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Abstract Clouds and their response to aerosols constitute the largest uncertainty in our understanding of
20th‐century climate change. We present an investigation that determines linkages between remotely
sensed marine cloud properties with in situ measurements of cloud condensation nuclei (CCN) and
meteorological properties obtained during the North Atlantic Aerosols and Marine Ecosystems Study. The
first two deployments of this campaign have geographically similar domains but occur in different seasons
allowing the response of clouds to a range of CCN concentrations and meteorological conditions to be
investigated. Well‐defined connections between CCN and cloud microphysical properties consistent with
the indirect effect are observed, as well as complex, nonlinear secondary effects that are partially supported
by previously proposed mechanisms. Using the Research Scanning Polarimeter's remotely sensed
effective variance parameter, correlation is found with liquid water path. In general, cloud macrophysical
properties are found to better correlate with atmospheric state parameters than changes in
CCN concentrations.

1. Introduction

Aerosol‐cloud interactions refer to changes in cloud condensation nuclei (CCN) that modulate cloud micro-
physical andmacrophysical properties. Manymechanisms of aerosol‐cloud interactions have been identified
(Fan et al., 2016; Lohmann & Feichter, 2005), including the “cloud albedo effect” or first indirect effect. This
effect relates an increase in CCN to an increase in cloud droplet number concentration (Nd), which leads to
changes in the radiative properties of the cloud (Twomey, 1977). For a fixed liquid water content, the
increase in CCN also results in smaller cloud droplets.

While the effect of increased CCN on Nd and droplet size has been well established (King et al., 1993;
Platnick et al., 2000 and Platnick & Twomey, 1994), effects on other cloud properties are more uncertain.
For instance, the effect of increased CCN and Nd on the effective variance (veff) or width of a cloud droplet
size distribution has yielded conflicting results with some studies finding that veff increases with Nd (Martin
et al., 1994; Ackerman et al., 2000), while other studies have found the opposite relation (Liu & Daum, 2002;
Lu & Seinfeld, 2006; Miles et al., 2000), which questions the existence of such relation. Furthermore, an
increase in droplet number concentrations has been shown to increase or decrease cloud liquid water path
(LWP) and cloud cover, depending on boundary layer humidity (Ackerman et al., 2004). Studies have found
cases where increased Nd are also associated with an increase in cloud vertical extent (Christensen &
Stephens, 2011), which may partially result from decreased entrainment (Ackerman et al., 2004;
Bretherton et al., 2007). Conversely, other cases have been documented where increased entrainment leads
to cloud thinning (Wood, 2007). Such secondary indirect effects can amplify or diminish the first indirect
effect of aerosols on radiative fluxes. All secondary effects of CCN on cloud albedo are collectively termed
the effective radiative forcing due to aerosol‐cloud interactions (ERFaci; Albrecht, 1989; Liou & Ou, 1989;
Pincus & Baker, 1994).

Radiative forcing due to changes in cloud properties in the remote and unpollutedmarine atmosphere is par-
ticularly sensitive to changes to CCN (Twomey, 1991; Wood, 2005). Several regional studies suggest that
changes in marine CCN concentrations are related to variations in dimethlysulphide (DMS; Charlson
et al., 1987; Andreae et al., 1995; Hegg et al., 1991; Sanchez et al., 2018). These variations in marine
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boundary layer DMS have long been linked to a seasonal cycle in phytoplankton activity, which is highly
variable in time and location (Bates et al., 1998; Quinn et al., 2000). The North Atlantic annual phytoplank-
ton cycle correlates with insolation and is initiated by deep water mixing explained through the “dilution‐
recoupling hypothesis” (Boss & Behrenfeld, 2010). Previous studies have found various linkages between
marine aerosols and cloud properties (e.g., Gultepe et al., 1996; O'Dowd et al., 1999; Raga & Jonas, 1993;
Twohy et al., 2005). However, due to the complexity of interactions involved, the magnitude and sign of
these feedbacks remain uncertain.

We present an investigation that determines linkages between remotely sensedmarine cloud properties with
in situ measurements of CCN and meteorological properties obtained during the North Atlantic Aerosols
and Marine Ecosystems Study (NAAMES; Behrenfeld et al., 2019). Cloud properties are retrieved frommea-
surements by the airborne Research Scanning Polarimeter (RSP). Within the investigation, emphasis is
placed on covariation between our remotely sensed veff parameter with CCN, Nd, and LWP because of
RSP's unique ability to remotely sense the effective variance and the uncertainty associated with its covaria-
bility from prior studies (Miles et al., 2000). We assess the extent that marine aerosols impact cloud proper-
ties to determine which existing concepts are supported by our observational study. Meteorological effects
are investigated in an attempt isolate the primary drivers of cloud properties. We integrate our findings
and discuss plausible secondary linkages between aerosol, cloud, and meteorological properties within the
context of existing concepts.

2. Data

NAAMES is a multiyear NASA‐led ship and aircraft campaign that took place in the North Atlantic Ocean,
roughly east of Newfoundland, Canada. One of the primary objectives of the campaign is to study annual
variations of phytoplankton biomass and to determine how marine aerosols and clouds are influenced by
plankton ecosystems in the North Atlantic. The remote marine location offers an excellent region to explore
cloud property changes in a relatively nonpolluted environment (Behrenfeld et al., 2019). The first two
deployments, which correspond to the minima and maxima in the phytoplankton lifecycle, provide the lar-
gest contrast in ocean and atmosphere conditions. NAAMES‐1, occurring near the phytoplankton bloom
minima, is characteristic of clean marine conditions, often influenced by cold air outbreak conditions.
NAAMES‐2, which took place near the phytoplankton bloom maxima, has higher CCN concentrations
and is characteristic of a nonpolluted marine atmosphere. This investigation uses NAAMES‐1 science flight
data from 11/12/2015–11/23/2015 as well as NAAMES‐2 science flight data from 5/18/2016–6/1/2016.
During both campaigns, the NASA C‐130 aircraft flew in situ and remote sensing legs in sequence, with
the remote sensing legs flown at a nominal altitude of 6,500 m. This study focuses on measurements made
during cloud modules, which are periods where the C‐130 samples an area multiple times and at different
altitudes, often including a flight leg above cloud top for remote sensing measurements, at cloud altitude
to make in situ measurements as well as beneath cloud base to measure ocean surface and boundary layer
properties (i.e., Behrenfeld et al., 2019). Spatially, the sampled areas are typically smaller than 200 by 200 km
and are sampled for approximately 1.5–2.5 hr. Supporting information Figures S1–S12 show Moderate
Resolution Imaging Spectroradiometer (MODIS) Aqua imagery for each science flight with overlain C‐130
flight paths. It is important to note that using a single aircraft to sample cloud, aerosol, and meteorological
properties introduces temporal and spatial uncertainty in the comparisons. The mean difference between
remotely sensed observations and in situ measurements is approximately 30 min across all days.

The C‐130 was outfitted with a suite of remote sensing and in situ instruments allowing characterization of
the ocean, aerosols, clouds, and meteorological properties. Cloud properties of interest include Nd, effective
radius (reff), veff, cloud optical thickness (τ), LWP, cloud physical thickness (H), and cloud top height (CTH),
which are retrieved from measurements by the airborne RSP. Aerosol concentrations and chemical compo-
sition are measured using in situ aerosol instruments. Wind speeds and relative humidity (RH) measure-
ments are also made using in situ probes. The broad range of instruments aboard the C‐130 provides an
excellent opportunity to study aerosol, cloud, and meteorological interactions.

The RSP (Cairns et al., 1999) makes polarimetric and total intensity measurements in nine spectral bands in
the visible/near infrared and shortwave infrared. The RSP is an along‐track scanning instrument that makes
152 measurements at viewing angles spaced 0.8°, effectively sweeping about ±60° from nadir along the
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aircraft's track. Multiple views of the same location allow the RSP to observe the sharply defined cloud bow
feature originating from single‐scattered light near cloud top. This allows microphysical properties to be
retrieved from a mean penetration depth of 0.5 τ from cloud top (Miller et al., 2018). The cloud droplet size
distribution is retrieved from information in the relative shape of the cloudbow structure (Alexandrov,
Cairns, Emde, et al., 2012). Here the size distribution is assumed to be represented by a modified gamma
function of which the effective radius, reff, and veff are retrieved. Since the retrieval is not based on the abso-
lute intensity of the cloudbow feature, it is less affected by three‐dimensional cloud structure, broken clouds,
multilayered effects, and above‐plane cirrus and aerosol layers than techniques based on shortwave reflec-
tance measurements (Miller et al., 2018; Nakajima & King, 1990). Simulations show the polarimetric tech-
nique has a mean uncertainty of 0.1 μm in reff and approximately 10% in veff (Alexandrov, Cairns, Emde,
et al., 2012). Furthermore, comparisons with in situ measurements at cloud top have shown agreement bet-
ter than 1 μm for reff and in most cases better than 0.02 for veff (Alexandrov et al., 2018). The retrieved size
distribution allows the extinction cross‐section to be derived, which along with the CTH (Sinclair et al.,
2017), τ, and the cloud physical thickness, H, allows Nd to be retrieved (Sinclair et al., 2019). The technique
assumes a linearly increasing liquid water profile and Nd being constant through the depth of the cloud.
Uncertainty in the conventional Nd retrieval approach is dominated by uncertainty in the reff retrieval,
which scales to the power of 5/2 (e.g., Grosvenor et al., 2018), whereas the uncertainty in our polarimetric
approach scales linearly with uncertainties in reff and τ. Cloud data are retrieved during five science flights
during NAAMES‐1, namely, 11/12/2015, 11/14/2015, 11/17/2015, 11/18/2015, and 11/23/2015 and six
science flights during NAAMES‐2, namely, 5/18/2016, 5/19/2016, 5/27/2016, 5/28/2016, 5/29/2016, and
5/30/2016. Science flights on 5/20/2016 and 6/1/2016 are omitted because of the lack of cloud retrievals,
while 5/26/2016 is not included because this day is largely characterized by multilayered cloud systems as
identified by the MODIS multilayer flag, which adversely impacts the RSP Nd retrieval.

While the RSP is able to provide accurate cloud property retrievals, in situ measurements are required to
accurately characterize colocated aerosol concentrations and meteorological conditions. CCN measure-
ments were made using the Droplet Measurement Technologies Streamwise Thermal Gradient Cloud
Condensation Nuclei Counter (CCNC, Roberts & Nenes, 2005; Rose et al., 2008), which measures the
CCN concentration over the water supersaturation range of 0.2–0.6%, binned in 0.05% increments, using
Scanning Flow CCNAnalysis (Moore &Nenes, 2009). In this analysis, we use CCNmeasured at 0.35% super-
saturation because it allows smaller organic particles to sufficiently hydrate. Aerosol mass composition mea-
surements are made by the aerosol mass spectrometer (AMS, Canagaratna et al., 2007), which measures
accumulation mode aerosol sizes, has a lower bound detection limit of 0.002 μg·m−3 and was operating with
a 10‐s measurement interval. CCN and AMS measurements are used from all the same days on which cloud
measurements are made. CCN and AMS observations are averaged throughout the cloud modules when the
C‐130 is out of cloud and between 100 and 2,000 m, which is assumed to be representative of the
boundary layer.

Three‐dimensional wind measurements are made using in situ wind probes on the C‐130 and averaged to 5
Hz. Ambient RH measurements are made using a LICOR‐7200 instrument. RH measurements are used
when the C‐130 is out of cloud and separated into two atmospheric layers, namely, a lower layer between
100 and 1,400 m and an upper layer ranging from 1,400 to 3,000 m. RHmeasurements are used from all days
included in our analysis with the exceptions of 5/18/2016, 5/19/2016, and 5/27/2016 when the probes made
few valid measurements. Lastly, precipitation measurements are made continuously from the R.V. Atlantis,
which operated in the general area considered here, using a Vaisala WX520 Precipitation Sensor that mea-
sures precipitation using a piezoelectric sensor operating at 1 Hz and returning the rain rate quantity in
millimeters per hour.

3. Results

Despite having similar geographic domains, averages of cloud, aerosol, and meteorological properties
observed during NAAMES‐1 and NAAMES‐2 are distinct and summarized in Table S1. Generally, we find
that between NAAMES‐1 and NAAMES‐2 cloud microphysical properties are taken from statistically differ-
ent populations, while mean meteorological properties are not statistically different. CCN is measured at
0.35% supersaturation and the geometric mean is shown for CCN as well as Nd. Arithmetic mean values
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are shown for reff, veff, LWP, τ, CTH, and H. The Student's t test is used to determine the probability that the
group of observations from each campaign are from the same sample population and is shown in supporting
information Table S1 as the p value. All of the changes between campaigns are found to be statistically
significant except meteorological changes (σ2w and RH) and the change in τ.

Between campaigns, CCN concentrations increase substantially from 37 to 141 cm−3. Using the AMS a large
variation in aerosol mass between campaigns is found, with an average aerosol mass of 0.09 μg·m−3 during
NAAMES‐1 and 0.48 μg·m−3 during NAAMES‐2 (supporting information Figure S13). 97% of the increase in
aerosol mass is attributable to increases in sulfate and organic aerosol mass.

Notable differences in cloud properties between campaigns include a 236% increase inNd concentrations (14
to 47 cm−3), reff decreasing by 22% (13.7 to 10.7 μm), while τ increases by only 1% (14.5 to 14.7). A moderate
increase in veff from NAAMES‐1 to NAAMES‐2 is found (0.062 to 0.066). A moderate decrease in the mean
LWP from 114 g·m−2 during NAAMES‐1 to 86 g·m−2 during NAAMES‐2 is found, which corresponds to a
decrease in average cloud physical thickness, from 1.78 km in NAAMES‐1 to 1.04 km in NAAMES‐2.

Considering atmospheric state parameters, the vertical wind speed's variance (σ2w) is found to have a small
difference between campaigns, increasing from 0.144 m2·s−2 during NAAMES‐1 to 0.152 m2·s−2 during
NAAMES‐2. The near cloud top RH has a 38% average during NAAMES‐1 and a 33% average during
NAAMES‐2.

A plot detailing the covariation between remotely sensed Nd and boundary layer in situ CCN during the
NAAMES‐1 and NAAMES‐2 campaigns is shown in Figure 1a. The plot shows daily geometric mean values
of Nd and CCN for 11 science flights throughout the two campaigns. Variation in both properties is seen on
daily and seasonal timescales. As expected from the Twomey effect, the Pearson correlation coefficient (R)
between Nd and CCN is strong and positive (R = 0.92). This correlation exceeds a 99.9% confidence thresh-
old. Spatial and temporal sampling differences between remotely sensed and in situ measurements intro-
duces uncertainty in this comparison. Generally, Figure 1a shows that Nd and CCN observations during
the NAAMES‐1 campaign in the fall are lower than those observed during NAAMES‐2 in the spring.
Using a least squares fit, it is found that Nd = 0.5 · CCN0.93 (shown as blue dashed line in Figure 1a). The
standard deviation about the regression line is 6.7. Covariation between Nd and CCN is a central concept
of aerosol‐cloud interactions; however, the slope of the relation is dependent on aerosol chemical composi-
tion as well as meteorological effects, which are discussed later. Measured CCN concentrations are depen-
dent on the supersaturation that aerosols are exposed to by the CCNC and we find that correlations
between Nd and CCN generally decrease when higher or lower supersaturations are assumed. For example,
correlations between Nd and CCN of 0.91 and 0.49 are found at supersaturations of 0.45% and 0.25%, respec-
tively. It also follows from the Twomey effect that reff relates inversely to CCN as observed (R = −0.39, sup-
porting information Figure S14). As a proxy to cloud brightness, τ has a robust positive correlation with CCN
that exceeds a 90% confidence threshold (R = 0.54, supporting information Figure S15).

Figure 1. a) RSP Nd and in situ CCN geometric means and geometric standard deviations (bars) collected during cloud
modules. b) RSP veff compared with in situ CCN. Star and diamond symbols represent data obtained during cloud mod-
ules during NAAMES‐1 and NAAMES‐2, respectively.
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Secondary effects that aerosols have on cloud microphysical properties are also investigated. Figure 1b
shows that throughout the 11 flights, veff is found to have a weak negative correlation with colocated CCN
(R = −0.33) when measured at 0.35% supersaturation. Using a least squares fit, it is found that
veff = 0.19 · CCN−0.28 (shown as blue dashed line in Figure 1b). The standard deviation about the regression
line is 0.01. For CCN measured at supersaturations of 0.45% and 0.25% the correlation coefficients are also
negative and varying from −0.33 to −0.10, respectively. Here we find that increased CCN concentrations
result in smaller droplets with narrowing droplet size distributions; however, this finding is uncertain and
could be supported with more comparisons.

The RSP is uniquely capable to makemeasurements of veff remotely and prior studies of veff are typically lim-
ited to in situ measurements made by cloud probes on aircraft while profiling clouds, we therefore place
emphasis on investigating relationships involving veff in this analysis. Figure 2a shows observations of Nd

and veff for NAAMES‐1 including 3687 unique observations of veff and Nd from five science flights. Both
of these cloud retrievals are made simultaneously by the RSP allowing each retrieval to be compared instead
of colocated mean values as discussed above. The dashed line shows a least squares fit described by the rela-
tion veff = 0.068 · Nd

−0.283. The correlation is found to be −0.29. The statistical significance of each correla-
tion in Figure 2 exceeds the 95% threshold. Figure 2b shows the same results except uses 19,731 observations
obtained from six science flights during NAAMES‐2 yielding a correlation coefficient of−0.06 and a relation
best described by veff = 0.053 · Nd

−0.060. Figure 2c shows observations of LWP and veff for NAAMES‐1. The
dashed line shows a least squares fit described by the relation veff= 0.12 · LWP−0.316. The correlation is found
to be −0.31. Figure 2d shows the same results except for NAAMES‐2 and yields a correlation coefficient of
−0.37 and a relation best described by veff = 0.19 · LWP−0.380. However, the reason for the strength of the
correlation remains uncertain and warrants further investigation. Although a parameterization for veff based
on a relationship to Nd is introduced in Morrison and Gettelman (2008), our results show a stronger relation
between veff and LWP. The parametrization inMorrison and Gettelman (2008) is based on observations used

Figure 2. a) Co‐variability between Nd and veff observed during NAAMES‐1. Dashed line shows the least squares fit and
stars indicate log mean veff value. b) Same as (a) except for NAAMES‐2. c) Co‐variability between LWP and veff observed
during NAAMES‐1. d) Same as (c) except for NAAMES‐2. Color scales are different for each plot.
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in Martin et al. (1994), who studied several cloud types in various regimes; however, this did not include the
North Atlantic region.

We further investigate correlations between cloud macrophysical properties and CCN and find only a weak
correlation between CCN and LWP, (R = 0.18, supporting information Figure S16) which indicates, as
expected, that the dominant driver of LWP is unlikely CCN. Further, H and CCN are anticorrelated (R =
−0.53), which is consistent with the cloud thinning effect resulting from increases in CCN. CTH and CCN
have a similar anticorrelation (R = −0.50). supporting information Table S2 summarizes colocated proper-
ties, their correlation coefficients, degrees of freedom, and whether it passes the statistical significance
threshold at three levels.

Meteorological conditions are investigated includingσ2w and RH in order to make efforts toward determining
additional influences and drivers of cloud properties. Here all days in the CCN‐Nd analysis are used with the
exceptions of 11/23/2015 and 5/19/2016 when a low number of wind measurements were made in the
boundary layer.σ2w is calculated from each science flight usingmeasurementsmade in the lower atmospheric

layer between 0.5 and 2.0 km as a measure of atmospheric instability. Mean σ2w throughout each day's cloud

module varies from 0.07 m2·s−2 on 11/18/2015 to 0.65 m2·s−2 on 11/12/2015. Mean σ2w from the spring cam-

paign has more variability than the fall campaign. A weak correlation is found between σ2w and Nd (R = 0.25,

supporting information Figure S17). Throughout both campaigns,σ2w is found to most strongly correlate with
LWP (Figure 3a, R= 0.74). When averaging RHmeasurements made in an atmospheric layer near the cloud
top region between 1.5 and 3 km, a strong anticorrelation between RH and LWP is found (Figure 3b, R =
−0.67). Interestingly, this correlation is found to be robust with similar findings being observed in the
boundary layer (supporting information Figure S19), as well as in many other atmospheric layers using a
variety of vertical ranges (not shown). These findings support the notion that clouds microphysical proper-
ties respond to increases in CCN, while their macrophysical properties are less influenced changes in CCN.

Precipitation measurements were made aboard the R.V. Atlantis and therefore incorporation of precipita-
tion analysis is limited to science flights when the cloud module and ship were colocated. Days where the
aircraft and rain gauge made colocated measurements include eight of the 11 science flights from both cam-
paigns, namely, 11/12/2015, 11/14/2015, 11/18/2015, 11/23/2015, 5/18/2016, 5/19/2016, 5/26/2016, and
5/30/2016. From this, we find that 23 November and 18 and 30 May have mean rainfall rates greater than
0.03 mm·hr−1 between 9.0 and 17.0 UTC, while little or no precipitation (<0.05 mm·hr−1) is observed on
remaining days (supporting information Figures S21 and S22). Despite a relatively low number of compar-
ison points (n = 8), precipitation has an anticorrelation with LWP (R = −0.54, supporting information
Figure S23). Interestingly, precipitation is found to have a strong positive correlation with veff (R = 0.65).
This increase in veff associated with precipitation could result from the RSP's veff retrieval being affected
by a bimodal cloud droplet size distribution that exists in precipitating clouds (Alexandrov, Cairns, &
Mishchenko, 2012). We find a strong correlation (R = 0.63) when we compare the Nd and LWPs from

Figure 3. a) A positive correlation (R = 0.74) is found between LWP and vertical wind variance. b) A negative correlation
(R = −0.67) is found between near cloud top RH and LWP. Star and diamond symbols represent data obtained during
cloud modules during NAAMES‐1 and NAAMES‐2, respectively.
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days when little precipitation was detected. A weak anticorrelation between precipitation andσ2w (R=−0.31,
supporting information Figure S24). Anticorrelations are also found with other cloud microphysical proper-
ties including Nd (R = −0.14) and reff (R = −0.32). A weak correlation is found between CCN and
precipitation (R = 0.26).

4. Discussion and Conclusions

A large increase in aerosol mass and CCN concentrations is observed between the NAAMES‐1 and
NAAMES‐2 campaigns. Sanchez et al. (2018) used a combination of radon concentrations, combustion tra-
cers, and back trajectories to determine that few aerosols originated from continents during NAAMES‐1 and
NAAMES‐2 with most aerosols having biogenic marine sources. These findings also agree with previous
work that found that variances in marine CCN concentrations can be largely explained by DMS from a phy-
toplankton bloom over the North Atlantic Ocean (Cavalli et al., 2004; Yoon et al., 2007) and in other oceanic
basins (Andreae et al., 1995; Charlson et al., 1987; Hegg et al., 1991).

The resulting cloud microphysical changes are found to be consistent with the Twomey effect whereby an
increase in CCN concentrations result in an increase in Nd (R = 0.92) and, with LWP remaining constant,
a decrease in reff (R = −0.39) and an increase in τ (R = 0.54; Twomey, 1977). CCN concentrations are found
to have geometric mean concentrations of 37 cm−3 during NAAMES‐1 and 141 cm−3 during NAAMES‐2. It
follows that cloud properties exhibit a similar seasonality where Nd is 236% higher, reff is 22% lower, and τ is
only 1% higher during the spring (NAAMES‐2) when compared with the fall (NAAMES‐1).

Our analysis of NAAMES‐1 and NAAMES‐2 cloud properties in combination with the analysis of aerosols by
Sanchez et al. (2018) suggests that cloud microphysical properties over the North Atlantic Ocean are being
influenced by the phytoplankton bloom, leading to a cloud brightening effect. However, meteorological dif-
ferences between the campaigns also play an important role, and therefore, the magnitude of the cloud prop-
erty changes due to biogenic activity remains uncertain.

We now discuss plausible linkages from our results in context with relevant modeling and observational stu-
dies to determine which connections are supported by theory. We find that humid air surrounding the cloud
top region (1.5–3.0 km) correlated negatively with LWP (R = −0.67), which is consistent with LES modeling
studies that find dry air near cloud top enhances evaporative cooling and entrainment causing an increase in
LWP, and conversely, moist overlying air is conducive to precipitation formation leading to decreased LWPs
(Ackerman et al., 2004). This is also in agreement with a study of trade cumulus clouds that find that deeper
cloud layers are associated with dryer boundary layers (Seifert et al., 2015). However, σ2w also correlates
strongly with LWP (R = 0.74). Therefore, a given LWP is likely a confluence of multiple parameters, such
as near cloud top RH, precipitation, and boundary layer turbulence. Although cloud cover is not studied
here, Seifert et al. (2015) postulate that decreased cloud top RH leads to increased evaporation of small
clouds leading to a negative cloud lifetime effect.

Increases in precipitation are found to be associated with decreases in LWP (R =−0.54; supporting informa-
tion Figure S23). This finding is supported by Ackerman et al. (2004) who found precipitation dries out
cloudy air in updrafts, reducing the moisture available for evaporative cooling of downdrafts leading to a
reduction of LWP. Comparing the Nd and LWPs of nonprecipitating clouds yields a strong correlation (R
= 0.63), which is consistent with theoretical understanding (Pincus & Baker, 1994) and LES simulations that
have determined the dominant response of nonprecipitating cumulus clouds to increases inNd are increases
in LWP (Bretherton et al., 2013; Seifert et al., 2015; Stevens & Seifert, 2008). We also find that precipitating
clouds are strongly associated with increases in remotely sensed veff (R = 0.65). This increase in veff may be
the result of RSP's veff retrieval being simultaneously applied to cloud and rain droplet modes, which exists in
precipitating clouds, resulting in an increased average veff. However, the low number of comparison points
here necessitates further investigation into this finding, possibly using a rain sensing radar alongside
RSP measurements.

Our investigation found that veff has a stronger anticorrelation with LWP than with Nd. Contrary to our
results, two leading global climate model parameterizations of veff either hold it as a fixed variable
(Geoffroy et al., 2010) or diagnose it as an increasing function of Nd (Morrison and Gettelman, 2008).
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Global climate models that parameterize veff may benefit from a focused study using RSP measurements of
veff to create a realistic parameterization.

Another common measure of the width of a cloud droplet size distribution that assumes a modified gamma
distribution shape is the k parameter, which is defined in terms of veff as k= (1− veff)(1− 2 · veff). A k value of
0.8 is a commonly used in observational retrievals and global climate models as a fixed representation of the
cloud droplet size distribution width (Geoffroy et al., 2010; Grosvenor et al., 2018). A k value of 0.8 corre-
sponds to a value of veff of 0.07. From our analysis of veff, we find that veff is lower than 0.07 68% of the time.
This implies that retrievals ofNd that use a k value of 0.8 would be generally overestimatingNd in this region
(Grosvenor et al., 2018). Further, these findings also suggest that models using a fixed k value of 0.8 may be
underestimating the brightness of clouds in this region 68% of the time (e.g., Geoffroy et al., 2010).

With the breadth of data available from NAAMES, future work could build off current findings by imple-
menting a CCN‐Nd closure budget using the Nd, CCN, updraft velocity, and the development of a cloud dro-
plet activation parameterization using speciated aerosols (e.g., Conant et al., 2004; Fountoukis et al., 2007). It
is expected that using a regression model that accounts for aerosol chemical composition and activation
saturation of CCN could partially explain unaccounted for variability in CCN measurements.

It is expected that campaign studies like this lead to better understanding of the complex processes between
marine aerosols, cloud properties, and their associated feedbacks. This will enable an improved ability to
accurately parameterize these small‐scale properties and processes over large temporal and spatial domains.
This will reduce uncertainties associated with ACIs in GCMs and thereby the uncertainty with the cloud
radiative effect (Flato et al., 2013). Much needed global observations of plankton, aerosol, and cloud proper-
ties are expected to be realized with the advent of space‐based polarimetry, namely, the Plankton, Aerosol,
Cloud, ocean Ecosystem Satellite, which is expected to contain a multiangular polarimeter payload and be
launched in 2022 (Werdell et al., 2019). This satellite will strengthen our understanding of processes linking
aerosol sizes and chemical composition to clouds and their radiative properties.
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