136 research outputs found

    The distribution of nearby stars in phase space mapped by Hipparcos III. Clustering and streaming among A-F type stars

    Full text link
    This paper presents the detailed results obtained in the search of density- velocity inhomogeneities in a volume limited and absolute magnitude limited sample of A-F type dwarfs within 125 parsecs of the Sun. A 3-D wavelet analysis is used to extract inhomogeneities, both in the density and velocity distributions. Having established a real picture of the phase space without assumption we come back to previously known observational facts regarding clusters and associations, superclusters. In the 3-D position space, well known open clusters (Hyades, Coma Berenices and Ursa Major), associations (parts of the Scorpio-Centaurus association) as well as the Hyades evaporation track are retrieved. Three new probably loose clusters are identified (Bootes, Pegasus 1 and 2). The sample is relatively well mixed in the position space since less than 7 per cent of the stars belong to structures with coherent kinematics, most likely gravitationally bound. In the velocity space, the majority of large scale velocity structures (σ\sigma ~ 6.3 kms1km s-1) are Eggen's superclusters (Pleiades SCl, Hyades SCl and Sirius SCl) with the whole Centaurus association. A new supercluster-like structure is found with a mean velocity between the Sun and Sirius SCl velocities. These structures are all characterized by a large age range which reflects the overall sample age distribution. Moreover, a few old streams of ~ 2 Gyr are also extracted at this scale with high U components. We show that all these large velocity dispersion structures represent 46% of the sample. Smaller scales (\sigma ~ 3.8 and 2.4 kms1km s-1) reveal that superclusters are always substructured by 2 or more streams which generally exhibit a coherent age distribution. Percentages of stars in these streams are 38% and 18% respectively.Comment: 25 pages, Latex, 29 figures, 4 tables to be published in A&A Supplements Serie

    On the vertical equilibrium of the local Galactic disk and the search for disk dark matter

    Full text link
    Estimates of the dynamical surface mass density at the solar Galactocentric distance are commonly derived assuming that the disk is in vertical equilibrium with the Galactic potential. This assumption has recently been called into question, based on the claim that the ratio between the kinetic and the gravitational energy in such solutions is a factor of 3 larger than required if Virial equilibrium is to hold. Here we show that this ratio between energies was overerestimated and that the disk solutions are likely to be in Virial equilibrium after all. We additionally demonstrate, using one-dimensional numerical simulations, that the disks are indeed in equilibrium. Hence, given the uncertainties, we find no reason to cast doubt on the steady-state solutions which are traditionally used to measure the matter density of the disk.Comment: 6 pages, 2 figures, accepted for publication in ApJ Letter

    Does my brain want what my eyes like? - How food liking and choice influence spatio-temporal brain dynamics of food viewing.

    Get PDF
    How food valuation and decision-making influence the perception of food is of major interest to better understand food intake behavior and, by extension, body weight management. Our study investigated behavioral responses and spatio-temporal brain dynamics by means of visual evoked potentials (VEPs) in twenty-two normal-weight participants when viewing pairs of food photographs. Participants rated how much they liked each food item (valuation) and subsequently chose between the two alternative food images. Unsurprisingly, strongly liked foods were also chosen most often. Foods were rated faster as strongly liked than as mildly liked or disliked irrespective of whether they were subsequently chosen over an alternative. Moreover, strongly liked foods were subsequently also chosen faster than the less liked alternatives. Response times during valuation and choice were positively correlated, but only when foods were liked; the faster participants rated foods as strongly liked, the faster they were in choosing the food item over an alternative. VEP modulations by the level of liking attributed as well as the subsequent choice were found as early as 135-180ms after food image onset. Analyses of neural source activity patterns over this time interval revealed an interaction between liking and the subsequent choice within the insula, dorsal frontal and superior parietal regions. The neural responses to food viewing were found to be modulated by the attributed level of liking only when foods were chosen, not when they were dismissed for an alternative. Therein, the responses to disliked foods were generally greater than those to foods that were liked more. Moreover, the responses to disliked but chosen foods were greater than responses to disliked foods which were subsequently dismissed for an alternative offer. Our findings show that the spatio-temporal brain dynamics to food viewing are immediately influenced both by how much foods are liked and by choices taken on them. These valuation and choice processes are subserved by brain regions involved in salience and reward attribution as well as in decision-making processes, which are likely to influence prospective dietary choices in everyday life

    The distribution of nearby stars in phase space mapped by Hipparcos: I. The potential well and local dynamical mass

    Full text link
    Hipparcos data provide the first, volume limited and absolute magnitude limited homogeneous tracer of stellar density and velocity distributions in the solar neighbourhood. The density of A-type stars more luminous than Mv=2.5M_v=2.5 can be accurately mapped within a sphere of 125 pc radius, while proper motions in galactic latitude provide the vertical velocity distribution near the galactic plane. The potential well across the galactic plane is traced practically hypothesis-free and model-free. The local dynamical density comes out as \rho_{0}=0.076 \pm0.015~M_{\sun}~{pc}^{-3} a value well below all previous determinations leaving no room for any disk shaped component of dark matter.Comment: 24 pages, 13 figures, latex. To appear in A&A (main journal

    Kinematic segregation of nearby disk stars from the Hipparcos database

    Full text link
    To better understand our Galaxy, we investigate the pertinency of describing the sys tem of nearby disk stars in terms of a two-components Schwarzschild velocity distributio n.Using the proper motion and parallax information of Hipparcos database, we determine t he parameters characterizing the local stellar velocity field of a sample of 22000 disk stars. The sample we use is essentially the same as the one described by the criteria ad opted to study the LSR and the stream motion of the nearby stellar populationComment: 19 page

    On high proper motion white dwarfs from photographic surveys

    Get PDF
    The interpretation of high proper motion white dwarfs detected by Oppenheimer et al (2001) was the start of a lively controversy. While the discoverers identify a large fraction of their findings as dark halo members, others interpret the same sample as essentially made of disc and/or thick disc stars. We use the comprehensive description of Galactic stellar populations provided by the "Besancon" model to produce a realistic simulation of Oppenheimer et al. data, including all observational selections and calibration biases. The conclusion is unambiguous: Thick disc white dwarfs resulting from ordinary hypotheses on the local density and kinematics are sufficient to explain the observed objects, there is no need for halo white dwarfs. This conclusion is robust to reasonable changes in model ingredients. The main cause of the misinterpretation seems to be that the velocity distribution of a proper motion selected star sample is severely biased in favour of high velocities. This has been neglected in previous analyses. Obviously this does not prove that no such objects like halo white dwarfs can exist, but Oppenheimer et al. observations drive their possible contribution in the dark matter halo down to an extremely low fraction.Comment: 4 pages, 1 figure, A&A Letters, accepte

    Luminous and Dark Matter in the Milky Way

    Full text link
    (Abridged) Axisymmetric models of the Milky Way exhibit strong interrelations between the Galactic constants (R_0 and T_0), the stellar columndensity (S_*) and the shape of the dark matter (DM) halo. Here we present analytical relations that can be used to investigate the effects of the uncertain gaseous velocity dispersion on the HI flaring constraints. The contribution of cosmic rays and magnetic fields to the pressure gradients is small. A significantly flattened dark matter halo is only possible if R_0 <~ 6.8 kpc. If R_0 is larger than ~7 kpc, or T_0 >~ 170 km/s, we can rule out two DM candidates that require a highly flattened DM halo: 1) decaying massive neutrinos; and 2) a disk of cold molecular hydrogen. It is only possible to construct self-consistent models of the Galaxy based on the IAU-recommended values for the Galactic constants in the unlikely case that the the stellar columndensity is smaller than ~18 M_sun/pc^2. If we assume that the halo is oblate and S_* = 35 +/- 5 M_sun/pc^2, R_0 <~ 8 kpc and T_0 <~ 200 km/s. Combining the best kinematical and star-count estimates of S_*, we conclude that: 25 <~ S_* <~ 45 M_sun/pc^2. Kuijken & Gilmore's (1991) determination of the columndensity of matter with |z|<=1.1 kpc is robust and valid over a wide range of Galactic constants. Our mass models show that the DM density in the Galactic centre is uncertain by a factor 1000. In the Solar neighbourhood we find: rho_DM ~0.42 GeV/c^2/cm^3 or (11 +/- 5) mM_sun/pc^3 -- roughly 15% of rho_tot.Comment: Accepted for publication in MNRA
    corecore