15 research outputs found

    Trace Contaminant Control: An In-Depth Study of a Silica-Titania Composite for Photocatalytic Remediation of Closed-Environment Habitat Air

    Get PDF
    This collection of studies focuses on a PCO system for the oxidation of a model compound, ethanol, using an adsorption-enhanced silica-TiO2 composite (STC) as the photocatalyst; studies are aimed at addressing the optimization of various parameters including light source, humidity, temperature, and possible poisoning events for use as part of a system for gaseous trace-contaminant control system in closed-environment habitats. The first goal focused on distinguishing the effect of photon flux (i.e., photons per unit time reaching a surface) from that of photon energy (i.e., wavelength) of a photon source on the PCO of ethanol. Experiments were conducted in a bench-scale annular reactor packed with STC pellets and irradiated with either a UV-A fluorescent black light blue lamp O max=365 nm) at its maximum light intensity or a UV-C germicidal lamp O. max=254 nm) at three levels of light intensity. The STC-catalyzed oxidation of ethanol was found to follow zero-order kinetics with respect to CO2 production, regardless of the photon source. Increased photon flux led to increased EtOH removal, mineralization, and oxidation rate accompanied by lower intermediate concentration in the effluent. The oxidation rate was higher in the reactor irradiated by UV-C than by UV-A (38.4 vs. 31.9 nM s-1 ) at the same photon flux, with similar trends for mineralization (53.9 vs. 43.4%) and reaction quantum efficiency (i.e., photonic efficiency, 63.3 vs. 50.1 nmol C02 ~mol photons-1 ). UV-C irradiation also led to decreased intermediate concentration in the effluent compared to UV -A irradiation. These results demonstrated that STC-catalyzed oxidation is enhanced by both increased photon flux and photon energy. The effect of temperature and relative humidity on the STC-catalyzed degradation of ethanol was also determined using the UV-A light source at its maximum intensity

    Development and Progress in Enabling the Photocatalyst Ti02 Visible-Light-Active

    Get PDF
    Photocatalytic oxidation (PCO) of organic contaminants is a promising air and water quality management approach which offers energy and cost savings compared to thermal catalytic oxidation (TCO). The most widely used photocatalyst, anatase TiO2, has a wide band gap (3.2 eV) and is activated by UV photons. Since solar radiation consists of less than 4% UV, but contains 45% visible light, catalysts capable of utilizing these visible photons need to be developed to make peo approaches more efficient, economical, and safe. Researchers have attempted various approaches to enable TiO2 to be visible-light-active with varied degrees of success'. Strategies attempted thus far fall into three categories based on their electrochemical' mechanisms: 1) narrowing the band gap of TiO2 by implantation of transition metal elements or nonmetal elements such as N, S, and C, 2) modifying electron-transfer processes during PCO by adsorbing sensitizing dyes, and 3) employing light-induced interfacial electron transfer in the heteronanojunction systems consisting of narrow band gap semiconductors represented by metal sulfides and TiO2. There are diverse technical approaches to implement each of these strategies. This paper presents a review of these approaches and results of the photocatalytic activity and photonic efficiency of the end .products under visible light. Although resulting visible-light-active (VLA) photocatalysts show promise, there is often no comparison with unmodified TiO2 under UV. In a limited number of studies where such comparison was provided, the UV-induced catalytic activity of bare TiO2 is much greater than the visible-light-induced catalytic activity of the VLA catalyst. Furthermore, VLA-catalysts have much lower quantum efficiency compared to the approx.50% quantum efficiency of UV-catalysts. This stresses the need for continuing research in this area

    Analysis of Process Gases and Trace Contaminants in Membrane-Aerated Gaseous Effluent Streams.

    Get PDF
    In membrane-aerated biofilm reactors (MABRs), hollow fibers are used to supply oxygen to the biofilms and bulk fluid. A pressure and concentration gradient between the inner volume of the fibers and the reactor reservoir drives oxygen mass transport across the fibers toward the bulk solution, providing the fiber-adhered biofilm with oxygen. Conversely, bacterial metabolic gases from the bulk liquid, as well as from the biofilm, move opposite to the flow of oxygen, entering the hollow fiber and out of the reactor. Metabolic gases are excellent indicators of biofilm vitality, and can aid in microbial identification. Certain gases can be indicative of system perturbations and control anomalies, or potentially unwanted biological processes occurring within the reactor. In confined environments, such as those found during spaceflight, it is important to understand what compounds are being stripped from the reactor and potentially released into the crew cabin to determine the appropriateness or the requirement for additional mitigation factors. Reactor effluent gas analysis focused on samples provided from Kennedy Space Center's sub-scale MABRs, as well as Johnson Space Center's full-scale MABRs, using infrared spectroscopy and gas chromatography techniques. Process gases, such as carbon dioxide, oxygen, nitrogen, nitrogen dioxide, and nitrous oxide, were quantified to monitor reactor operations. Solid Phase Microextraction (SPME) GC-MS analysis was used to identify trace volatile compounds. Compounds of interest were subsequently quantified. Reactor supply air was examined to establish target compound baseline concentrations. Concentration levels were compared to average ISS concentration values and/or Spacecraft Maximum Allowable Concentration (SMAC) levels where appropriate. Based on a review of to-date results, current trace contaminant control systems (TCCS) currently on board the ISS should be able to handle the added load from bioreactor systems without the need for secondary mitigation

    Sustainability of the Catalytic Activity of a Silica-Titania Composite (STC) for Long-Term Indoor Air Quality Control

    Get PDF
    TiO2-assisted photocatalytic oxidation (PCO) is an emerging technology for indoor air quality control and is also being evaluated as an alternative trace contaminant control technology for crew habitats in space exploration. Though there exists a vast range of literature on the development of photocatalysts and associated reactor systems, including catalyst performance and performance-influencing factors, the critical question of whether photocatalysts can sustain their initial catalytic activity over an extended period of operation has not been adequately addressed. For a catalyst to effectively serve as an air quality control product, it must be rugged enough to withstand exposure to a multitude of low concentration volatile organic compounds (VOCs) over long periods of time with minimal loss of activity. The objective of this study was to determine the functional lifetime of a promising photocatalyst - the silica-titania composite (STC) from Sol Gel Solutions, LLC in a real-world scenario. A bench-scale STC-packed annular reactor under continuous irradiation by a UV-A fluorescent black-light blue lamp ((lambda)max = 365 nm) was exposed to laboratory air continuously at an apparent contact time of 0.27 sand challenged with a known concentration of ethanol periodically to assess any changes in catalytic activity. Laboratory air was also episodically spiked with halocarbons (e.g., octafluoropropane), organosulfur compounds (e.g., sulfur hexafluoride), and organosilicons (e.g., siloxanes) to simulate accidental releases or leaks of such VOCs. Total organic carbon (TOC) loading and contaminant profiles of the laboratory air were also monitored. Changes in STC photocatalytic performance were evaluated using the ethanol mineralization rate, mineralization efficiency, and oxidation intermediate (acetaldehyde) formation. Results provide insights to any potential catalyst poisoning by trace halocarbons and organosulfur compounds

    The Effect of Photon Source on Heterogeneous Photocatalytic Oxidation of Ethanol by a Silica-Titania Composite

    Get PDF
    The objective of this study was to distinguish the effect of photon flux (i.e., photons per unit time reaching a surface) from that of photon energy (i.e., wavelength) of a photon source on the silica-titania composite (STC)-catalyzed degradation of ethanol in the gas phase. Experiments were conducted in a bench-scale annular reactor packed with STC pellets and irradiated with either a UV-A fluorescent black light blue lamp ((gamma)max=365 nm) at its maximum light intensity or a UV-C germicidal lamp ((gamma)max=254 nm) at three levels of light intensity. The STC-catalyzed oxidation of ethanol was found to follow zero-order kinetics with respect to CO2 production, regardless of the photon source. Increased photon flux led to increased EtOH removal, mineralization, and oxidation rate accompanied by lower intermediate concentration in the effluent. The oxidation rate was higher in the reactor irradiated by UV-C than by UV-A (38.4 vs. 31.9 nM/s) at the same photon flux, with similar trends for mineralization (53.9 vs. 43.4%) and reaction quantum efficiency (i.e., photonic efficiency, 63.3 vs. 50.1 nmol CO2 (mu)mol/photons). UV-C irradiation also led to decreased intermediate concentration in the effluent . compared to UV-A irradiation. These results demonstrated that STC-catalyzed oxidation is enhanced by both increased photon flux and photon energy

    Final Report on the Detection of Green Monopropellants

    Get PDF
    In 2014, National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC) funded a project titled "Familiarization and Detection of Green Monopropellants" utilizing Independent Research and Technology Development (IR&TD) and Center Innovation Fund (CIF) funding. The purpose of the project was to evaluate methods of detection for ammonium dinitramide (ADN) and hydroxylammonium nitrate (HAN). An Engineering Services Contract (ESC) task order was created with the scope of evaluation of several methods of detecting ADN- and HAN-based propellants, as well as development of methods for detection. Detection methods include developed methods such as colorimetric indicating absorbent socks, and commercial-off-the- shelf (COTS) units for ammonia detection. An additional goal of the task order was for ESC to become familiar with ADN's and HAN's material properties and material compatibility. Two approaches were initially investigated as possible methods for the detection of HAN (or AFM315E) and ADN (or LMP-103S). These approaches were colorimetric analysis and instrumentation-based COTS vapor sensors utilization. Initial testing showed that the relatively non-existent vapor pressure of the AF-M315E (of which HAN is a major component) propellant would make the use of COTS sensors difficult for real-time area monitoring of HAN; a small response was detected through the use of active COTS sensors, including the RAE Systems MultiRAE Lite and Drager X-act (registered) 5000, but the levels detected were below the threshold limit value for the toxic gas ammonia. Therefore, a detection system ased upon a colorimetric indicator impregnated into an absorbent material was developed. Preliminary analysis (ESC-245-FDG-001) identified a particularly outstanding candidate as a colorimetric indicator for the detection of the presence of AF-M315E in the form of a Methyl Red (Basic) indicator. Materials impregnated with this indicator exhibit significant color change and the materials are not susceptible to interference from exposure to water or carbon dioxide. The completed detection system for HAN/AF-M315E consists of absorbent socks packed with Fisher Universal Spill Absorbent capable of absorbing and containing any propellant spills that they come into contact with along with indicating wipes. The absorbent socks are also chemically treated with a Methyl Red (Basic) indicator solution to provide the end user with a visual indication that a leak has occurred and proper protective precautions must be undertaken. An added benefit of this detection system is that the absorbent socks should neutralize/absorb any commodity that it comes into contact with (until saturation is reached). Additional adsorbent socks can be deployed until a color change is not seen, indicating that the HAN/AF-M315E contamination has been contained. The indicating wipes provide the user the opportunity to wipe surfaces to determine if there is any HAN/AF-M315E or HAN/AFM315E residue present. The wipes should allow the detection of fuel levels that may be too small to detect with the absorbent socks. The development of a detection system for the ADN/LMP-103S focused on the use of various COTS sensors used as real-time area monitoring devices and personal dosimeters. These COTS based sensor systems were of several different types, including both actively pumped and diffusion-based passive systems, as well as a "rope"-type chemical sensing cable. The results highlighted some of the major differences between the two monopropellants undergoing evaluation. Unlike HAN, ADN (which is the major constituent of LMP-103S) exhibits a much more volatile nature in comparison to AF-M315E. In fact, testing showed that a large percentage of the fuel was lost during the sampling measurement (greater than 10 percent by mass); although this testing cannot tell if the volatile component is the ADN itself or another component of the monopropellant solution. Not surprisingly, all four of the procured vapor-based COTS sensors showed positive results when exposed to solutions of the LMP-103S (ESC-245-FDG-002). The completed detection system for ADN/LMP-103S consists of a combination of two of the tested COTS sensor systems, the RAE Systems MultiRAE Lite and the BW Technologies GasAlert Extreme. These systems are meant to be used in conjunction with one another, which allows for the end-user to have both real-time area monitoring (MultiRAE Lite) as well as a personal dosimeter device (GasAlert Extreme) which can be worn as additional personal protective equipment. An stainless steel extension wand was fabricated and included in the detection system for the MultiRAE Lite to allow for more remote sensing, and connects via the active pumping inlet of the sensor. As stated, the final results of this testing resulted in the production of two "kits" which can be used for the detection of HAN/AF-M315E and ADN/LMP-103s (ESC-245-FDG-003)

    Dormancy and Recovery Testing for Biological Wastewater Processors

    Get PDF
    Bioreactors, such as aerated membrane type bioreactors have been proposed and studied for a number of years as an alternate approach for treating wastewater streams for space exploration. Several challenges remain before these types of bioreactors can be used in space settings, including transporting the bioreactors with their microbial communities to space, whether that be the International Space Station or beyond, or procedures for safing the systems and placing them into dormant state for later start-up. Little information is available on such operations as it is not common practice for terrestrial systems. This study explored several dormancy processes for established bioreactors to determine optimal storage and recovery conditions. Procedures focused on complete isolation of the microbial communities from an operational standpoint and observing the effects of: 1) storage temperature, and 2) storage with or without the reactor bulk fluid. The first consideration was tested from a microbial integrity and power consumption standpoint; both room temperature (25 C) and cold (4 C) storage conditions were studied. The second consideration was explored; again, for microbial integrity as well as plausible real-world scenarios of how terrestrially established bioreactors would be transported to microgravity and stored for periods of time between operations. Biofilms were stored without the reactor bulk fluid to simulate transport of established biofilms into microgravity, while biofilms stored with the reactor bulk fluid simulated the most simplistic storage condition to implement operations for extended periods of nonuse. Dormancy condition did not have an influence on recovery in initial studies with immature biofilms (48 days old), however, a lengthy recovery time was required (20+ days). Bioreactors with fully established biofilms (13 months) were able to recover from a 7-month dormancy period to steady state operation within 4 days (approximately 1 residence cycle). Results indicate a need for future testing on biofilm age and health and further exploration of dormancy length

    Visible-Light Responsive Catalysts Using Quantum Dot-Modified TiO2 for Air and Water Purification

    Get PDF
    Photocatalysis, the oxidation or reduction of contaminants by light-activated catalysts, utilizing titanium dioxide (TiO2) as the catalytic substrate has been widely studied for trace contaminant control in both air and water applications. The interest in this process is due primarily to its low energy consumption and capacity for catalyst regeneration. Titanium dioxide requires ultraviolet light for activation due to its relatively large band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors; however, the use of mercury precludes the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure

    Fiber Attachment Module Experiment (FAME): Using a Multiplexed Miniature Hollow Fiber Membrane Bioreactor Solution for Rapid Process Testing

    Get PDF
    Bioreactor research is mostly limited to continuous stirred-tank reactors (CSTRs) which are not an option for microgravity (g) applications due to the lack of a gravity gradient to drive aeration as described by the Archimedes principle. Bioreactors and filtration systems for treating wastewater in g could avoid the need for harsh pretreatment chemicals and improve overall water recovery. Solution: Membrane Aerated Bioreactors (MABRs) for g applications, including possible use for wastewater treatment systems for the International Space Station (ISS)

    Visible-Light-Responsive Photocatalysis: Ag-Doped TiO2 Catalyst Development and Reactor Design Testing

    Get PDF
    In recent years, the alteration of titanium dioxide to become visible-light-responsive (VLR) has been a major focus in the field of photocatalysis. Currently, bare titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Hg-vapor fluorescent light sources are used in photocatalytic oxidation (PCO) reactors to provide adequate levels of ultraviolet light for catalyst activation; these mercury-containing lamps, however, hinder the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure. VLR-TiO2 would allow for use of ambient visible solar radiation or highly efficient visible wavelength LEDs, both of which would make PCO approaches more efficient, flexible, economical, and safe. Over the past three years, Kennedy Space Center has developed a VLR Ag-doped TiO2 catalyst with a band gap of 2.72 eV and promising photocatalytic activity. Catalyst immobilization techniques, including incorporation of the catalyst into a sorbent material, were examined. Extensive modeling of a reactor test bed mimicking air duct work with throughput similar to that seen on the International Space Station was completed to determine optimal reactor design. A bench-scale reactor with the novel catalyst and high-efficiency blue LEDs was challenged with several common volatile organic compounds (VOCs) found in ISS cabin air to evaluate the system's ability to perform high-throughput trace contaminant removal. The ultimate goal for this testing was to determine if the unit would be useful in pre-heat exchanger operations to lessen condensed VOCs in recovered water thus lowering the burden of VOC removal for water purification systems
    corecore