108 research outputs found

    Measurement Report: Long-Range Transport Patterns into the Tropical Northwest Pacific during the CAMPÂČEx Aircraft Campaign: Chemical Composition, Size Distributions, and the Impact of Convection

    Get PDF
    The tropical Northwest Pacific (TNWP) is a receptor for pollution sources throughout Asia and is highly susceptible to climate change, making it imperative to understand long-range transport in this complex aerosol-meteorological environment. Measurements from the NASA Cloud, Aerosol, and Monsoon Processes Philippines Experiment (CAMP2Ex; 24 August to 5 October 2019) and back trajectories from the National Oceanic and Atmospheric Administration Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) were used to examine transport into the TNWP from the Maritime Continent (MC), peninsular Southeast Asia (PSEA), East Asia (EA), and the West Pacific (WP). A mid-campaign monsoon shift on 20 September 2019 led to distinct transport patterns between the southwest monsoon (SWM; before 20 September) and monsoon transition (MT; after 20 September). During the SWM, long-range transport was a function of southwesterly winds and cyclones over the South China Sea. Low- (high-) altitude air generally came from MC (PSEA), implying distinct aerosol processing related to convection and perhaps wind shear. The MT saw transport from EA and WP, driven by Pacific northeasterly winds, continental anticyclones, and cyclones over the East China Sea. Composition of transported air differed by emission source and accumulated precipitation along trajectories (APT). MC air was characterized by biomass burning tracers while major components of EA air pointed to Asian outflow and secondary formation. Convective scavenging of PSEA air was evidenced by considerable vertical differences between aerosol species but not trace gases, as well as notably higher APT and smaller particles than other regions. Finally, we observed a possible wet scavenging mechanism acting on MC air aloft that was not strictly linked to precipitation. These results are important for understanding the transport and processing of air masses with further implications for modeling aerosol lifecycles and guiding international policymaking to public health and climate, particularly during the SWM and MT

    Relationships Between Giant Sea Salt Particles and Clouds Inferred from Aircraft Physicochemical Data

    Get PDF
    This study uses airborne data from multiple field campaigns off the California coast to determine the extent to which a size distribution parameter and a cloud water chemical measurement can capture the effect of giant cloud condensation nuclei (GCCN), specifically sea salt, on marine stratocumulus cloud properties. The two GCCN proxy variables, near-surface particle number concentration for diameters > 5 ”m and cloud water chloride concentration, are significantly correlated (95% confidence) with each other, and both exhibit expected relationships with other parameters (e.g., surface wind) that typically coincide with sea salt emissions. Factors influencing the relationship between these two GCCN proxy measurements include precipitation rate (R) and the standard deviation of the sub-cloud vertical velocity owing likely to scavenging effects and improved mixing/transport of sea salt to cloud base, respectively. When comparing twelve pairs of high and low chloride cloud cases (at fixed liquid water path and cloud drop number concentration), the average drop spectra for high chloride cases exhibit enhanced drop number at diameters exceeding 20 ”m, especially above 30 ”m. In addition, high chloride cases coincide with enhanced mean columnar R and negative values of precipitation susceptibility. The difference in drop effective radius between high and low chloride conditions decreases with height in cloud, suggesting that some GCCN-produced rain drops precipitate before reaching cloud tops. The sign of cloud responses (i.e., R) to perturbations in giant sea salt particle concentration, as evaluated from MERRA-2 reanalysis data, is consistent with the aircraft data

    Cloud Adiabaticity and Its Relationship to Marine Stratocumulus Characteristics Over the Northeast Pacific Ocean

    Get PDF
    Cloud adiabaticity (α) is defined as the ratio of the actual liquid water path (LWP_(measured)) in a cloud to its corresponding adiabatic value (LWP_(ad)). Processes such as drizzle and entrainment can lead to subadiabatic LWP_(measured). This study examines α and its relationship to microphysical properties for 86 cloud events over the Northeast Pacific Ocean based on data collected during four separate summertime airborne campaigns. For the study region, α was found to be 0.766 ± 0.134. For most cases, clouds with a low value of α were found to have lower droplet number concentration (N_d), higher droplet effective radius (r_e), higher relative dispersion (d), and higher rain rate (R). The subcloud aerosol concentration (N_a) was often less for the low‐α cases. The relationship between α and the vertical profiles and cloud‐top characteristics for both the cloud droplet‐only spectrum and full spectrum (cloud and rain droplets) is also examined. Inclusion of rain droplets produced a larger change in d for the low‐α clouds as compared to the high‐α clouds. On average, R increased at cloud top for high‐α clouds but decreased at cloud top for low‐α clouds. Accounting for α when estimating N_d from Moderate Resolution Imaging Spectroradiometer retrievals results in better agreement with in situ N_d values. Results of this work motivate the need for additional focus on the factors governing α, such as cloud type, and implications of its value, especially for remote‐sensing retrievals

    On the relationship between cloud water composition and cloud droplet number concentration

    Get PDF
    Aerosol–cloud interactions are the largest source of uncertainty in quantifying anthropogenic radiative forcing. The large uncertainty is, in part, due to the difficulty of predicting cloud microphysical parameters, such as the cloud droplet number concentration (N_d). Even though rigorous first-principle approaches exist to calculate Nd, the cloud and aerosol research community also relies on empirical approaches such as relating N_d to aerosol mass concentration. Here we analyze relationships between Nd and cloud water chemical composition, in addition to the effect of environmental factors on the degree of the relationships. Warm, marine, stratocumulus clouds off the California coast were sampled throughout four summer campaigns between 2011 and 2016. A total of 385 cloud water samples were collected and analyzed for 80 chemical species. Single- and multispecies log–log linear regressions were performed to predict N_d using chemical composition. Single-species regressions reveal that the species that best predicts N_d is total sulfate (RÂČ_(adj) = 0.40). Multispecies regressions reveal that adding more species does not necessarily produce a better model, as six or more species yield regressions that are statistically insignificant. A commonality among the multispecies regressions that produce the highest correlation with N_d was that most included sulfate (either total or non-sea-salt), an ocean emissions tracer (such as sodium), and an organic tracer (such as oxalate). Binning the data according to turbulence, smoke influence, and in-cloud height allowed for examination of the effect of these environmental factors on the composition–Nd correlation. Accounting for turbulence, quantified as the standard deviation of vertical wind speed, showed that the correlation between N_d with both total sulfate and sodium increased at higher turbulence conditions, consistent with turbulence promoting the mixing between ocean surface and cloud base. Considering the influence of smoke significantly improved the correlation with N_d for two biomass burning tracer species in the study region, specifically oxalate and iron. When binning by in-cloud height, non-sea-salt sulfate and sodium correlated best with Nd at cloud top, whereas iron and oxalate correlated best with N_d at cloud base

    Ambient Observations of Sub-1.0 Hygroscopic Growth Factor and F(RH) Values: Case Studies from Surface and Airborne Measurements

    Get PDF
    This study reports on the first set of ambient observations of sub-1.0 hygroscopicity values (i.e., growth factor, ratio of humidified-to-dry diameter, GF=Dp,wet/Dp,dry and f(RH), ratio of humidified-to-dry scattering coefficients, less than 1) with consistency across different instruments, regions, and platforms. We utilized data from a shipboard humidified tandem differential mobility analyzer (HTDMA) during Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) in 2011, multiple instruments on the DC-8 aircraft during Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) in 2013, as well as the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe (DASH-SP) during measurement intensives during Summer 2014 and Winter 2015 in Tucson, Arizona. Sub-1.0 GFs were observed across the range of relative humidity (RH) investigated (75-95%), and did not show a RH-dependent trend in value below 1.0 or frequency of occurrence. A commonality between suppressed hygroscopicity in these experiments, including sub-1.0 GF, was the presence of smoke. Evidence of externally mixed aerosol, and thus multiple GFs, was observed during smoke periods resulting in at least one mode with GF < 1. Time periods during which the DASH-SP detected externally mixed aerosol coincide with sub-1.0 f(RH) observations. Mechanisms responsible for sub-1.0 hygroscopicity are discussed and include refractive index (RI) modifications due to aqueous processing, particle restructuring, and volatilization effects. To further investigate ambient observations of sub-1.0 GFs, f(RH), and particle restructuring, modifying hygroscopicity instruments with pre-humidification modules is recommended

    Stratocumulus Cloud Clearings and Notable Thermodynamic and Aerosol Contrasts across the Clear–Cloudy Interface

    Get PDF
    Data from three research flights, conducted over water near the California coast, are used to investigate the boundary between stratocumulus cloud decks and clearings of different sizes. Large clearings exhibit a diurnal cycle with growth during the day and contraction overnight and a multiday life cycle that can include oscillations between growth and decay, whereas a small coastal clearing was observed to be locally confined with a subdiurnal lifetime. Subcloud aerosol characteristics are similar on both sides of the clear–cloudy boundary in the three cases, while meteorological properties exhibit subtle, yet important, gradients, implying that dynamics, and not microphysics, is the primary driver for the clearing characteristics. Transects, made at multiple levels across the cloud boundary during one flight, highlight the importance of microscale (~1 km) structure in thermodynamic properties near the cloud edge, suggesting that dynamic forcing at length scales comparable to the convective eddy scale may be influential to the larger-scale characteristics of the clearing. These results have implications for modeling and observational studies of marine boundary layer clouds, especially in relation to aerosol–cloud interactions and scales of variability responsible for the evolution of stratocumulus clearings
    • 

    corecore