202 research outputs found

    Free-ranging domestic cats reduce the effective protected area of a Polish national park

    Get PDF
    Poland's Animal Protection Act, as of 2002, made it legal to shoot free-ranging cats and dogs. The act triggered substantial social debate with opponents arguing that this legislation was weakly supported by scientific evidence of the ecological impacts of free-ranging pets. Our main research goal was to examine the activity of free-ranging domestic cats within a Polish protected area by applying radio-telemetry methods to determine space use and degree of encroachment into the national park. We trapped and radio-tracked 19 animals from three sites (focal households) located in Ojcow National Park (ONP) in southern Poland from June 2003 to March 2006. Annual 100% MCP home range size varied from 0.02 km2 to 1.46 km2, and was significantly larger for males (mean ± SE = 0.79 ± 0.34 km2; median = 0.53 km2) than for females (mean ± SE = 0.13 ± 0.05 km2; median = 0.13 km2). The distance travelled by individual cats from focal sites did not significantly differ between males (mean ± SE = 232.00 ± 21.05 m; median = 191 m) and females (mean ± SE = 232.50 ± 12.47 m; median = 228 m), with maximum distances of 1.5 km for males and 1.1 km for females. All monitored cats were in close proximity to nature reserves and ranged into protected areas without any human control. Cats living in the households in the park and its surrounding buffer zone, roaming at 200 m and 1000 m radius distances from their households, occupied from 6% to 100% of the park area, respectively. Our results reveal that free-ranging domestic cats roam through and potentially impact the entire national park, thus reducing its effective protected area

    A systematic map of human-carnivore coexistence

    Get PDF
    Carnivore populations globally have largely declined, and coexistence, where humans and carnivores share landscapes, plays a crucial role in carnivore conservation. However, the term “coexistence” is often used in scientific and popular literature without being clearly defined. Herein, we provide a global perspective on what coexistence is and how it is studied. We conducted a systematic map of 366 articles published between 1987 and 2020 to characterize human-carnivore coexistence literature according to coexistence definitions, temporal trends, geographic and taxonomic focus, and four thematic aspects of coexistence: carnivore ecology, human endeavors, social conflict and human-carnivore conflict. We used chi-squared tests and generalized linear models to describe the thematic, taxonomic and geographic focus of the literature. The human-carnivore coexistence literature increased exponentially in the past 30 years, but few articles defined the term “coexistence” and those that did used inconsistent definitions. Thematically, coexistence research showed less emphasis on social conflict, even though it is a major driver of conflict regarding carnivores. The literature also focused primarily on larger carnivores, rather than endangered carnivores, and was primarily led by European and North American authors. We offer a simplified, formal definition of “coexistence” that incorporates the four thematic aspects of coexistence encountered in the literature: Co-occurrence of sustainable carnivore populations and human endeavors with minimal human-carnivore and human-human conflict. We encourage researchers to focus on the social dimensions of coexistence, such as human attitudes towards carnivores or the underlying causes of social conflict, and to broaden the taxonomic and cultural breadth of their projects

    An agent-based movement model to assess the impact of landscape fragmentation on disease transmission

    Get PDF
    Landscape changes can result in habitat fragmentation and reduced landscape connectivity, limiting the ability of animals to move across space and altering infectious disease dynamics in wildlife. In this study, we develop and implement an agent-based model to assess the impacts of animal movement behavior and landscape structure on disease dynamics. We model a susceptible/infective disease state system applicable to the transmission of feline immunodeficiency virus in bobcats in the urbanized landscape of coastal southern California. Our agent-based model incorporates animal movement behavior, pathogen prevalence, transmission probability, and habitat fragmentation to evaluate how these variables influence disease spread in urbanizing landscapes. We performed a sensitivity analysis by simulating the system under 4200 different combinations of model parameters and evaluating disease transmission outcomes. Our model reveals that host movement behavior and response to landscape features play a pivotal role in determining how habitat fragmentation influences disease dynamics. Importantly, interactions among habitat fragmentation and movement had non-linear and counter-intuitive effects on disease transmission. For example, the model predicts that an intermediate level of non-habitat permeability and directionality will result in the highest rates of between-patch disease transmission. Agent-based models serve as computational laboratories that provide a powerful approach for quantitatively and visually exploring the role of animal behavior and anthropogenic landscape change on contacts among agents and the spread of disease. Such questions are challenging to study empirically given that it is difficult or impossible to experimentally manipulate actual landscapes and the animals and pathogens that move through them. Modeling the relationship between habitat fragmentation, animal movement behavior, and disease spread will improve understanding of the spread of potentially destructive pathogens through wildlife populations, as well as domestic animals and humans

    Predicting Dispersal and Conflict Risk for Wolf Recolonization in Colorado

    Get PDF
    1. The colonization of suitable yet unoccupied habitat due to natural dispersal or human introduction can benefit recovery of threatened species. Predicting habitat suitability and conflict potential of colonization areas can facilitate conservation planning. 2. Planning for reintroduction of gray wolves (Canis lupus) to the United States state of Colorado is underway. Assessing which occupancy sites minimize the likelihood of human-wolf conflict during dispersal events and seasonal movements is critical to the success of this initiative. 3. We used a spatial absorbing Markov chain (SAMC) framework, which extends random walk theory and probabilistically accounts for both movement behavior and mortality risk, to compare the viability of potential occupancy sites (public lands \u3e 500 km2 to minimally meet wolf pack range area). The SAMC framework produced spatially explicit predictions of wolf dispersal, philopatry and conflict risk ahead of recolonization prior to reintroduction efforts. Our SAMC model included: (1) movement resistance based on terrain, roads and housing density; (2) mortality risk and potential conflict (absorption) based on livestock presence, social tolerance, land ownership and state boundaries; and (3) site fidelity based on habitat quality. Using this model, we compared 21 public land units by deriving predictions of: (A) relative survival time outside each site, (B) intensity of use and retention time within each site, and (C) the probability of use on adjacent public lands. We also predicted and mapped potential conflict hot spots associated with each site. 4. Among the units assessed, a complex of United States Forest Service Wilderness areas near Aspen, chiefly the Hunter-Fryingpan and Collegiate Peaks Wilderness areas, had the best overall rankings when comparing predictions of each metric. The area balances high-quality, well-connected habitat with relatively low livestock density and high social tolerance. 5. Synthesis and applications. Our findings highlight the utility of the SAMC framework for assessing colonization areas and the capacity to identify locations for effective proactive management, especially of conflict prone species. The flexibility of the SAMC framework enables predicting likely areas of philopatry and human-wildlife conflict using spatially explicit metrics which can improve the success of conservation translocations and management of species with changing geographic extents

    Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals

    Get PDF
    Although habitat fragmentation is often assumed to be a primary driver of extinction, global patterns of fragmentation and its relationship to extinction risk have not been consistently quantified for any major animal taxon. We developed high-resolution habitat fragmentation models and used phylogenetic comparative methods to quantify the effects of habitat fragmentation on the world's terrestrial mammals, including 4,018 species across 26 taxonomic Orders. Results demonstrate that species with more fragmentation are at greater risk of extinction, even after accounting for the effects of key macroecological predictors, such as body size and geographic range size. Species with higher fragmentation had smaller ranges and a lower proportion of high-suitability habitat within their range, andmost high-suitability habitat occurred outside of protected areas, further elevating extinction risk. Our models provide a quantitative evaluation of extinction risk assessments for species, allow for identification of emerging threats in species not classified as threatened, and provide maps of global hotspots of fragmentation for the world's terrestrial mammals. Quantification of habitat fragmentation will help guide threat assessment and strategic priorities for global mammal conservation

    A conceptual model for the integration of social and ecological information to understand human-wildlife interactions

    Get PDF
    There is growing recognition that interdisciplinary approaches that account for both ecological and social processes are necessary to successfully address human-wildlife interactions. However, such approaches are hindered by challenges in aligning data types, communicating across disciplines, and applying social science information to conservation actions. To meet these challenges, we propose a conceptual model that adopts a social-ecological systems approach and integrates social and ecological theory to identify the multiple, nested levels of influence on both human and animal behavior. By accounting for a diverse array of influences and feedback mechanisms between social and ecological systems, this model fulfills a need for approaches that treat social and ecological processes with equal depth and facilitates a comprehensive understanding of the drivers of human and animal behaviors that perpetuate human-wildlife interactions. We apply this conceptual model to our work on human-black bear conflicts in Colorado, USA to demonstrate its utility. Using this example, we identify key lessons and offer guidance to researchers and conservation practitioners for applying integrated approaches to other human-wildlife systems

    Tourism‑supported working lands sustain a growing jaguar population in the Colombian Llanos

    Get PDF
    Understanding large carnivore demography on human-dominated lands is a priority to inform conservation strategies, yet few studies examine long-term trends. Jaguars (Panthera onca) are one such species whose population trends and survival rates remain unknown across working lands. We integrated nine years of camera trap data and tourist photos to estimate jaguar density, survival, abundance, and probability of tourist sightings on a working ranch and tourism destination in Colombia. We found that abundance increased from five individuals in 2014 to 28 in 2022, and density increased from 1.88 ± 0.87 per 100 km2 in 2014 to 3.80 ± 1.08 jaguars per 100 km2 in 2022. The probability of a tourist viewing a jaguar increased from 0% in 2014 to 40% in 2020 before the Covid-19 pandemic. Our results are the first robust estimates of jaguar survival and abundance on working lands. Our findings highlight the importance of productive lands for jaguar conservation and suggest that a tourism destination and working ranch can host an abundant population of jaguars when accompanied by conservation agreements and conflict interventions. Our analytical model that combines conventional data collection with tourist sightings can be applied to other species that are observed during tourism activities. Entender los patrones demográficos de los grandes carnívoros al interior de paisajes antrópicos es fundamental para el diseño de estrategias de conservación efectivas. En el Neotrópico, el jaguar (Panthera onca) es una de estas especies cuyas tendencias poblacionales y tasas de supervivencia en paisajes productivos son desconocidas. Para entender mejor estas dinámicas, integramos nueve años de fototrampeo junto a fotos de turistas para estimar la densidad, supervivencia, abundancia y probabilidad de avistamiento de esta especie en una finca ganadera y destino turístico en Colombia. Entre 2014 y 2022 encontramos que la abundancia incrementó de cinco a 28 individuos y la densidad de 1.88 ± 0.87 jaguares/ 100 km2 a 3.80 ± 1.08 jaguares/ 100 km2. La probabilidad de avistamiento por turistas aumentó de 0% en 2014 a 40% en 2020 antes de la pandemia del Covid-19. Nuestros resultados presentan las primeras estimaciones robustas de abundancia y supervivencia de este felino en paisajes antrópicos dónde el manejo de sistemas productivos combinados con turismo e intervenciones para la mitigación del conflicto puede albergar poblaciones abundantes de jaguares, demostrando su importancia para la conservación de esta especie. Nuestro modelo, al combinar datos convencionales con avistamientos, podría ser aplicado a otras especies observadas durante actividades turísticas. Supplemental files attached below

    Rapid changes in public perception toward a conservation initiative

    Get PDF
    Rapid, widespread changes in public perceptions and behaviors have the potential to influence conservation outcomes. However, few studies have documented whether and how such shifts occur throughout the span of a conservation initiative. We examined the 2020 ballot initiative to reintroduce wolves into Colorado, which passed with less support than prior surveys had estimated. We conducted a postelection survey of Colorado residents using the same methods as our preelection survey to compare responses between surveys and to official election results. Reported voting in favor of wolf reintroduction in the postelection survey decreased in comparison to voting intentions shared in the preelection survey, but not enough to reflect the actual vote. While bias from survey methods and/or sampling contributed to differences, we also found evidence that public perception changed. Specifically, beliefs about the potential for negative impacts of wolves increased, while beliefs about the potential for positive impacts of wolves decreased. Our findings highlight the need to conduct longitudinal monitoring of public perception given perceptions may be highly fluid as different entities attempt to sway voters. In addition, to better understand evolving perceptions, survey methods and sampling need to be improved

    Direct Observation of Broadband Coating Thermal Noise in a Suspended Interferometer

    Full text link
    We have directly observed broadband thermal noise in silica/tantala coatings in a high-sensitivity Fabry-Perot interferometer. Our result agrees well with the prediction based on indirect, ring-down measurements of coating mechanical loss, validating that method as a tool for the development of advanced interferometric gravitational-wave detectors.Comment: Final version synchronized with publication in Phys. Lett.
    corecore