95 research outputs found

    Third minima in actinides - do they exist?

    Full text link
    We study the existence of third, hyperdeformed minima in a number of even-even Th, U and Pu nuclei using the Woods-Saxon microscopic-macroscopic model that very well reproduces first and second minima and fission barriers in actinides. Deep (3÷43 \div 4 MeV) minima found previously by \'Cwiok et al. are found spurious after sufficiently general shapes are included. Shallow third wells may exist in 230,232^{230,232}Th, with IIIrd barriers \le 200 and 330 keV (respectively). Thus, a problem of qualitative discrepancy between microscopic-macroscopic and selfconsistent predictions is resolved. Now, an understanding of experimental results on the apparent third minima in uranium becomes an issue.Comment: 5 pages, 3 figures, 02. 03. 2012 - submitted to PR

    Three-dimensional shielding effects on charged particle fluences measured in the P0006 experiment of LDEF

    Get PDF
    Three-dimensional shielding effects on cosmic ray charged particle fluences were measured with plastic nuclear track detectors in the P0006 experiment on Long Duration Exposure Facility (LDEF). The azimuthal and polar angle distributions of the galactic cosmic ray particles (mostly relativistic iron) were measured in the main stack and in four side stacks of the P0006 experiment, located on the west end of the LDEF satellite. A shadowing effect of the shielding of the LDEF satellite is found. Total fluence of stopping protons was measured as a function of the position in the main and side stacks of the P0006 experiment. Location dependence of total track density is explained by the three-dimensional shielding model of the P0006 stack. These results can be used to validate 3D mass model and transport code calculations and also for predictions of the outer radiation environment for the Space Station Freedom

    Charged particle LET-spectra measurements aboard LDEF

    Get PDF
    The linear energy transfer (LET) spectra of charged particles was measured in the 5 to 250 keV/micron (water) interval with CR-39 and in the 500 to 1500 keV/micron (water) interval with polycarbonate plastic nuclear track detectors (PNTDs) under different shielding depths in the P0006 experiment. The optimal processing conditions were determined for both PNTDs in relation to the relatively high track densities due to the long term exposure in space. The total track density was measured over the selected samples, and tracks in coincidence on the facing surfaces of two detector sheets were selected for measuring at the same position on each sheet. The short range (SR) and Galactic Cosmic Ray (GCR) components were measured separately with CR-39 PNTDs and the integral dose and dose rate spectra of charged particles were also determined. The high LET portion of the LET spectra was measured with polycarbonate PNTDs with high statistical accuracy. This is a unique result of this exposure due to the low flux of these types of particles for typical spaceflight durations. The directional dependence of the charged particles at the position of the P0006 experiment was also studied by four small side stacks which surrounded the main stack and by analyzing the dip angle and polar angle distributions of the measured SR and GCR particle tracks in the main stack

    Radiation exposure of LDEF: Initial results

    Get PDF
    Initial results from LDEF include radiation detector measurements from four experiments, P0006, P0004, M0004, and A0015. The detectors were located on both the leading and trailing edges of the orbiter and also on the Earthside end. This allowed the directional dependence of the incoming radiation to be measured. Total absorbed doses from thermoluminescent detectors (TLDs) verified the predicted spatial east-west dose ratio dependence of a factor approx. 2.5, due to trapped proton anisotropy in the South Atlantic Anomaly. On the trailing edge of the orbiter a range of doses from 6.64 to 2.91 Gy were measured under Al equivalent shielding of 0.42 to 1.11 g/sq cm. A second set of detectors near this location yielded doses of 6.48 to 2.66 Gy under Al equivalent shielding of 0.48 to 15.4 g/sq cm. On the leading edge, doses of 2.58 to 2.10 Gy were found under Al equivalent shielding of 1.37 to 2.90 g/sq cm. Initial charged particle LET (linear energy transfer) spectra, fluxes, doses and dose equivalents, for LET in H2O greater than or = 8 keV/micron, were measured with plastic nuclear track detectors (PNTDs) located in two experiments. Also preliminary data on low energy neutrons were obtained from detectors containing (6)LiF foils

    Contribution of proton-induced short range secondaries to the LET spectra on LDEF

    Get PDF
    The contribution to the LET (linear energy transfer) spectrum from proton-induced short range secondaries was investigated by making measurements of total track density and LET spectra in CR-39 Plastic Nuclear Track Detectors (PNTD's) at varying shielding depths in the A0015 West-side stack. Proton-induced short range secondaries were found to make a significant contribution to the LET spectra, especially in the region above 100 keV/micron. At present, calculational models do not include this component. Total track density was measured at five shielding depths and was seen to increase as a function of shielding. LET spectra were measured under two shielding depths (2.6 and 9.2 g/cm(exp 2)) and stayed fairly constant as a function of shielding. Prerecovery estimates of LET spectra dropped off rapidly in the 100-300 keV/micron region, while the measured LET spectra extended to higher LET's. Track density and LET spectra measurements of secondaries were made in a CR-39 PNTD stack exposed to 154 MeV accelerator protons. Similarities in LET spectra measured in the A0015 experiment and in the 154 MeV accelerator proton stack demonstrate that a useful first step in modeling the contribution to the LET spectra of secondaries induced by the spectrum of trapped protons would be to model a mono-energetic proton beam being transported through a one-dimensional geometry

    Exploring the multi-humped fission barrier of 238U via sub-barrier photofission

    Get PDF
    The photofission cross-section of 238U was measured at sub-barrier energies as a function of the gamma-ray energy using, for the first time, a monochromatic, high-brilliance, Compton-backscattered gamma-ray beam. The experiment was performed at the High Intensity gamma-ray Source (HIgS) facility at beam energies between E=4.7 MeV and 6.0 MeV and with ~3% energy resolution. Indications of transmission resonances have been observed at gamma-ray beam energies of E=5.1 MeV and 5.6 MeV with moderate amplitudes. The triple-humped fission barrier parameters of 238U have been determined by fitting EMPIRE-3.1 nuclear reaction code calculations to the experimental photofission cross section.Comment: 5 pages, 3 figure

    Observation of Anomalous Internal Pair Creation in 8^8Be: A Possible Signature of a Light, Neutral Boson

    Get PDF
    Electron-positron angular correlations were measured for the isovector magnetic dipole 17.6 MeV state (Jπ=1+J^\pi=1^+, T=1T=1) \rightarrow ground state (Jπ=0+J^\pi=0^+, T=0T=0) and the isoscalar magnetic dipole 18.15 MeV (Jπ=1+J^\pi=1^+, T=0T=0) state \rightarrow ground state transitions in 8^{8}Be. Significant deviation from the internal pair creation was observed at large angles in the angular correlation for the isoscalar transition with a confidence level of >5σ> 5\sigma. This observation might indicate that, in an intermediate step, a neutral isoscalar particle with a mass of 16.70±0.35\pm0.35 (stat)±0.5\pm 0.5 (sys) MeV/c2/c^2 and Jπ=1+J^\pi = 1^+ was created.Comment: 5 pages, 5 figure

    LET spectra measurements of charged particles in the P0006 experiment on LDEF

    Get PDF
    Measurements are under way of the charged particle radiation environment of the Long Duration Exposure Facility (LDEF) satellite using stacks of plastic nuclear track detectors (PNTD's) placed in different locations of the satellite. In the initial work the charge, energy, and linear energy transfer (LET) spectra of charged particles were measured with CR-39 double layer PNTD's located on the west side of the satellite (Experiment P0006). Primary and secondary stopping heavy ions were measured separately from the more energetic particles. Both trapped and galactic cosmic ray (GCR) particles are included, with the latter component being dominated by relativistic iron particles. The results from the P0006 experiment will be compared with similar measurements in other locations on LDEF with different orientation and shielding conditions. The remarkably detailed investigation of the charged particle radiation environment of the LDEF satellite will lead to a better understanding of the radiation environment of the Space Station Freedom. It will enable more accurate prediction of single event upsets (SEU's) in microelectronics and, especially, more accurate assessment of the risk - contributed by different components of the radiation field (GCR's, trapped protons, secondaries and heavy recoils, etc.) - to the health and safety of crew members

    e+ee^{+}e^{-} pairs from a nuclear transition signaling an elusive light neutral boson

    Full text link
    Electron-positron pairs have been observed in the 10.95-MeV 00+0^-\to0^+ decay in 16^{16}O. The branching ratio of the e+^+e^- pairs compared to the 3.84-MeV 02+0^-\to2^+ γ\gamma decay of the level is deduced to be 20(5)×10520(5)\times10^{-5}. This magnetic monopole (M0) transition cannot proceed by γ\gamma-ray decay and is, to first order, forbidden for internal pair creation. However, the transition may also proceed by the emission of a light neutral 00^{-} or 1+1^{+} boson. Indeed, we do observe a sharp peak in the e+ee^{+}e^{-} angular correlation with all the characteristics belonging to the intermediate emission of such a boson with an invariant mass of 8.5(5) MeV/c2^2. It may play a role in the current quest for light dark matter in the universe.Comment: 6 page

    Neutron-skin thickness of 208^{208}Pb, and symmetry-energy constraints from the study of the anti-analog giant dipole resonance

    Full text link
    The 208^{208}Pb(pp,nγpˉn\gamma\bar p) 207^{207}Pb reaction at a beam energy of 30 MeV has been used to excite the anti-analog of the giant dipole resonance (AGDR) and to measure its γ\gamma-decay to the isobaric analog state in coincidence with proton decay of IAS. The energy of the transition has also been calculated with the self-consistent relativistic random-phase approximation (RRPA), and found to be linearly correlated to the predicted value of the neutron-skin thickness (ΔRpn\Delta R_{pn}). By comparing the theoretical results with the measured transition energy, the value of 0.190 ±\pm 0.028 fm has been determined for ΔRpn\Delta R_{pn} of 208^{208}Pb, in agreement with previous experimental results. The AGDR excitation energy has also been used to calculate the symmetry energy at saturation (J=32.7±0.6J=32.7 \pm 0.6 MeV) and the slope of the symmetry energy (L=49.7±4.4L=49.7 \pm 4.4 MeV), resulting in more stringent constraints than most of the previous studies.Comment: 6 pages, 5 figures. arXiv admin note: text overlap with arXiv:1205.232
    corecore