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Significant Points:  26 

1. Ambient measurements of sub-1.0 hygroscopic growth factor (GF) and f(RH)  27 

2. Measured in multiple regions based on three instruments 28 

3. Sub-1.0 GFs and f(RH) are observed consistently in biomass burning plumes 29 

4. Reasons include particle restructuring, optical effects, and volatilization 30 
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Abstract 32 

 33 
This study reports on the first set of ambient observations of sub-1.0 hygroscopicity values (i.e., 34 

growth factor, ratio of humidified-to-dry diameter, GF=Dp,wet/Dp,dry and f(RH), ratio of 35 

humidified-to-dry scattering coefficients, less than 1) with consistency across different 36 

instruments, regions, and platforms. We utilized data from (i) a shipboard humidified tandem 37 

differential mobility analyzer (HTDMA) during Eastern Pacific Emitted Aerosol Cloud 38 

Experiment (E-PEACE) in 2011, (ii) multiple instruments on the DC-8 aircraft during Studies of 39 

Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys 40 

(SEAC4RS) in 2013, as well as (iii) the Differential Aerosol Sizing and Hygroscopicity 41 

Spectrometer Probe (DASH-SP) during measurement intensives during Summer 2014 and Winter 42 

2015 in Tucson, Arizona. Sub-1.0 GFs were observed across the range of relative humidity (RH) 43 

investigated (75-95%), and did not show a RH-dependent trend in value below 1.0 or frequency 44 

of occurrence. A commonality between suppressed hygroscopicity in these experiments, including 45 

sub-1.0 GF, was the presence of smoke. Evidence of externally mixed aerosol, and thus multiple 46 

GFs, was observed during smoke periods resulting in at least one mode with GF < 1. Time periods 47 

during which the DASH-SP detected externally mixed aerosol coincide with sub-1.0 f(RH) 48 

observations. Mechanisms responsible for sub-1.0 hygroscopicity are discussed and include 49 

refractive index (RI) modifications due to aqueous processing, particle restructuring, and 50 

volatilization effects. To further investigate ambient observations of sub-1.0 GFs, f(RH), and 51 

particle restructuring, modifying hygroscopicity instruments with pre-humidification modules is 52 

recommended.  53 

  54 
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 55 

 Introduction 56 

Aerosol-water interactions influence how particles scatter solar radiation, their ability to serve 57 

as cloud condensation nuclei (CCN), and where they deposit in the human respiratory system [Dua 58 

and Hopke, 1996]. These interactions are also important to account for with regard to remote 59 

sensing retrievals of aerosol particles due to biases that result from aerosol swelling in moist areas 60 

such as next to clouds, in addition to attempts of using retrieved columnar aerosol data to estimate 61 

surface fine particular matter (PM2.5) [e.g., Kim et al., 2015]. Representing the ability to take up 62 

water vapor at fixed relative humidity (RH), hygroscopicity is a property of particles dependent 63 

on size and composition. Improving the understanding of aerosol hygroscopicity will improve 64 

predictability of future climate, as aerosol interactions with water vapor and clouds are linked to 65 

the largest sources of uncertainty in estimates of the total anthropogenic radiative forcing [IPCC, 66 

2013].  67 

In order to study aerosol hygroscopicity in the atmosphere, a number of instruments have been 68 

developed. Traditionally, the Humidified Tandem Differential Mobility Analyzer [HTDMA; Liu, 69 

1978; Rader and Mcmurry, 1986] has been used for sub-saturated aerosol water uptake 70 

measurements; however, the long sampling time required to scan through a complete size 71 

distribution is impractical for aircraft applications. The Differential Aerosol Sizing and 72 

Hygroscopicity Spectrometer Probe [DASH-SP, Brechtel Mfg. Inc.; A. Sorooshian et al., 2008a] 73 

is a newer instrument designed specifically for aircraft-based, rapid, size-resolved measurements 74 

of aerosol sub-saturated hygroscopicity using two optical particle counters (OPCs) to measure 75 

scattering from a dried and a humidified channel. Both instruments quantify hygroscopic growth 76 

factor (GF), defined as the ratio of humidified particle diameter to a fixed, single diameter at dry 77 
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conditions (GF = Dp,wet/Dp,dry). Nephelometer-based instruments quantify hygroscopicity for bulk 78 

aerosol using the parameter f(RH), which is the ratio of light scattering from all particle sizes in 79 

humid (typically RH of ~80%) versus dry conditions (typically RH less than 20%). While the 80 

nephelometer-based instruments are rapid and suited for aircraft measurements, two key 81 

differences with the previous two techniques are that f(RH) data are not size-resolved and have 82 

limitations in terms of probing RHs above 85% [Kreidenweis and Asa-Awuku, 2014].  83 

While extensive research has reported on GF and f(RH) values extending from unity (i.e., no 84 

growth upon hydration) to higher values, only a few studies based on laboratory work, summarized 85 

below, have reported sub-1.0 hygroscopic growth, suggestive of particle size shrinkage upon 86 

hydration. Sub-1.0 hygroscopicity results when the humidified diameter is less than the original 87 

dry diameter (Dp,dry) for GF measurements, and when the total scattering of humidified ambient 88 

air is less than dried ambient air for f(RH) measurements. In terms of the single-parameter kappa 89 

(κ) developed by Petters and Kreidenweis, [2007], which is related to GF as shown by the 90 

approximation in Equation 1, sub-1.0 hygroscopic growth would correspond to  < 0: 91 

1 %

%

  (1) 92 

A range of explanations for sub-1.0 hygroscopicity have been discussed in past laboratory-93 

based studies including surface-active organic species [Petters and Kreidenweis, 2013], slightly 94 

soluble organic compounds [Petters and Kreidenweis, 2008], and elemental carbon restructuring 95 

[Tritscher et al., 2011]. The majority of the literature has been devoted to particle restructuring. 96 

For example, flame-produced soot from diesel and propane combustion shows evidence of particle 97 

restructuring at an RH as low as 35% [Henning et al., 2012]. Using a similar source, Weingartner 98 

et al. [1997] concluded the restructuring process was still occurring and had not reached steady 99 
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state with RH up to 80%. Soot from a propane diffusion flame can undergo morphological 100 

transformations, from chain-like to compact structure, as coagulation time increases, which is 101 

explained by Coulomb interactions between parts of the aggregated soot particle [Onischuk et al., 102 

2003]. Another study showed that soot restructuring in acetylene and ethylene burner emissions 103 

occurs upon evaporation and is likely attributed to capillary effects [Ma et al., 2013]. Hydrophilic 104 

soot particles collapse into globules with increased RH [Mikhailov et al., 2006], yet when diluted 105 

with warm particle-free air, their fractal structure stays intact until humidification RH > 90% 106 

[Rissler et al., 2005].  107 

Non-burner emitted particles also demonstrate restructuring behavior.  Jimenez et al. 108 

[2003] observed that diiodomethane (CH2I2) particles formed under dry conditions were fractal 109 

agglomerates, until reaching higher RHs when they became more compact and dense particles. 110 

Upon hydration, there is evidence that biomass burning combustion particles of 100 nm or larger 111 

are more readily restructured [Martin et al., 2013], and the decrease in mobility diameter upon 112 

humidification is more pronounced for larger particles [Pagels et al., 2009]. Weingartner et al. 113 

[1995] found that organic particles above 100 nm shrank into a more compact structure at RH = 114 

90% due to capillary forces induced on any asymmetrical part of the structure. Lewis et al. [2009] 115 

reported that wood smoke from combustion of chamise and palmetto collapse to a more spherical 116 

and compact shape upon exposure to high RH, while smoke from ponderosa pine, with lower 117 

inorganic content did not show this behavior.  118 

While many studies have reported on particle size shrinking upon hydration from fuel 119 

burners, wood smoke, and soot, a number of laboratory studies focused on inorganic salts have 120 

found similar evidence, indicating the mechanism is not limited to organic-containing particles. 121 

Aggregated inorganic salt particles shrank after exposure to enhanced RHs (> 60%) and the degree 122 
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of particle shrinkage was greater for aggregates of larger initial size and larger increases in RH 123 

[Montgomery et al., 2015]; a potential mechanism governing the structural change was suggested 124 

to be linked to surface tension owing to water adsorption within the aggregate structure. At low 125 

RH (< 50%), restructuring from hydration of (NH4)2SO4 has been shown to have stronger effects 126 

on particle mobility diameter than the adsorption or absorption of water [Mikhailov et al., 2009]. 127 

In a study of inorganic salts, observations of the structural rearrangement of NH4NO3, (NH4)2SO4, 128 

NaCl, and NaNO3 indicated that particle size decreased by up to 10% due to chemical reactions 129 

and evaporation upon hydration when exposed to RHs below each salts’ respective deliquescence 130 

RH [Gysel et al., 2002; Mikhailov et al., 2004]. 131 

Particle coating and photochemical aging affects the ability, degree, and onset of particle 132 

restructuring.  Delayed and reduced hygroscopic growth has been observed with combustion 133 

particles coated with H2SO4 [Zhang et al., 2008], glutaric acid [Xue et al., 2009], surfactant 134 

organics [Dusek et al., 2011], dioctyl sebacate (DOS) and oleic acid [Ghazi and Olfert, 2013], 135 

anthropogenic secondary organic aerosol [Schnitzler et al., 2014], and soot with a hydrophilic 136 

coating [Pagels et al., 2009]. Aging soot in the presence of isoprene results in increased mass with 137 

decreased particle mobility diameter and increased effective density, as coating material fills in 138 

void spaces and causes partial restructuring of fractal soot aggregates [Khalizov et al., 2013]. 139 

Photochemical processing of fresh wood smoke was found to physically convert the fractal nature 140 

of smoke particles into a more spherical shape in addition to concurrent chemical transformations 141 

[Giordano et al., 2013; Giordano and Asa-Awuku, 2014].  142 

Particle morphological changes upon hydration, including shrinkage due to restructuring, 143 

alters particle light absorption and scattering characteristics. Restructuring by neutralization 144 

surface reactions has been suggested to explain reduction in light absorption cross section upon 145 
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hydration of laboratory generated mixtures of black carbon (BC) and brown carbon (BrC) particles 146 

at low humidity; however, upon RH increase, continued water uptake by inorganic coatings can 147 

lead to absorption enhancement [Chen et al., 2015]. In polluted, humid conditions, it has been 148 

observed that hygroscopic particles absorb water, growing in size and enhancing light scattering, 149 

but mass absorption cross section decreases, likely due to shielding effects of absorbing aerosols 150 

[S Lee et al., 2012]. Dennis-Smither et al. [2012] observed that refractive indices of organic aerosol 151 

increased during and after evaporation of volatile products, concluding that aging followed by 152 

slow restructuring in particle morphology was responsible for this behavior.  153 

The goal of this study is to report ambient observations of sub-1.0 hygroscopic growth (GF 154 

and f(RH)), and consequently sub-0 , from three field projects: Eastern Pacific Emitted Aerosol 155 

Cloud Experiment (E-PEACE) in 2011; Studies of Emissions, Atmospheric Composition, Clouds 156 

and Climate Coupling by Regional Surveys (SEAC4RS) in 2013; and observations from 157 

measurement intensive periods at the Tucson Aerosol Characterization Observatory (TACO) 158 

between 2014 and 2015.  All three field studies included measurements of aerosol hygroscopicity 159 

as well as other chemical and meteorological observations. Possible causes for sub-1.0 160 

hygroscopicity will be discussed in addition to suggested strategies for probing this phenomenon 161 

in greater detail for future studies.  162 

 163 

2. Experimental Methods 164 

2.1 Field Observations and Instrumentation 165 

2.1.1 E-PEACE Field Campaign 166 
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E-PEACE was a multiplatform field study focused on the coastal zone of California during 167 

July–August 2011, investigating aerosol-cloud-precipitation-radiation interactions [Russell et al., 168 

2013].  The project involved the use of the Center for Interdisciplinary Remotely-Piloted Aircraft 169 

Studies (CIRPAS) Twin Otter, based in Marina, CA, and the R/V Point Sur, which conducted a 170 

12-day research cruise (12–23 July). Specifics of the campaign and results are detailed elsewhere 171 

[Russell et al., 2013; Wonaschütz et al., 2013; Wang et al., 2014; Jung et al., 2015; Modini et al., 172 

2015].  This work utilizes data only from the R/V Point Sur, on board which smoke generators 173 

used gasoline and heated paraffin-type oil with low vaporization temperature (150˚C) to emit 174 

smoke in the marine boundary layer. An organic plume of thick condensed smoke and vapor was 175 

emitted into the marine atmosphere and measured from R/V Point Sur itself with an extensive 176 

payload of instruments [Russell et al., 2013]. 177 

Of most relevance from the R/V Point Sur instrument payload was an HTDMA, which 178 

measured hygroscopic growth with two DMAs, one dry (RH < 8%) and one humidified at varying 179 

RH settings (40, 70, 85, and 92%), with uncertainty in GF of  0.03 [Lopez-Yglesias et al., 2014]. 180 

Dry particle diameters selected were 30, 75, 150, and 300 nm.  To allow for more meaningful 181 

intercomparisons with measurements from other experiments pertaining to our investigation, we 182 

only use data for the two highest RH set points (85 and 92%) at dry sizes of 150 and 300 nm.  183 

Smoke emissions emitted by the ship and then sampled by the ship on 17 July 2011 constitute a 184 

key case study. Plume tracking, meteorological conditions, and results from other instruments on 185 

board R/V Point Sur related to the smoke sampling can be found in Wonaschütz et al. [2013].  186 

2.1.2 TACO Measurement Intensives 187 

 The Tucson Aerosol Characterization Observatory (TACO) is a rooftop laboratory on the 188 

University of Arizona campus in inner city Tucson (30 m AGL, 720 m ASL; 32.2299°N, 189 
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110.9538°W), which has a metropolitan population of ~1 million [U.S. Census Bureau, 2011]. The 190 

observatory has been collecting long-term data relevant to aerosol particle properties and 191 

meteorology since 2011. Instrument results at TACO from various instruments in addition to 192 

DASH-SP, such as a Particle-Into-Liquid Sampler (PILS, Brechtel Manufacturing Inc.), Cloud 193 

condensation nuclei counter (CCNc, DMT Inc.), a semicontinuous OC/EC analyzer (Sunset 194 

Laboratory Inc., Oregon), Micro-Orifice Uniform Deposit Impactors (MOUDI, MSP 195 

Corporation), and single-stage filter samplers have been summarized elsewhere [Youn et al., 2013; 196 

Crosbie et al., 2015; Sorooshian et al., 2015;  Youn et al., 2015].  197 

During TACO, the DASH-SP measured size-resolved GFs at humidified RH values 198 

typically between 50–95% with dry channel measurements below 20% RH, and with Dp,dry 199 

between 180 and 300 nm. The DASH-SP RH was controlled within 1.5% and the GF uncertainty 200 

was less than 3% [Shingler et al., 2016].  The instrument data from TACO relevant to the current 201 

study is from the DASH-SP during summer intensive periods (27 May – 01 June 2014, 12–20 202 

August 2014) and a winter intensive period (30 January – 12 February 2015). Instrument operating 203 

details, data processing procedures, and examples of its field deployment are presented elsewhere 204 

[Sorooshian et al., 2008a, 2008b; Hersey et al., 2009, 2011, 2013; Shingler et al., 2016]. The 205 

instrument relies on a classification differential mobility analyzer (DMA) to select dried particles 206 

of a specific diameter prior to feeding the monodisperse aerosol stream to the following modules: 207 

a diffusion-based aerosol conditioning module in which particles are brought to equilibrium at a 208 

controlled RH, followed by detectors at the outlet end that either determine (i) the optical scattering 209 

distribution of dry, monodisperse particles selected by the DMA (used to determine the real 210 

component of refractive index, RIdry, at 532 nm), or (ii) the optical scattering distribution of the 211 

particles after the RH conditioning module.  212 
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2.1.3 SEAC4RS Field Campaign 213 

Based out of Houston, TX during August–September 2013, SEAC4RS incorporated three 214 

research aircraft to investigate numerous topics including (i) emission redistribution throughout 215 

the troposphere from deep convection, (ii) evolution of gases and aerosols in convective outflow 216 

and their implications for atmospheric chemistry, and (iii) how anthropogenic pollution and 217 

biomass burning emissions are affected by meteorology and cloud processing. Another focus was 218 

to validate/calibrate instrumentation as a test bed for future applications. Details of the SEAC4RS 219 

project and specifics on measurements pertaining to this work can be found elsewhere [Toon et 220 

al., 2016] and all data are publicly available from the NASA Langley Research Center 221 

Atmospheric Science Data Center [ASDC, 2015].  222 

This work focuses on in situ measurements from the NASA DC-8, utilizing all research flights 223 

from SEAC4RS with focus on three flights that targeted biomass-burning sampling: 6 August, 19 224 

August, and 27 August. The DASH-SP on board the DC-8 measured size-resolved hygroscopic 225 

GFs of ambient aerosol particles at humidified RH values typically between 70–95% with dry 226 

channel measurements below 15% RH, and Dp,dry between 175 and 350 nm [Shingler et al., 2016]. 227 

Similar to TACO conditions, the DASH-SP RH was controlled within 1.5% and GF uncertainty 228 

was less than 3% for SEAC4RS measurements [Shingler et al., 2016].   f(RH) data are obtained 229 

from the Langley Aerosol Research Group Experiment (LARGE) instrument package, specifically 230 

the tandem humidified nephelometers [TSI Inc, St. Paul, MN, USA; Model 3563; Ziemba et al., 231 

2013] at dry (RH 20%) and humidified (RH 80%) scattering channels. Number size distributions 232 

from the Laser Aerosol Spectrometer (LAS; Dp between 0.1—6.3 µm) as part of LARGE were 233 

used in particle density calculations. DC-8 data are also used for acetonitrile from the Proton-234 

Transfer-Reaction Mass Spectrometer [PTRMS; de Gouw and Warneke, 2007], black carbon (BC) 235 
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from the Humidified-Dual Single-Particle Soot Photometer [HD-SP2; Schwarz et al., 2008], and 236 

sub-micron aerosol chemical composition from the High Resolution Aerosol Mass Spectrometer 237 

[HR-AMS; DeCarlo et al., 2006; Canagaratna et al., 2007], and biomass burning number fraction 238 

of PM2.5 from the Particle Analysis by Laser Mass Spectrometry [PALMS; Lee et al., 2002].   239 

 240 

3.  Results 241 

3.1 Sub-1 Hygroscopicity Observations 242 

Multiple pieces of evidence for sub-1.0 hygroscopicity are presented in order from E-243 

PEACE, TACO, and SEAC4RS. Ship-based HTDMA measurements of GF during E-PEACE are 244 

summarized in Figure 1, where it is shown that GF is clearly suppressed in smoke-influenced 245 

samples as compared to background aerosol sampled outside of the ship-generated smoke plume. 246 

GFs below 1.25 are only observed in smoke-influenced samples.  Additionally, numerous 247 

observations of sub-1.0 GF are reported during smoke sampling, regardless of the dry particle 248 

diameter. While more pronounced at a RH of 92%, reaching GFs as low as 0.77, sub-1.0 GFs are 249 

observed at 85% as well, reaching a minimum value of 0.89.  250 

Ground-based measurements of GF for Dp,dry of 190–300 nm during TACO intensives (Fig. 251 

2) indicate that higher values are observed during summer periods (above 1.15 at RH > 80%) with 252 

suppressed GFs and sub-1.0 values during winter periods. The reduction of GF below 1.0 is not 253 

more pronounced at any particular RH between 75–97%. Winter in the Tucson metropolitan area 254 

is characterized by enhanced residential burning for heat.  As the area is surrounded by mountains 255 

with strong boundary layer inversions during cold nights, residential burning emissions are trapped 256 

in a shallow layer and often are not ventilated in periods of prolonged cooler temperatures [Crosbie 257 
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et al., 2015], which leads to the highest year-round PM2.5 mass concentrations of species linked to 258 

biomass burning including elemental carbon, organic carbon, and water-soluble organic carbon 259 

[Youn et al., 2013]. While it cannot be proven unambiguously that sub-1.0 GFs in Tucson are due 260 

to biomass burning, certainly the coincidence of burning during periods with these data points 261 

supports the case for a potential link.  262 

Hygroscopicity data from SEAC4RS for Dp,dry of 160–360 nm further provides evidence of 263 

sub-1.0 GF values with most occurrences being at RHs between 80–90% and without any 264 

systematic difference in value below 1.0 at any particular RH (Fig. 3). Similar to E-PEACE and 265 

TACO, a difference in trends between biomass burning sampling and non-smoke sampling is 266 

observed, with sub-1.0 points observed only during the former periods.  Shingler et al. [2016] have 267 

shown that wildfire emissions during SEAC4RS coincide with suppressed GF and sub-1.0 268 

observations.  269 

From the three presented field studies, biomass burning (SEAC4RS), residential burning 270 

TACO), and simulated smoke emissions (E-PEACE) coincide with suppressed GF observations 271 

compared to non-combustion sampling, and show evidence of sub-1.0 hygroscopicity.  It is 272 

reinforced that strict quality control measures have been implemented for each data set, and the 273 

sub-1.0 observations in Figs. 1–3 have withstood those checks, including removing all in-cloud 274 

sampling from SEAC4RS and any periods with poor signal-to-noise ratio.  275 

3.2 Case Study: Aged Smoke Sampling 276 

In order to investigate sub-1.0 hygroscopicity in depth, a case study is highlighted from 277 

SEAC4RS during the 19 August 2013 research flight.  A flight from this campaign is chosen for a 278 

case study as it had the most complex suite of instruments as compared to the other campaigns and 279 
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the DC-8 was able to study biomass-burning plumes across a wider plume age range. The 19 280 

August flight in particular offered excellent data coverage across multiple instruments of relevance 281 

to this study. During this flight, the DC-8 probed an aged fire plume over Nebraska and Wyoming, 282 

originating from Idaho and Wyoming fires as determined from the Emission Inversion method 283 

[Saide et al., 2015]. Figure 4 presents a time series of chemical composition, biomass burning 284 

markers, aircraft altitude, ambient RH, and hygroscopicity measurements.  The biomass burning 285 

markers utilized in this study are: (i) gas-phase acetonitrile, indicative of biomass burning 286 

emissions at elevated concentrations (> 250 ppbv); (ii) AMS f60, which is the fraction of organic 287 

aerosol at m/z 60 (i.e., levoglucosan-like fragment in the instrument); (iii) BC; and (iv) PALMS 288 

biomass burning (BB) fraction (i.e.,  number fraction in PM2.5 containing biomass burning 289 

material).  290 

The periods of lowest f(RH) between 21:00–21:30 correspond to enhanced levels of all 291 

four of the aforementioned biomass burning tracers. GF and  from DASH-SP are also lowest 292 

during this time period, however, only a few points exhibited values of sub-1.0 or sub-0, 293 

respectively. While the mass fraction of BC relative to total PM1 (MFBC) remains steady in and 294 

out of biomass burning sampling (~1–2%), periods with f(RH) < 1 exhibit enhanced organic mass 295 

fraction (MForg ~90%), with lower values (~70%) observed when f(RH) > 1. As PM1 total mass is 296 

elevated in biomass burning plumes (> 50 g m-3), the BC contribution to total mass is of the same 297 

order of magnitude as inorganic species and the mass of BC increases by approximately a factor 298 

of ten. This increase in BC mass could affect the total scattering of the aerosol, as well as the 299 

DASH-SP size-resolved GF depending on the peak modal diameter of BC particles. Between 300 

21:00–21:30, HD-SP2 measurements show that the mass-median diameter of BC cores is 175 nm 301 

volume equivalent diameter, and the calculated BC-specific  is -0.03  0.02. With DASH-SP 302 
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sampling at a fixed dry size of 250 nm during this plume intersection, theoretically, BC cores 303 

would not be sampled. However, as LARGE f(RH) is a bulk scattering measurement, BC cores 304 

would be sampled, possibly explaining f(RH) values were more frequently detected below 1.0 as 305 

compared to GF values. 306 

The relationship between hygroscopic growth and biomass burning indicators is further 307 

explored in Fig. 5 where it is shown that acetonitrile and f(RH) have an inverse relationship, which 308 

asymptotes to f(RH) ~0.9 at the highest acetonitrile concentrations (0.55–0.65 ppbv). f(RH) values 309 

were always sub-1.0 when acetonitrile levels exceeded 0.38 ppbv. The GF and  relationship with 310 

acetonitrile is less clear. As already noted, this could be due to the size-resolved nature of DASH-311 

SP measurements.   312 

As literature suggests wetting of chain-like or aggregated particles can lead to a more 313 

compact nature and higher density [Weingartner et al., 1995; Jimenez et al., 2003; Onischuk et al., 314 

2003; Lewis et al., 2009], differences in particle density can be used as a plausible marker for 315 

particle restructuring. Particle density is calculated using data for size distribution and PM1 mass 316 

fractions of organic, inorganic, and BC species. Figure 6 illustrates the relationship between 317 

particle density and f(RH), which both are representative of bulk aerosol unlike the size-resolved 318 

GF measurements from the DASH-SP. f(RH) is shown to increase as a function of particle density. 319 

A linear orthogonal distance regression (ODR) trend line is fit to the f(RH)-density scatterplot, 320 

resulting in slope of 0.84 cm3 g-1 and intercept of 0.15. With R2 of 0.5 (n = 747), 50% of the 321 

variance in f(RH) is explained by particle density. While the predictive correlation between these 322 

two parameters could be stronger, the results still support the notion that agglomerated and chain-323 

like particles collapse into more compact, denser particles.  324 
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 325 

4.  Discussion 326 

Section 4.1 below demonstrates how a revised data processing strategy with DASH-SP 327 

data can handle cases of externally mixed aerosol in order to identify more cases of sub-1.0 328 

hygroscopic growth than with previous data processing methods. Sections 4.2-4.3 focus on reasons 329 

as to why sub-1.0 hygroscopic growth data are observed in the various datasets presented in this 330 

work. One mechanism already discussed in Section 1 that the current dataset cannot provide direct 331 

evidence for, but is a likely explanation for at least a subset of the sub-1.0 data points, is that of 332 

particle restructuring. It is also possible that restructuring can occur concurrently with any 333 

combination of the other reasons discussed below.  334 

 335 

4.1 External Mixtures 336 

Atmospheric aerosols are assumed to be internally mixed due to atmospheric processing, both 337 

from cloud and photochemical processing. As a result, atmospheric aerosol instruments are often 338 

optimized for internal mixtures [Seinfeld and Pandis, 2012]. An external mixture is a 339 

heterogeneous mixture of aerosol particle populations, where each particle may have unique 340 

composition, whereas, an internal mixture is a chemically homogeneous mixture of aerosol 341 

particles. The subsequent discussion examines how a revised treatment of DASH-SP data to 342 

consider external mixtures can lead to possible sub-1.0 GF values.   343 

 To test the DASH-SP’s capability to identify the presence of externally mixed aerosol, 344 

calibration standard solutions of Na2SO4, polystyrene latex particles (PSLs), and a mixture of the 345 

two were atomized and fed to the instrument, which sampled at a Dp,dry of 240 nm with RH = 80% 346 
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(Fig. 7a–b). The dry RI (RIdry) of the two number concentration modes observed in the dry OPC 347 

channel correctly match the values of the individual standards, with RIdry = 1.47 for Na2SO4 and 348 

1.60 for PSLs. While individual standards produce one clear number concentration mode, and thus 349 

one GF, according to the properties of that specific standard (Fig. 7a), a mixture of the two species 350 

results in a more ambiguity since it usually is unclear as to which of the multiple modes in the 351 

humidified size distribution should be assigned to a specific mode in the dry distribution (Fig. 7b). 352 

As this was a controlled laboratory experiment, it is known with certainty how the two modes in 353 

each distribution of Figure 7b match up. However, if this were a field measurement, it would be 354 

unclear which humidified peak should be associated to which RIdry leading to four potential GFs 355 

from the mixture sample scan (Fig. 7b). In the following discussion (Figs. 8–9), we define an 356 

external mixture as being when two distinct RIdry are observed at a selected dry size.  357 

Data have been selected from SEAC4RS (Fig. 5), TACO (Fig. 2), and smoke sampling 358 

during E-PEACE (Fig.1) to illustrate evidence of external mixtures. The scans selected are 359 

representative of the smoke sampling periods in each of these studies, with the caveat that TACO 360 

data do not reflect a fresh smoke plume but rather an urban plume with smoke influence due to 361 

residential heating. DASH-SP data from SEAC4RS (Fig. 8a), illustrate the presence of two RIdry 362 

at one Dp,dry during a period of biomass burning sampling. Similarly, DASH-SP data from TACO 363 

on 01 February 2015 during the wintertime reveal two RIdry are observed at one Dp,dry during a day 364 

with likely residential burning owing to low ambient temperatures (Fig. 8b).  365 

While the DASH-SP scans in SEAC4RS and TACO show two clear modes, representative 366 

of two distinct values of RIdry, there are less defined modes in the humidified size distribution. 367 

Unlike the laboratory tests with an external mixture of two known species, the exact chemical 368 

composition of ambient air sampled is unknown, which complicates the matching of modes. 369 
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Consequently, there is uncertainty about how to match each RIdry with an associated humidified 370 

channel mode. The weighted mean of the humidified distribution has been selected in these scans 371 

(Figs. 8a–b), as was done for the field campaign datasets, details of which can be found in Shingler 372 

et al. [2016]. Depending on RIdry associated with the weighted mean of the humidified OPC 373 

distribution, one of two GFs is possible, and in these cases, the higher RIdry results in a sub-1.0 374 

GF. This analysis suggests that instances of sub-1.0 GF could generally be underreported with 375 

current post-processing algorithms (such as with the DASH-SP up to this point) that typically only 376 

lead to one GF value per scan. That is to say, the sub-1.0 GFs shown in Fig. 8a–b, are not in 377 

campaign-wide summary plots (Fig. 2–3).  The reported GFs for DASH-SP scans in Fig. 8a and 378 

8b, are 1.26 and 1.16, respectively, using the weighted mean approach of Shingler et al. [2016] for 379 

the dry and humidified OPC distributions. 380 

 Figure 8c represents a HTDMA scan from E-PEACE during smoke sampling on 17 July 381 

2011, where five GF modes were resolved using the multi-peak fitting package in Igor 382 

(Wavemetrics, Inc.).  Of note is that one of the GFs was 0.85. The HTDMA sampling time (~75 383 

s) was longer than typical DASH-SP scanning times in smoke plumes (~ few seconds), which 384 

means that confidence in the ability of the former instrument to accurately resolve multiple GFs 385 

depends on whether the aerosol characteristics during the entire scan stay the same. This can be a 386 

challenge for plumes of fresh emissions where the probably of externally mixed aerosol is higher 387 

since moving platforms may struggle to stay in the plume for an entire scan. However, during this 388 

particular scan the instrument was able to sample the plume continuously for the full scan duration.  389 

To further investigate external mixtures during the case study flight on 19 August 2013 390 

during SEAC4RS, Fig. 9b shows a time series of dry and humidified OPC scans over the entire 391 

flight with GF, , and f(RH). Changes in selected Dp,dry are reflected in location of dry OPC 392 
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distributions. During the expanded period in Fig. 9b the DC-8 spent time in and out of biomass 393 

burning plumes.  This distinctive signature of being either in or out of the plume is evident in f(RH) 394 

measurements of sub-1.0 hygroscopicity in the plume. Evidence of prolonged periods of the 395 

DASH-SP sampling external mixtures is correlated with periods of f(RH) < 1, as seen in both 396 

periods of sub-1.0 f(RH) in Fig. 9b. The effect of two populations of aerosol at one Dp,dry supports 397 

the claim the DC-8 sampled an externally mixed aerosol population during biomass burning 398 

plumes on 19 August 2013. While sub-1.0 GF is observed during the 19 August 2013 case study, 399 

f(RH) < 1 is more common. One explanation for DASH-SP not observing sub-1.0 GF while f(RH) 400 

< 1 could be due to DASH-SP measurements at a specific Dp,dry combined with periods of 401 

externally mixed aerosol.  402 

The question remains as to how an external mixture affects LARGE f(RH) measurements 403 

and what the difference is in chemical composition between the two peaks in DASH-SP’s bimodal 404 

distribution. It is worth noting that roughly 50% of pulse height observations in DASH-SP raw 405 

data during periods of externally mixed aerosol are at the higher RIdry, which has a similar RI to 406 

BC or PSLs. Typical organic aerosol has an RI of 1.55, and elemental carbon has an RI of 1.8 407 

[Malm et al., 2005]. Other than there being a high concentration of BC, it has been suggested that 408 

amorphous carbon spheres or “tar balls” with higher RI than simple organics could be responsible 409 

for the second higher RI peak, particularly in Dp,dry size range of this study [Hand et al., 2005]. 410 

These tar balls are thought to consist of organic polymer material and are mostly insoluble in water 411 

[Posfai et al., 2004], unchanged by moderate RH or cloud processing. However, Hand et al. [2005] 412 

suggested that at RH > 80%, Scanning Electron Microscope (SEM) analysis indicates the start of 413 

“melting” of particle edges, with effective degradation of tar balls and wetting by RH > 92% 414 

resulting in irreversible morphological changes.  415 
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4.2  Refractive Index Sensitivity 416 

Since the DASH-SP data processing algorithm relies on the measurement of dry particle 417 

refractive index (real part), it is possible that a RI change, due to chemical modification in the 418 

DASH-SP after dry sizing, would result in an apparent change in wet size, without physical size 419 

changing. To probe this possibility, a sensitivity analysis of GF RIdry was conducted with results 420 

shown in Fig. 10.  A representative humidified channel RH (85%) and OPC electrical pulse height 421 

(PHwet: 30,000 in Fig. 10a-b, 20,000 in Fig. 10c-d) were explored; it is noted that the OPC reports 422 

electrical pulse heights which are subsequently converted into number concentration.  For a given 423 

Dp,dry, RHdry, and fixed PHwet, the effect of variations in RIdry on GF and “resultant” wet diameter 424 

was calculated. With a fixed PHwet, it is assumed that wet physical size does not change. Thus, the 425 

effect of RI (due to aqueous processing) on GF is isolated. For a fixed Dp,dry and wet physical size, 426 

a shift in RI produces a profound effect; in Fig. 10c, a 225 nm dry particle could have a GF ranging 427 

from 0.9–1.25 over an RI range of 1.4–1.59. Thus, while physical size may remain unchanged by 428 

water uptake, aqueous chemistry shifting RI could result in a sub-1.0 value.  429 

4.3 Evaporation and Phase Change 430 

Sampling of aerosol to conduct hygroscopicity measurements is prone to evaporation of 431 

semivolatile compounds.  Thermo-kinetic modeling was recently conducted by Shingler et al. 432 

[2016] to investigate the potential effects of evaporation of semivolatile organic compounds 433 

(SVOCs) and ammonium nitrate within the measurement inlet and inside the DASH-SP system. 434 

They reported results for select organic and inorganic compounds of varying chemical structure 435 

and volatility for typical SEAC4RS operating conditions. Details of model set up, conditions, and 436 

validation can be found in Shingler et al. [2016]. Briefly, the Aerosol Inorganic-Organic Mixtures 437 
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Functional groups Activity Coefficients [AIOMFAC; Zuend et al., 2008, 2011] model was utilized 438 

to determine species activity coefficients and condensed phase concentrations. The output from 439 

AIOMFAC was used in the kinetic multi-layer model for gas-particle interactions in aerosols and 440 

clouds [KM-GAP; Shiraiwa et al., 2012] to model transient mass transfer processes and gas-phase 441 

concentrations during instrument sampling.  442 

In this work, we are primarily concerned with additional losses due to particle evaporation 443 

experienced from the entrance of the humidifier up to the size distribution measurement in the 444 

humidified OPC.  By definition, if a humidified particle does not grow in size upon hydration, a 445 

GF = 1 would result, and if this particle experiences evaporative losses, thus decreasing mass in 446 

the particle phase in the humidifier and humidified OPC measurement, a sub-1.0 GF could result. 447 

The particles modeled in Shingler et al. [2016] are characterized by plausible concentration ratios 448 

of inorganic to organic species, in addition to relative amounts of low-volatility organic 449 

compounds (LVOCs) to SVOCs (5% ammonium nitrate, 25% ammonium sulfate, 50% LVOCs, 450 

and 20% SVOCs). Simulations were conducted for particles with Dp,dry of 250 nm and with 451 

instrument humidified channel RHs of 75%, 85%, and 93%, but for this discussion we focus on 452 

85%.  453 

Evaporative losses of ammonium nitrate for liquid-phase and semi-solid particles range 454 

between 13.1–14.3% and 0.0–0.1%, respectively, the range depending on the reference ambient 455 

temperature (modeled at 250, 295, and 310 K; representative of a range of tropospheric altitudes) 456 

for both phases. Losses of organic species can range from near zero for low volatility compounds 457 

(e.g., docosanoic acid ~0.01% for liquid and semi-solid phases) to complete evaporation to gas-458 

phase (e.g., chrysene, 5.6–11.2% for liquid and 0.0–0.1% for semi-solid particles) [Shingler et al., 459 

2016]. Losses are more severe for liquid phase particles than for semi-solid particles, as the bulk 460 
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diffusivity of water and organics is reduced in semi-solid particles. These reported evaporative 461 

losses in the instrument at 85% RH would reduce a GF of 1.15 (without losses) to 1.11 with losses 462 

and represent an upper limit of underestimation of GF values as the particle composition used in 463 

this modelling analysis was more volatile than a semivolatile ambient aerosol [Shingler et al., 464 

2016]. 465 

Considering that the composition of wildfire biomass burning smoke has a higher organic 466 

mass fraction than other airmasses (~90% and 70%, respectively, as shown in Fig. 4 and reported 467 

in Shingler et al., [2016]), these evaporative loss modeling results must be extrapolated to 468 

conditions which lead to sub-1.0 GF and f(RH). As the volatility of biomass burning smoke can 469 

vary based on biofuel and fire phase, (i.e., more volatile biomass burning organic aerosol is 470 

produced in smoldering combustion than flaming combustion [Huffman et al., 2009]), without 471 

detailed chemical composition measurements during sampling, quantifying the evaporative losses 472 

for aerosol near the GF = 1 threshold is not possible in this study. Assuming the loss estimates in 473 

Shingler et al. [2016] are reasonable and represent an upper limit to reduction in GF, and the 474 

modeled semivolatile composition within the particle phase is representative of the ambient 475 

samples, it can be qualitatively assumed that a reported GF of 0.95 would be higher without 476 

evaporative losses within the sampling inlet and DASH-SP system.  However, as there is no 477 

significant dilution or temperature change in the f(RH) measurement technique, evaporative losses 478 

are much less significant in f(RH) measurements compared to DASH-SP measurements of GF. As 479 

f(RH) datapoints represent the majority of sub-1.0 hygroscopicity observations (Fig. 4 and 5), it is 480 

unlikely that evaporative losses are the dominant contributing mechanism resulting in sub-1.0 481 

observations. 482 

 483 
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5.  Conclusions  484 

 Combining hygroscopicity measurements from three different instruments across multiple 485 

field projects and observation platforms, this work presents the first observations of sub-1.0 486 

hygroscopicity reported in the ambient environment. Ship-based HTDMA measurements reveal 487 

sub-1.0 GFs exclusively during sampling smoke-like particles in the marine boundary layer off 488 

the California coast. Ground-based DASH-SP data in Tucson, Arizona exhibit sub-1.0 GFs 489 

exclusively during winter, coincident with widespread residential wood burning. Aircraft-based 490 

data for DASH-SP GF and LARGE f(RH) exhibit sub-1.0 hygroscopicity exclusively during 491 

wildfire biomass burning sampling. Detailed examination of a biomass burning focused flight 492 

during SEAC4RS indicate smoke plumes where acetonitrile exceeds 380 pptv result in sub-1.0 493 

f(RH), with measurements leveling off at 0.9. Reduced particle density correlates with the lowest 494 

f(RH) values, with the majority of sub-1.0 observations occurring when particle density is less than 495 

1.2 g cm-3.  496 

 A new manual data processing technique is demonstrated with the DASH-SP that can help 497 

identify more cases of sub-1.0 GF as compared to previous methods for both the current, previous, 498 

and future experiments. More specifically, the procedure focuses on identifying cases of externally 499 

mixed aerosol with support from laboratory tests. Observations from all three field campaigns by 500 

both the DASH-SP and HTDMA show that externally mixed aerosol, manifested as bimodal 501 

hygroscopicity profiles, were present during smoke-influenced sampling. Given current post-502 

processing capabilities with DASH-SP data, quantitatively reporting multi-modal GFs is not yet 503 

possible; however, detailed case examples of specific scans show how multiple GFs are not 504 

uncommon with the lowest GF sometimes being sub-1.0. It is not clear how externally mixed 505 

aerosol would affect f(RH) measurements, yet SEAC4RS observations indicate f(RH) < 1 when 506 
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DASH-SP observes two RIdry at one Dp,dry size. External mixtures observed in this work are 507 

consistent with literature reports of freshly emitted wood smoke from laboratory combusted 508 

biomass fuels resulted in bimodal , indicative of chemical heterogeneity, or externally mixed 509 

aerosol [Carrico et al., 2010]. Future work will focus on further development of DASH-SP post-510 

processing to quantify more than one GF and examining the connection between external mixtures 511 

and sub-1.0 f(RH) observations. 512 

 Potential explanations for sub-1.0 hygroscopicity were explored, including RI 513 

modifications due to aqueous processing. A sensitivity analysis showed that aqueous processing 514 

of particles without a change in physical size can alter RI in such a way to result in a sub-1.0 value 515 

when using OPCs that rely on light scattering for detecting particle size. Interactions between 516 

particle morphological changes upon hydration and light-scattering changes warrants further 517 

exploration with biomass burning and very hydrophilic populations.  518 

 Evaporation of SVOCs within the DASH-SP measurement system could also contribute to 519 

sub-1.0 hygroscopic observations, the degree of which would be dependent upon on the volatility 520 

of biomass burning smoke, based on chemical composition and fire phase of biomass burning 521 

emissions. The majority of sub-1.0 hygroscopicity observations are in the f(RH) dataset during 522 

SEAC4RS, where substantial evaporative losses within the instrument are unexpected, thus 523 

reducing the likelihood of evaporative losses being the dominant mechanism contributing to sub-524 

1.0 measurements. 525 

 While restructuring has been reported across a variety of sizes, RHs, combustion sources, 526 

and particle coatings, to our knowledge, evidence has not been reported from ambient 527 

measurements. While our datasets cannot allow for identification of this process as having 528 
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explained sub-1.0 hygroscopicity, it cannot be discounted as a likely contributor. Soot particle 529 

morphology is important in climate models, as a recent study found diesel soot particles conducive 530 

to forming ice crystals were more compact than those that formed supercooled droplets, with 531 

enhanced single scattering albedo, thus reducing top-of-the-atmosphere direct radiative forcing by 532 

~63% [China et al., 2015]. Additionally, better understanding particle restructuring is impactful 533 

for mixing state models, as one possibility for deviations in model predictions of GF and 534 

measurements is microscopic solid phase restructuring at increased humidity that is not accounted 535 

for in hygroscopicity and mixing state models [Lei et al., 2014]. To more robustly study this 536 

mechanism in future field projects, we suggest hygroscopicity-measuring instruments develop a 537 

prehumidification channel prior to instrument sizing modules, which can be easily switched on/off, 538 

to hydrate and collapse particles.  When sampling aerosol types vulnerable to restructuring such 539 

as biomass burning smoke, a reasonable hypothesis would be that switching between 540 

prehumidified and non-prehumidified channels should result in periods of sub-1.0 observations 541 

only without prehumidification.  542 
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Figure 1. Growth factor as a function of HTDMA relative humidity during E-PEACE-2011, with 765 

150 nm and 300 nm dry diameter sizes from all non-smoke sampling days (150–300 nm), and 766 

smoke sampling from 17 July 2011.  767 
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Figure 2. Growth factor as a function of DASH-SP relative humidity for TACO winter and 794 

summer intensive measurement periods for dry diameter sizes 190–300 nm. 795 
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Figure 3. Growth factor as a function of DASH-SP relative humidity for all SEAC4RS flights, for 819 

dry diameters 160–360 nm, with all non-biomass burning flights (black dots) and three biomass 820 

burning-focused flights (colored dots) coinciding with all of the sub-1.0 GF data. 821 
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Figure 4. Time series of chemical composition, ambient relative humidity, hygroscopicity 842 

measurements (GF, derived from GF, and f(RH)), aircraft altitude, and biomass burning tracers 843 

for the SEAC4RS 19 August 2013 flight targeting aged biomass burning wildfire smoke. 844 
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Figure 5. Nephelometer-based hygroscopicity measurements of f(RH) from LARGE, and DASH-873 

SP-based hygroscopicity measurements of GF and  (derived from GF) as a function of PTRMS 874 

measured acetonitrile, a biomass burning marker, for the SEAC4RS 19 August 2013 flight. 875 
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Figure 6. Nephelometer-based hygroscopicity measurements of f(RH) from LARGE as a function 896 

of particle density for the SEAC4RS 19 August 2013 flight. Particle density, which is thought to 897 

be reduced during particle restructuring in biomass burning plumes, is calculated from LAS size 898 

distributions and AMS chemical composition. 899 
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Figure 7. DASH-SP laboratory characterization results (Dp,dry = 240 nm, 80% RH) when 922 

sampling (a) separate calibration standards and (b) the mixture of the two standards. Panel 923 

(b) shows that if the composition of the aerosol was unknown that four different GF 924 

values would be possible.  925 
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Figure 8. Examples of the DASH-SP detecting externally mixed aerosol, and thus 949 

multiple GFs, during (a) the SEAC4RS campaign, (b) wintertime intensive measurement 950 

periods in Tucson, Arizona at TACO, and (c) smoke sampling periods in E-PEACE. 951 
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Figure 9. DASH-SP normalized pulse height distributions for dry and wet OPCs during the 974 

SEAC4RS 19 August 2013 flight, with dry particle diameter (black line), and hygroscopic growth 975 

parameters (GF,  derived from GF, and f(RH)). The area above gray lines is intended to 976 

distinguish doubly-charged particles from the rest of the data underneath.  977 
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Figure 10.  Visualization of the sensitivity of DASH-SP GFs to changes in RI that could arise due 996 

to chemical modification of particles upon aqueous processing during humidification. Dry RI is 997 

shown as a function of both GF and resultant wet diameter for different dry particle diameters. A 998 

GF value of 1.0 is marked for reference (black dotted line on left panel, black dots on right panel).  999 
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