14). Therefore, we combine
a plain correlation map with a higher order map that is more
resistant to noise; see Figs. 4(e) to 4(h) for a full example.

To test the robustness of this method, we use the
ResNet18α=0.2 and train it with various preprocessed data sets.

From our original data set, we derive three additional data
sets that only differ in the amount of noise added. We do
this as follows: First, we calculate the mean, the standard
deviation (std), and the maximum intensity values of each
image in the original data set. From these values, we calculate
the median instead of the mean (due to increased robustness
against outliers), ending up with three statistical characteris-
tics describing the intensity distribution throughout all diffrac-
tion images. With that, we define three continuous uniform
distributions to sample noise from. A continuous uniform
distribution is fully defined by upper and lower boundaries,
a and b, respectively. The probability for a value to be drawn
within these boundaries is equal and nonzero everywhere. For
our three noise distributions, we always use a lower boundary
of 0 and vary the upper boundary so that b is either the
mean, the mean + the standard deviation, or the maximum
of the intensity distribution on the images (the three statistical
characteristics described above).

For example, for creating the maximum noise data set,
we looped through every diffraction image and added noise
sampled from the maximum noise distribution. We do this for
all three noise distributions. From these three noise embedded
data sets, as well as our original data set, we calculate the here
proposed CCF maps. This leads to a total of eight data sets;
for each of them we train a ResNet18α=0.2. An example of one
image in all eight data sets is in Fig. 4.

The results for these eight data sets are given in Table VI.
The performance of the neural network without added noise
is much stronger when using the original diffraction images
instead of the CCF maps. However, as soon as noise is added,
the performance of the neural network trained on diffraction
images deteriorates much faster as compared to the perfor-
mance with CCF maps as input. When the upper boundary of
the added noise excels the median values of mean + standard
deviation, the neural network is performing better with the
CCF maps instead of the original diffraction images. Espe-
cially with the noisiest data set, the differences in performance
are significant. Precision is increased by 4 percentage points
when using the CCF maps as input, showing that our data
augmentation may serve as a helpful asset when dealing with
very noisy data.

In general, it is a viable alternative to use the CCF maps
as input to the convolutional deep neural network, which
should be considered an option in the case of very noisy
data where it provides a boost to classification results. The
downside is that calculating the CCF for every image comes at
an additional computational cost. It took us three full days to
calculate the CCF maps for all 39 879 images of both data sets
on an Intel 6700K quad-core machine using a multithreaded
PYTHON script (also released on Github).

VI. WHAT THE NEURAL NETWORK SAW

Neural networks are often considered a black-box ap-
proach. We usually do not impose a priori knowledge on our
model; the network learns this on its own. Although this is
part of the reason why they are so successful, it also gives
rise to doubts about the interpretability of their predictions.
Some ways to interpret the processes of decision finding
within a trained neural network have been presented in the
literature [40,74–76]. In order to get a better understanding
of why our deep neural network assigned images to certain
classes, we calculated heat maps using the GRADCAM++
algorithm [40]. These heat maps are making visible where
the network has looked for in a particular class, which we
do by tracing back the gradient flow from the output layer
to the last convolutional layer. The network’s class-specific
interest directly correlates with this gradient signal because,
in essence, we simulate a training step using back propagation
and interpolate the feature maps from the last convolutional
layer. A full description of this process is given in Ap-
pendix D. The output of the GRADCAM++ algorithm provides
contour maps whose amplitude is a normalized measure for
how much the gradient would impose corrections on the
weights if used during training. This gradient flow directly
corresponds to what the network deemed the most relevant
regions.

Figure 5 shows the GRADCAM++ results for the streak
and bent classes using our best performing network:
ResNet18α=0.2. We present results from these classes, because
the distinct spatial characteristics are obvious to the human
eye. Therefore, they are an ideal candidate to test if the
neural network understood these characteristics. In each row
of Fig. 2, a schematic sketch of the key feature together with
five randomly selected images from this class are depicted.

The GRADCAM++ contour maps are overlaid on the image,
in addition, the contour levels are also used as an α mask
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FIG. 5. Showing the GRADCAM++ results for two distinct classes from the helium data set. Panel (a) shows five randomly selected images
from the streak class and panel (b) shows five images from the bent class. We chose these classes due to their distinct and distinguishable
characteristic shapes which can easily be identified using the contour maps provided by the GRADCAM++ algorithm. For each class, we plot
the schematic from Fig. 2 also at the beginning of each row. GRADCAM++ contour levels are plotted as dashed lines and used as transparency
value for the images from which we calculated them. This way regions with strong gradients are also brighter.

for the diffraction image so that the brightest areas in each
plot correspond to the ones with the highest gradient flow.
In the case of the streak class, Fig. 5 clearly shows that
the neural network was able to identify the dominant streak
feature regardless of its orientation or size. Results on the bent
class also show a strong correlation between the shape of the
contour maps and the bent shape of the diffraction pattern.

Therefore, combining these metrics and the GRADCAM++
images, we think that the streak class feature identified by
the neural network indeed corresponds to the one seen by
the researcher. Also, the bent class contour maps from the
network show a clear resemblance to the feature intended by
the researcher, albeit not so strongly pronounced. Although
the deep neural network learned these representations on its
own, they align with the intentions of the researcher. This
demonstrates that neural networks are capable of learning
these complicated patterns on their own.

VII. SUMMARY AND OUTLOOK

In this paper, we give a general introduction on the capabil-
ities of neural networks and provide results on the first domain
adaption of neural networks for the use case of diffraction im-
ages as input data. The main additions of this paper are (i) an
activation function that incorporates the intrinsic logarithmic
intensity scaling of diffraction images, (ii) an evaluation on
the impact of different training set sizes on the performance
of a trained network, and (iii) the use of the pointwise cross-
correlation function to improve the resistance against very
noisy data. In addition, we provide a large benchmarking
routine, utilizing multiple neural network architectures and
layouts in Appendix A.

We have shown that even in the most basic configuration,
convolutional deep neural networks outperform previously
established sorting algorithms by a significant margin. More
important, we improved on these baseline results by modi-
fying the activation function for the first layer. For the case
of very noisy data, often a problem in diffraction imaging
experiments, we showed that two-point cross-correlation

maps as input data instead of the original diffraction images
improve the robustness of the classification capabilities of the
network. Our results set the stage for using deep learning
techniques as feature extractors from diffraction imaging data
sets. The ultimate goal will be establishing an unsupervised
routine that can categorize and extract essential pieces of
information of a large set of diffraction images on its own.
We envision for the near future that the gained insights lead to
multiple approaches regarding neural networks and diffraction
data. For example, the MSFT algorithm used by Langbehn
et al. [41] can be used as a generative module in an end-to-end
unsupervised classification routine using large synthetic data
sets as training data for a neural network. This approach can
be extended to utilize these trained networks as an online-
analysis tool during the experiments. Furthermore, we hope
to develop an unsupervised approach that connects the recent
research from generative adversarial network theory [77–80]
and mutual information maximization [81] with the results
of this paper. Such an approach would allow for finding
characteristic classes of patterns within a data set without any
a priori knowledge about the recorded data. All of the code,
written in PYTHON 3.6+ and using the Tensorflow framework,
is available at Github, free to use under the MIT License [82].
We hope the community uses and improves the code provided
in this repository.
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FIG. 6. Schematic for a convolutional operation inside a convolutional layer in panel (a) and for a classic skip connection found in the
ResNet architecture in panel (b). Panel (a) illustrates the local receptive fields and shared weights concept. The convolutional filter has size
3 × 3 and stride 2 and is sliding over the input image of size 7 × 7, which produces an output, called feature map, of size 3 × 3. The stride is the
distance the filter is moving in each step which is implied by the gray shading every two pixels in the input image. Using a local receptive field
describes the inclusion of nearby pixels, and weight sharing means using the same filter weights for the whole input image. The calculation at
the bottom is for the second entry in the feature map. (b) A classical skip connection is shown with two convolutional layers that approximate
a sparse residue which gets added to the identity at the output.

APPENDIX A: ARCHITECTURAL DESIGN CHOICES

In this section, we describe and explain our choices
for neural network architecture to establish as baseline
performance when working with diffraction patterns, before
the inclusion of our diffraction specific activation function;
see Sec. V A in the main text. We present the theory and
background on available architectures and provide results on
two architectures with five depth layouts.

There are different layer styles from which we can build a
neural network. Nomenclature is that a full arrangement of all
layers is called architecture, or configuration, of the network.

For our tests, we use two different neural network architec-
tures, a ResNet and a VGG- Net, both with multiple depth
layouts. For the ResNet, we train and evaluate three depth
variations (18, 50, and 101 layers), and for the VGG-Net, we
train two variants (16 and 19 layers).

The structure of this section is as follows: First, we ex-
plain how a convolutional layer works in general. Second,
we motivate the derivation of the VGG-Net from preceding
architectures, and third, we show how the ResNet architecture
can be explained by expanding the core ideas used in the
VGG-Net. In the following section, we will then present the
results for all the trained configurations.

Almost every architectural design is empirically de-
rived [50–52] and consists of multiple combinations of only
a few basic layer styles, namely the fully connected layer,
a convolutional layer, a pooling operation, and a batch nor-
malization operation. We discuss the pooling and batch nor-
malization layer only in Appendix C, because of their minor
role within the neural network. The reader is also referred
to the exhaustive overviews by Schmidhuber [50] and LeCun
et al. [51]. Since the convolutional layer serves as a fundamen-
tal basis for image analysis with neural networks, we explain
it here in more detail.

The very basic idea of a convolutional layer is that nearby
pixels in an input image are more strongly correlated than
more distant pixels; this is called a local receptive field.
Therefore, by calculating a convolution over an input image

with a trainable filter of size >1 × 1 we can approximate these
correlations.

In a convolutional layer, N filter, with size M × M, slides
over an input image and produces N convolved maps, called
feature maps. One filter uses the same weights on all parts
of the input image for producing one feature map; this is
called weight sharing. Weight sharing reduces not only the
complexity of the model but provides a bridge toward the
convolution function in mathematics. With weight sharing,
we can identify the filter within the convolutional layer as a
kernel function from the mathematical convolution function.
Figure 6(a) shows a schematic of a convolutional layer with
one filter.

This exemplary filter with size 3 × 3 slides over an image
of size 7 × 7 and produces a feature map of size 3 × 3. The
feature map is smaller than the input image because the filter
moves two pixels for each step. This step size is called stride.

Hereafter, we use the notation conv(a, b, c) for a convolu-
tional layer with filter size a × a, number of filters b and stride
c. The example from Fig. 6(a) could, therefore, be written
as conv(3, 1, 2) and would result in nine trainable weight
parameters plus one bias parameter (not shown in the figure).

This concept was introduced with the LeNet architecture
by Lecun et al. [83], which is considered the seminal work in
the field and the first deep convolutional neural network. After
LeCun proposed the LeNet architecture, further research [84]
led to the now de facto standard for plain convolutional net-
works, the VGG-Net. Simonyan and Zisserman [85] proposed
the original architecture which consists of up to 19 weight
layers, of which 16 are convolutional layers and 3 are fully
connected ones.

It is easy to build, is easy to train, and provides in gen-
eral good results [50,51]. For these reasons, we include two
variations of it in our tests, namely versions D and E (nomen-
clature is from Ref. [85]). Table VII shows the details of the
architecture, using the naming convention we introduced with
the convolutional layer.

Simonyan and Zisserman [85] derived the VGG-Net di-
rectly from the LeNet by arguing that three convolutional
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TABLE VII. The deep neural network architecture of the VGG
variants D and E; conv(a, b, c) is a convolutional layer with filter
size a × a, number of filters b, and stride c and max pooling(d, e)
is a max pooling layer with filter size d × d and stride e. Note that
we changed the fully connected layer of the original architecture to a
convolutional layer.

Variant D E
Depth 16 19

Input 2 × conv(3, 64, 1)
Pooling max pooling(2, 2)

Block 1 2 × conv(3, 128, 1)
Pooling max pooling(2, 2)

Block 2 3 × conv(3, 256, 1) 4 × conv(3, 256, 1)
Pooling max pooling(2, 2)

Block 3 3 × conv(3, 512, 1) 4 × conv(3, 512, 1)
Pooling max pooling(2, 2)

Block 4 3 × conv(3, 512, 1) 4 × conv(3, 512, 1)
Pooling max pooling(2, 2)

Out block 2 × conv(7, 4096, 1), conv(1, N, 1)

layers with filter size 3 and stride 1 (VGG-Net) achieve
better results than only one filter with size 7 and stride 2
(LeNet), which equals to the same effective local receptive
field size [85]. Three layers perform better than one be-
cause they have two additional nonlinear activation functions
and reduced complexity (less weight parameter because of
the smaller filter sizes), which forces the neural network
not only to be more discriminative but also to find sparser
solutions [85].

Building on the results achieved by the VGG-Net, it was
shown that the depth of a deep neural network directly relates

to its classification capabilities [58,68,86]. This led to the
introduction of the so-called residual skip connections which
further exploit this depth matters concept [58,68]. These
residual skip connections are the name-giving components for
the ResNet architecture.

In principle, a ResNet still uses the VGG architectural
layout but exchanges the convolutional blocks 1 to 4 with
residual skip connections; compare Tables VII and VIII. This
exchange drastically reduces the complexity of the whole
network while increasing the number of layers.

The VGG architecture can be broken down into six blocks:
one input block, one output block, and four convolutional
blocks (see Table VII). Block 2 is the first block in which there
are distinctions between VGG variants D and E.

The VGG-Net architecture proved that increasing the depth
and decreasing the amount and size of the filters increases
the accuracy, which ultimately gave rise to the plain skip
connections: Blocks of few convolutional layers designed to
replace the large amounts of filters in one layer for multiple
layers with fewer, and smaller, filters. Two types exist: A
classical and a bottleneck skip connection; both differ only
in the amount of how much the depth is increased and the
complexity decreased.

This addition has so far only modified the depth and
complexity of the network and is called a plain network; see
He et al. [58]. It performs reasonably well but not significantly
better than VGG-Net. A residual skip connection differs from
a plain skip connection only in adding the identity of its
inputs to its outputs. This way all the convolutional layers
in a skip connection learn only a residual of their input.
This simple technique enables a ResNet to outperform all
other convolutional deep neural network architectures [24,52].
Figure 6(b) exemplifies a classical residual skip connection.
There is still an ongoing debate about why a residual neural

TABLE VIII. Used ResNet variants; see also 18-, 50-, and 101-layer layout in Ref. [58]. Note that we added the preactivated layer layout
from Ref. [59]: conv(a, b, c) is a convolutional layer with filter size a × a, number of filters b, and stride c; max pooling(d, e) is a max pooling
layer with filter size d × d and stride e; avg pooling is a global average pooling layer; and f c( f ) is a fully connected layer with output size f .
Layers in bold have a stride of 2 during their first iteration, therefore reducing the dimension by a factor of 2.

Variant Classic Bottleneck Bottleneck
Depth 18 50 101

Input conv(7, 64, 2)
Pooling max pooling(3, 2)

Block 1 2 ×
[

conv(3, 64, 1)
conv(3, 64, 1)

]
3 ×

⎡
⎣ conv(1, 64, 1)

conv(3, 64, 3)
conv(1, 256, 1)

⎤
⎦ 3 ×

⎡
⎣ conv(1, 64, 1)

conv(3, 64, 3)
conv(1, 256, 1)

⎤
⎦

Block 2 2 ×
[

conv(3, 128, 1)
conv(3, 128, 1)

]
4 ×

⎡
⎣conv(1, 128, 1)

conv(3, 128, 3)
conv(1, 512, 1)

⎤
⎦ 8 ×

⎡
⎣conv(1, 128, 1)

conv(3, 128, 3)
conv(1, 512, 1)

⎤
⎦

Block 3 2 ×
[

conv(3, 256, 1)
conv(3, 256, 1)

]
6 ×

⎡
⎣ conv(1, 256, 1)

conv(3, 256, 3)
conv(1, 1024, 1)

⎤
⎦ 36 ×

⎡
⎣ conv(1, 256, 1)

conv(3, 256, 3)
conv(1, 1024, 1)

⎤
⎦

Block 4 2 ×
[

conv(3, 512, 1)
conv(3, 512, 1)

]
3 ×

⎡
⎣ conv(1, 512, 1)

conv(3, 512, 3)
conv(1, 2048, 1)

⎤
⎦ 3 ×

⎡
⎣ conv(1, 512, 1)

conv(3, 512, 3)
conv(1, 2048, 1)

⎤
⎦

Output block avg pooling, f c(N )
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TABLE IX. Overall evaluation metrics for all architectures and
both data sets. The training time after which the neural network
scored the highest accuracy score on the evaluation data set is labeled
tmax and tfull is the time for training the full 200 epochs. The table
gives the max values during training for accuracy, precision, and
recall. Bold scores are the best results in their respective category.

Architecture ResNet VGG

Depth 18 50 101 16 19

Data set Helium
Accuracy 0.955 0.958 0.964 0.958 0.959
Precision 0.918 0.917 0.925 0.923 0.920
Recall 0.866 0.864 0.878 0.867 0.867
tmax [h] 0.231 0.605 0.940 3.271 6.615
tfull [h] 0.694 1.814 2.820 6.541 6.726
Data set CXIDB
Accuracy 0.967 0.973 0.978 0.970 0.970
Precision 0.932 0.937 0.949 0.944 0.943
Recall 0.933 0.937 0.941 0.904 0.904
tmax [h] 0.278 1.205 1.093 4.374 4.480
tfull [h] 0.668 1.807 2.623 6.562 6.720

network performs so well [58,68,87]. Research has shown
that ResNets find sparser solutions faster because of their
layout and that they behave like ensembles of shallower
networks with information flow only activated on 10 to 34
layers even when the neural network has a depth of 101
layers [58,68,87].

However, besides empirical success, one of the critical
advantages of ResNets is that reaching training convergence
is not getting significantly harder when increasing the depth
of the neural network, which is usually the case with other
architectures. Therefore, the training of very deep residual
neural networks is no more difficult than training shallow
plain neural networks [52,88].

For these reasons, we train three variants, with 18, 50, and
101 layers, of a further optimized version of the classical
ResNet, called preactivated ResNet [24] (see Table VIII for
implementation details).

Table IX shows the overall evaluation metrics on the he-
lium and the CXIDB data set. Table X shows the per-class
evaluation metrics for the helium data set, which are not
needed for the CXIDB data set because predictions on the
helium data set are a multiclass problem whereas predic-
tions on the CXIDB data are single class. Single-class—one-
hot—problems have identical overall and per-class-evaluation
metrics. We trained all models as described in Sec. III A 5 in
the main text.

Table IX shows the overall evaluation metrics as well as the
training wall time. tmax is the time when the neural network
achieved the highest accuracy score on the evaluation data
set, and tfull is the time for training 200 epochs. However, in
practice, we achieved optimal convergence after training for
70 to 100 epochs. After this, the network showed overfitting.

Both VGG models took significantly longer to train than
the ResNet variants, needing between 6.5 and 6.7 h for 200
epochs on both data sets, whereas training ResNet101 took
only 2.8 and 2.6 h respectively. Furthermore, the maximum

TABLE X. Per-class accuracy, precision, and recall values for
the best performing ResNet configuration with 101 layers. Samples
are the number of images whose ground truth label is positive in
the evaluation data set. Results are shown for both data sets and
reflect the maximum achieved value reached throughout the training
process, assessed on the evaluation data set.

Class Accuracy Precision Recall Samples

Oblate 0.9681 0.9770 0.9965 988
Spherical 0.9166 0.9247 0.9849 869
Elliptical 0.9231 0.8054 0.4836 119
Newton rings 0.9352 0.6325 0.2282 69
Prolate 0.9690 0.9274 0.6777 68
Bent 0.9657 0.8161 0.6487 59
Asymmetric 0.9458 0.6044 0.2207 55
Streak 0.9898 0.9372 0.9876 36
Double rings 0.9768 0.7708 0.6788 33
Layered 0.9896 0.9062 0.6170 7
Empty 0.9904 0.9537 0.9763 32

accuracy of both VGG networks is more than half a percent-
age point below the maximum of ResNet101: 0.959 compared
to 0.964 for the helium data and 0.970 versus 0.978 for the
CXIDB data. Also, when increasing the depth from 16 to
19, accuracy did not change much, precision even decreased
slightly, and recall remained unchanged.

On the other hand, increasing complexity within the
ResNet architecture helped to boost the accuracy from 0.955
(CXIDB data: 0.973) with ResNet18 to 0.964 (CXIDB data:
0.978) with ResNet101.

For the multiclass results in Table X, we chose the
ResNet101 layout, as it is our best performing configuration.
For classes oblate, spherical, streak, and empty, a precision of
0.9247 to 0.9770 and a recall of at least 0.9763 show that the
majority of all predictions in these classes were correct and
virtually no image was missed.

For the classes prolate, bent, double rings, and layered,
the ResNet reached a good precision, but a recall score of
≈0.65 shows that it missed almost a third of all available
images, indicating we failed to generalize the network for
these classes.

For elliptical, Newton rings, and asymmetric images, the
recall of 0.2207 to 0.4836 shows that these images were a
lot harder to find, observable in the relatively low-precision
scores for those classes. Elliptical is the only class of these
three where precision is high enough for using the neural
network as a predictor. For the Newton rings and asymmetric
class, with precision scores around 0.6, the neural network is
effectively guessing.

The performance of all variants clearly shows the general
good classification capabilities of a convolutional deep neural
networks in the use case of diffraction patterns. Even the low-
est performing neural network can outperform previous classi-
fication approaches by a large margin; compare with Ref. [27].
In particular, the results of ResNet18 are compelling; it
is small, easy to train, and has relatively low complexity.
Although having only a fraction of trainable parameters, it
performed almost always on par with the much more complex
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VGG architectures and all this while taking only 0.2 h for
reaching the maximum accuracy during training.

Therefore, we chose the ResNet18 layout as the default
configuration for all the following experiments; it is an ideal
compromise among complexity, training time, and classifica-
tion accuracy.

APPENDIX B: DERIVATION OF THE
BINARY CROSS ENTROPY

Here, we give an derivation for the binary cross entropy
[Eq. (6) in the main text]. We start with the most general form
of the cross entropy given by

H (p, q) = H (p) + DKL(p‖q), (B1)

where H (p) is the Shannon entropy of p and DKL(p‖q) is
the Kullback-Leibler divergence of p and q [56]. This is
equivalent to

H (p, q) = −
∑

i

pi log qi, (B2)

where pi and qi are two probability distributions over the same
set of events. pi is the “correct” distribution, and qi is the
approximation of pi from the deep neural network. Since we
are using a Bernoulli distribution as our probabilistic model,
there are only two outcomes that one event (k) can have:
k ∈ {0, 1}. The probability for both outcomes of one event and
of both distributions can be written as

p(x) =
{

y(x) if k = 1
1 − y(x) if k = 0 ,

q(x) =
{

ŷ(x) if k = 1
1 − ŷ(x) if k = 0 .

x is some event, y is the ground truth label, and ŷ is the
approximate probability assigned by the deep neural network.
Since we are using a sigmoid function at the output of our
deep neural network, we can simplify Eq. (B2). Using

ŷ(x)sigmoid = 1

1 + exp (−x)
,

we can write

H (p, q) = −
2∑
i

pi log qi,

= − y(x) log [ŷ(x)] − [1 − y(x)] log [1 − ŷ(x)]

= − y(x) log

[
1

1 + exp (−x)

]
− [

1 − y(x)
]

× log

[
1 − 1

1 + exp (−x)

]
...

= x − xy(x) + log [1 + exp (−x)],

where x is an event (e.g., the activation in the output layer of
the deep neural network) and y is the real label of this event.

APPENDIX C: FURTHER BUILDING BLOCKS
OF DEEP NEURAL NETWORKS

This section describes the pooling layer and the batch
normalization layer in more detail. Since these components
are not critical for the neural network, their explanation is
given here.

1. Pooling

There are two commonly used variants of pooling layers,
the max pool and the average pool. The idea is to reduce the
dimensionality of the output from a preceding layer [dim x =
(N × X )] by letting a filter with size a × a slide over parts of
the image with step size b, called stride, and let them perform
a down-sample operation.

A max pool filter only takes the maximum value, and an
avg pool filter averages over all values, within its perceptive
field [83,84]; this process is equivalent to a convolutional
operation but instead of a matrix multiplication with a con-
volutional kernel the pooling operation is carried out.

2. Batch normalization

Every layer within a deep neural network is to some
point modeling the probability distribution given to it by its
preceding layer. It is a hierarchical regression problem, which
becomes harder if one layer changes key characteristics of
the modeled probability distribution (e.g., the mean, variance,
or kurtosis). This shift is then further multiplied in every
succeeding layer and is therefore dependent on the depth of
the network. This phenomenon is called a covariate shift [89].
Although this problem is solved in a deep neural network via
domain adaptation, the costs of a covariate shift are usually
much longer training times and reduced accuracy [90].

For this reason, a batch normalization layer (bn) is used
to shift the mean of the mini-batch input to zero and to set
the variance to one. This significantly reduces the amount of
training time and increases accuracy [91]. This consists of
four steps after which a normalized minibatch is returned:

(1) Calculated the minibatch mean:

μmb = 1

m

m∑
i=1

xi.

(2) Calculated the minibatch variance:

σ 2
mb = 1

m

m∑
i=1

(xi − μmb)2.

(3) Normalize:

x̂i = xi − μmb√
σ 2

mb + ε

.

(4) Scale and shift according to adjustable parameter:

yi = γ x̂i + β,

where yi is the normalized output of input xi and γ and β are
adjustable parameters.
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APPENDIX D: GRADCAM++
In Sec. VI of the main text, we show what the neural

network deemed the most relevant areas within an input
image. We calculated these so-called heat maps with an
algorithm called GRADCAM++. The main idea is based on
CAM [75] and GRADCAM [74] and allows for a very intuitive
explanation for the decisions made by a convolutional deep
neural network [40].

The core principle is that the output of a convolutional deep
neural network can be expressed as a linear combination of the
globally average pooled feature maps of the last convolutional
layer:

Y c =
∑

k

wc
k

∑
i

∑
j

Ak
i j,

where Ak
i j is one feature map of all k maps from the last

convolutional layer and wc
k are the weights for a partic-

ular class prediction c of feature map k. Y c is the pre-
dicted probability that the input image belongs to this certain
class c. In the GRADCAM++ formalism, the weights can be

calculated:

wc
k =

∑
i

∑
j

akc
i j hLR

(
∂Y c

∂Ak
i j

)
, (D1)

where akc
i j are the gradient weights and hLR is the LeakyRelu

activation function from Eq. (4) in the main text. akc
i j depends

only on Ak
i j and Y c via

akc
i j =

∂2Y c(
∂Ak

i j

)2

2 ∂2Y c(
∂Ak

i j

)2 + ∑
a

∑
b Ak

ab
∂3Y c(
∂Ak

i j

)3

.

The final heat map, often called the saliency map, can then
be obtained:

Lc
i j = hLR

(∑
k

wcAk
i j

)
. (D2)

So the algorithm propagates an image forward through the
network, then calculates the gradients until the last convolu-
tional layer, and, using Eqs. (D1) and (D2), obtains a heat map
of the areas within the input image that shows the gradient
flow from the convolutional layer.
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